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Abstract

The problem of reconstruction of ultrasound images by means of blind deconvolution has long
been recognized as one of the central problems in medical ultrasound imaging. In this paper, this
problem is addressed via proposing a blind deconvolution method which is innovative in several
ways. In particular, the method is based on parametric inverse filtering, whose parameters are
optimized using two-stage processing. At the first stage, some partial information on the point
spread function is recovered. Subsequently, this information is used to explicitly constrain the
spectral shape of the inverse filter. From this perspective, the proposed methodology can be
viewed as a “hybridization” of two standard strategies in blind deconvolution, which are based on
either concurrent or successive estimation of the point spread function and the image of interest.
Moreover, evidence is provided that the “hybrid” approach can outperform the standard ones in a
number of important practical cases. Additionally, the present study introduces a different
approach to parameterizing the inverse filter. Specifically, we propose to model the inverse
transfer function as a member of a principal shift-invariant subspace. It is shown that such a
parameterization results in considerably more stable reconstructions as compared to standard
parameterization methods. Finally, it is shown how the inverse filters designed in this way can be
used to deconvolve the images in a nonblind manner so as to further improve their quality. The
usefulness and practicability of all the introduced innovations are proven in a series of both in
silico and in vivo experiments. Finally, it is shown that the proposed deconvolution algorithms are
capable of improving the resolution of ultrasound images by factors of 2.24 or 6.52 (as judged by
the autocorrelation criterion) depending on the type of regularization method used.
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I. Introduction

Medical ultrasound imaging is currently considered to be on the leading edge in noninvasive
diagnostic imaging, whose cost-benefit ratio in terms of accessibility, portability, and safety
far exceeds that of alternative technologies. Unfortunately, the advantages of ultrasound
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imaging are counterbalanced by the relatively low quality of ultrasound images as compared
to other modalities, such as, e.g., X-ray CT or MRI. As a result, significant efforts have been
expended in the past few decades to improve the quality of medical ultrasound via both
modernizing the design of ultrasound scanners and incorporating effective signal processing
schemes in the process of image formation. Among the latter approaches are those based on
deconvolution techniques [1]-[7], which are in the focus of the present developments.

In ultrasound imaging, the convolution model of image formation implies a linear
interaction between the acoustic field and studied tissues. Although such an interaction
could only occur on conditions of weak scattering [8], which is not ubiquitous in biological
tissues, the convolution model has long been known as a good approximation of the real
field-tissue interaction. For this reason, this model is chosen as the basis for the present
study.

Under the convolution model, the acquired radio-frequency (RF) image is considered to be a
result of convolution between the point-spread function (PSF) of the ultrasound scanner and
a tissue-reflectivity function. Unfortunately, such a global description can rarely be used to
account for the formation of a whole RF-image, since, in ultrasound imaging, the PSF
happens to exhibit spatial dependency due to the nonuniformity of focusing, diffraction
effects, dispersive attenuation, and phase aberrations [9]-[11]. However, relatively low
spatial variability of the above phenomena makes it possible to replace the problem of
nonstationary deconvolution by a number of stationary deconvolution problems. It is
commonly done via dividing the whole RF-image into several (possible overlapping)
segments, each of which may be modeled using the stationary convolution model with a
different PSF. Note that, in this case, neither the “local” PSF nor the corresponding
reflectivity function are known, and, therefore, they should be recovered directly from the
data and, hence, the term “blind” [12]. Without any loss of generality, the discussion below
is confined to the problem of deconvolution of one (quasi-) stationary image segment, and it
is assumed that, having deconvolved all the image segments, the entire image can be
recovered via combining all the local results obtained in this manner (as proposed, e.g., in
[13]).

In most of the existing methods for blindly deconvolving ultrasound images, the procedures
of estimating the PSF and recovering the tissue reflectivity function are disjoint, with the
former being a prerequisite stage to the latter. Thus, for example, in [4] and [5], the PSF is
estimated based on results from the theory of system identification. Although these
approaches may work reliably when applied to 1-D data, their extension to higher
dimensions seems to be impractical, as it would require a rather large amount of high-
dimensional data to be stored and averaged to derive useful estimates. From this perspective,
a more practicable alternative is available within the framework of homomorphic signal
processing [14, Ch. 11]. In particular, the cepstrum-based methods for estimating the PSF
[6], [15], [16], as well as their generalizations [7], [17] have been demonstrated to result in
estimation algorithms which seem to optimally balance between the estimation accuracy and
computational efficiency.

The fundamental assumption underpinning all the homomorphic deconvolution methods is
that the log magnitude and phase of the Fourier transform of the PSF can be estimated as
smoothed versions of the corresponding quantities of the RF-image. While smoothing the
log spectra can be implemented in a straightforward manner, the situation is not that simple
with the phases. This is because, in practice, the latter can only be computed in their
principal form (i.e., modulo 2π), which makes the problem of phase unwrapping an
indispensable part of homomorphic deconvolution [18]. Unfortunately, due to its being ill-
posed, the phase unwrapping is known to be a very difficult reconstruction problem [19],
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whose solution is rarely error free. Moreover, the assumption of minimum-phase (which
could have been used to avoid the phase estimation had the PSF possessed this property)
does not seem to be applicable in ultrasound imaging in general [6]. Although there are
several other efficient ways to avoid the problem of phase unwrapping [20]-[22], estimation
of the Fourier phase of the PSF from that of the RF-image is generally difficult because of
the latter being an extremely noisy, nonsmooth, and severely aliased function. Consequently,
alternative ways for estimating the PSF should be sought.

A different approach to the problem of blind deconvolution of medical ultrasound images is
developed in this paper. The main attribute of the proposed deconvolution method consists
in its ability to estimate the tissue reflectivity function using only partial information on the
PSF, namely, its power spectrum. The latter is assumed to be estimated before the
deconvolution process is initiated using the method detailed in [7]. Note that, from this
perspective, the proposed method can be viewed as a “hybrid” approach, as it can be
ascribed neither to the group of deconvolution techniques which recover the PSF in full
prior to estimating the reflectivity function, nor to those which recover the PSF and the
reflectivity function concurrently [23], [24].

The deconvolution method described here is based on the concept of inverse filtering as in
[12] and [24]. Specifically, the inverse transfer function is modeled as a member of a
periodic, principal shift-invariant subspace [25], [26]. This kind of modeling presents a
novel and very versatile way to design the inverse filter response, which allows one to
perform the inversion in a considerably more stable and efficient manner as compared to the
methods based on standard parameterization. Moreover, it is shown that the inverse filters
constructed in this way can be used to estimate the PSF, followed by deconvolving the
ultrasound images in a nonblind manner using the maximum a posteriori (MAP) estimation
framework. It is demonstrated via a series of both silico and in vivo experiments that the
latter deconvolution strategy may result in solutions of higher resolution and contrast as
compared to those obtained via inverse filtering.

The paper is organized as follows. Section II provides a formal definition of the convolution
model and of inverse filtering. Section III briefly describes the method used for estimating
the power spectrum of the PSF, whereas Section IV details the optimization procedure, by
means of which the reflectivity function is recovered. In Section V, a novel approach to
parameterizing the inverse filter is introduced. Some essential details which are necessary
for numerical implementation of the proposed algorithm are given in Section VI. The
relation of the proposed inverse filtering to nonblind deconvolution methods is discussed in
Section VII, while experimental results are summarized in Section VIII. Section IX
concludes the paper with a discussion, and some directions for future research.

II. Image Reconstruction Via Inverse Filtering

In this study, instead of real-valued RF-images, we work with complex in phase/quadrature
(IQ) images, which are obtained from the former via the process of frequency demodulation.
Since the frequency demodulation is normally followed by anti-aliasing filtering and
downsampling, working with IQ images is advantageous due to their higher signal-to-noise
ratio (SNR) and smaller size. Moreover, due to the linearity of the demodulation process, the
convolution model can be used to describe the formation of IQ-images, as well. In
particular, denoting by g(n),h(n), and f(n) the IQ-image, the complex PSF, and the complex
reflectivity function, respectively, the image formation model is given by

(1)
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Here,  is an integer, d-dimensional vector that indexes the data samples, the asterisk
stands for the convolution operator, and the term u(n) is added to account for measurement
noise, as well as for all possible phenomena which are not accounted for by the convolution
model. Alternatively, the model (1) can be specified in the Fourier domain by applying the
discrete Fourier transform (DFT) to both its sides. In this case, (1) becomes

(2)

with the upper-case letters in (2) denoting the DFT of their lower-case counterparts in (1)
(Note that by the DFT of a sequence x(n), we mean the trigonometric series X(ω) =
Σnx(n)exp{−i(n · ω)}, where the “dot” denotes the Euclidean inner product). Due to their

periodicity, the functions in (2) can be defined on the d-dimensional torus 

(which we usually understand to be  with the identification of points modulo 2π).

The convolution of the tissue-reflectivity function with the band-limited PSF results in an
attenuation (or even complete suppression) of some spectral components of the former.
These attenuated components can be recovered though the process of inverse filtering

(3)

where s(n) is commonly referred to as a deconvolution kernel or inverse filter. Note that,
because of the scale and linear-phase ambiguity problem, which is inherent in
deconvolution, (3) is not general and should be replaced by s(n)*g(n) ≃ αf(n−n0) with α
being an arbitrary scalar and n0 designating an arbitrary translation of the estimate.
However, in order to simplify the notation, the relation (3) is used throughout the text, while
the more general case is tacitly implied.

To estimate f(n) according to (3), an optimal value of the inverse filter has to be found first.
In the current study, the design of the inverse filter is implemented in the domain of its DFT.
Specifically, let Γ be a finite set of indices. Subsequently, given a predefined set of basis
functions, {Ψk(ω)}k ∈Γ, the DFT S(ω) of the inverse filter s(n) is sought in the following
parametric form:

(4)

with θ ≡ {θk}k∈Γ being a set of the filter parameters. Note that, in general, both functions
Ψk(ω) and parameters θk are complex. In the sections that follow, we will show that the
representation by (4) is very general, since it accommodates some standard filter designs,
while allowing a number of substantial developments.

III. Partial Estimation of the PSF

As was noted in the Introduction, because of its “hybrid” nature, the proposed deconvolution
algorithm is implemented in two stages. At the first stage, the magnitude of the DFT of the
PSF is estimated using the method described in [7]. The latter takes advantage of the linear
relationship between the log spectra of the IQ-image, the PSF, and the reflectivity function,
which suggests that

(5)

with the noise being ignored for the sake of simplicity. Since log |H(ω)| is typically a much
smoother function as compared to log |F(ω), it can be recovered from log |G(ω) by means of
properly formulated smoothing procedure.
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The above idea constitutes the basis for cepstrum-based methods of estimating the PSF, in
which log H(ω)| is recovered through linearly filtering the log spectrum log G(ω)| [14], [6],
[15], [16]. Yet, an even more accurate estimation is possible, if the problem of recovering
the log magnitude log |H(ω)| is addressed using the theory of Bayesian estimation [27], as
was first proposed in [7] and [17]. In particular, it was proposed in these works that one
could reconstruct log |H(ω)| by subjecting log|G(ω) to the procedure of outlier-resistant
wavelet de-noising. It was shown that, as compared with the cepstrum-based estimation, this
variant of the wavelet de-noising results in considerably smaller estimation errors, while its
complexity barely exceeds that of the linear filtering. For this reason, the method of [7] is
employed in the present study for recovering log |H(ω) or, equivalently, |H(ω)|.

It should be noted that the convolution model also implies that, in the noise-free case, the
Fourier phase ∠G(ω) is equal to the sum of the phases ∠H(ω) and ∠F(ω). This fact
suggests the possibility to estimate the phase ∠H(ω) via rejecting the “noise” ∠F(ω).
However, as opposed to the case of Fourier magnitudes, such estimation is much more
difficult and usually less successful because of the sizable errors caused by aliasing, as well
as by the imperfections of phase unwrapping. In order to overcome the difficulties related to
estimating the Fourier phase of the PSF, in this paper, we propose a way to estimate the

inverse filter S(ω) using an estimate  of the amplitude |H(ω)| alone. It is important to
note that, having estimated the inverse filter, the latter can be used to estimate the PSF
according to

(6)

due to the linearity of inverse filtering.

IV. Estimation of the Inverse Filter

A. Constraining the Power Spectrum of the Inverse Filter

In the case of parametric inverse filtering, estimating the inverse filter S(ω θ) is
accomplished via estimating the vector of its parameters θ. In this paper, this estimation
scheme is performed subject to a few “design” constraints, the first of which is imposed on

the amplitude of S(ω|θ). Specifically, given an estimate  of the DFT amplitude of the

PSF, the DFT amplitude of the combined response  is required to be as close to
unity as possible over the transducer passband. Formally, the parameters of the inverse filter
are required to minimize the following functional:

(7)

Here,  is a convex, lower semicontinuous function that, in fact, defines a norm by
means of which the distance between the power spectrum of the combined response and the
unity is measured. In this paper, we choose it to be the absolute value function, i.e., η(x) ≡ |
x, because of the robustness of the resulting norm. For computational reasons, however, it is
preferred to use a smooth approximation of the absolute value function, which could be
defined, e.g., as

(8)

with c ∈ (0,1] being a proximity parameter satisfying η(x) → |x as c → 0+. Note that,
throughout the experimental stage of this study, this parameter was set to be equal to 0.01.
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The measure dμ(ω) in (7) is a Lebesgue measure, which is intended to “weight” the domain
of integration. Such a “weighting” is necessary to guarantee the well-posedness of
minimizing E1(θ). Indeed, in the case when H(ω) converges to zero near the boundary of

, a zero weight should be given there to the integrand so as to prevent the resulting
inverse filter from becoming unbounded.

B. Statistical Modeliing of the Reflectivity Function

It goes without saying that unconstrained minimization of the functional E1(θ) is pointless,
since it admits an infinite number of local minima by virtue of its being “phase-insensitive.”
In order to overcome this deficiency, we supplement the functional (7) by an additional term
which stems from a likelihood model of the tissue reflectivity function. In particular, the
samples of the latter are assumed to be independently and identically distributed (i.i.d.)
according to a non-Gaussian probability law [5].

At this point, it should be noted that, for the case when the tissue under investigation is
composed of diffusive scatterers (e.g., tissue fibers, diminutive aggregates of individual
cells, etc.) superimposed on a scanty structure of a few strong specular reflectors (e.g., liver
arterioles, organ boundaries, etc.), the corresponding tissue reflectivity function is likely to
be a sparse sequence [28]. Such a behavior of the reflectivity function can be effectively
described using a Laplacian distribution, as it has long been done in numerous applications
in signal processing [29]-[32]. Note that, in the field of ultrasound imaging, this assumption
seems to have first been advocated in [33].

Assuming that the samples of f(n) are i.i.d. copies of a Laplacian random variable, it is
straightforward to show that maximizing the log likelihood of f(n) amounts to minimizing
its ℓ1-norm. Consequently, we subject the design of our parametric inverse filter to the
additional constraint that forces it to recover the most likely configuration of the reflectivity
function by minimizing the ℓ1-norm of its estimate given by

(9)

where  denotes the inverse DFT. Consequently, combining the functionals (7) and (9),
the final criterion for estimating the optimal parameters θopt of the inverse filter is defined to
be

(10)

where

(11)

with λ > 0 being a design parameter which controls the balance between the two
optimization terms in (11).

Alternatively to (10) and (11), one can formally define the maximum-likelihood (ML)
estimate of θ as a maximizer of the joint probability density of the samples of

. Under the Laplacian model, the ML estimation amounts to
minimizing [34]
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(12)

The formal ML approach, however, seems to have a flaw in the case of band-limited PSF, as
it explicitly requires the convolution with the PSF to be invertible. In particular, the term

 may be made arbitrary small by increasing the values of S(ω|θ), which
is likely to take place outside of the transducer passband, where the values of H(ω) are
relatively small and, as a result, G(ω) is dominated by noises. Consequently, the resulting
estimates of the reflectivity function may not be reliable.

C. Sparsity as a “Facilitator” of Optimality

To understand how the sparsity constraint (as it is enforced through minimizing the ℓ1-norm
of f(n)) contributes to the convergence of the inverse filter to its optimal form, let us assume
for a moment that the noise term in (1) is negligible and the convolution with h(n) is
invertible. Then, knowing the Fourier magnitude |H(ω)| of the PSF h(n) implies the
possibility to recover the true reflectivity function up to a phase error. Alternatively, one can
say that, in this case, the reflectivity function f(n) can be recovered up to convolution with
an arbitrary sequence z(n) of unit ℓ1-norm, so that the resulting estimate is given by

(13)

Hence, one can see that, in the case when the phase of S(ω) is incorrectly defined, each
sample of the estimate y(n) of the reflectivity function is given by a linear combination of
the samples of the true reflectivity function.

If the reflectivity function f(n) is sampled from a sequence Fn of i.i.d. copies of the random
variable F, then, by the ergodic theorem, the empirical distribution of f(n) converges to the
theoretical distribution of F as N increases. Similarly, the estimate y(n) of the reflectivity
function f(n) is, in fact, a filtered version of the white noise, and, thus, by the same
ergodicity argument, its empirical distribution tends to the theoretical distribution of the
corresponding random variable y as N tends to infinity. Due to the above associativity
between the limiting empirical and the corresponding theoretical distributions, one can
assert [35] that y(n) is a good estimate of f(n) to the same extent that y resembles F rather
than a linear combination Σnz(n)Fn. The latter, on the other hand, is always “more nearly”
Gaussian than the individual components of the linear combination, i.e., F. In particular,
using the calculus of variations under the normalization constraint ||z||2 = 1, one can show
that [35]

(14)

where  denotes the Shannon differential entropy. Moreover, the equality in (14) is achieved
if and only if either F is Gaussian or z(n)=δ(n−n0), where δ(n) is the Kronecker delta
function and n0 designates its arbitrary shift.

It is worthwhile noting that the entropy  has long been known as an effective objective (or
contrast) function, whose use in blind deconvolution dates back to the original idea of
Wiggins [36] that seems to have triggered the development of the so-called minimum
entropy deconvolution methods [35]. Moreover, the use of  as a criterion in the inverse
filter design may be shown to be consistent in the sense that, if the data sequence is obtained
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as a convolution of an invertible filter with a white non-Gaussian noise, then the optimal
inverse filter1 will be a global minimizer of the entropy of the deconvolved result. This fact
justifies using the ℓ1-norm in (11), as it is straightforward to show that, under the Laplacian
model, the empirical estimate of the entropy of a random variable is directly proportional to
the ℓ1-norm of the observations of the random variable. Thus, minimizations of  and ||f||1
are equivalent (at least from the numerical point of view).

The above considerations indicate that, in the case when the true reflectivity function is
sparse, minimizing E(θ) given by (11) will result in convergence to the inverse filter that
provides the sparsest reconstruction (as assessed by the ℓ1-norm), whereas the latter, in turn,
could be obtained only if the DFT-phase of the inverse filter was correctly identified (up to a
linear slope). This is why we regard E2(θ) given by (9) as a “facilitator” of convergence of
the inverse filter to its optimal form.

V. Parametrization of the Inverse Filter

A. Regularization of Inverse Filtering

Since, in general, the PSF h(n) tends to attenuate the out-of-band frequencies of the
reflectivity function, the frequency response of the inverse filter is expected to grow
significantly (and even to become unbounded) at higher frequencies. This fact immediately
brings up issues of stability, which can result in inverse solutions of very limited use. In
order for the reconstruction to be stable, the inverse filter should be regularized. It is well-
known, however, that in the case when the reconstruction is performed via linear filtering,
such a regularized filter, which is also optimal in the MSE-sense, is the deconvolution
Wiener filter [37]. Furthermore, in the case when both f(n) and u(n) behave as mutually
independent white noises, this Wiener filter can be defined in the Fourier domain by

(15)

where ε is a regularization parameter (called inverse SNR).

The effect of the regularization is exemplified in Fig. 1(A), which shows the real and
imaginary parts of a 1-D PSF that has been obtained via demodulating an echo returned
from a “point” target (a thin steel wire) in a water tank.2 The measurements were performed
using an unfocused, single-element, 3.5-MHz transducer (Panametrics V383, Waltham,
MA) for both transmission and reception. Fig. 1(B) shows the amplitude of the DFT of the
PSF that is seen to rapidly converge to zero at higher frequencies, thereby implying that the
inverse problem is illposed. On the other hand, Fig. 1(C) and (D) shows the complex
components of the Wiener filter and the amplitude of its DFT, respectively, where the
Wiener filter was computed according to (15) with ε = 10−4. One can see that the DFT of
the Wiener filter converges to zero at higher frequencies. This property allows the filter to
avoid amplifying those frequency components of the data which are dominated by noise.
Consequently, to render the inverse filtering by S(ω) stable, it is imperative to force the
shape of S(ω) to be as close as possible to that of W(ω).

1Here, by the optimal filter, we mean the filter that recovers the original signals up to a scalar multiplier and a shift.
2It should be noted that, strictly speaking, the reflectivity function of such a steel wire cannot be assumed to be a delta function, but
rather a slightly smoothed version of the latter [38]. However, as the rate of convergence of this “smoothed delta” is still notably
higher than that of the actual PSF, it is reasonable to assumed that the measured and actual PSF are close, and, therefore, their Fourier
transforms should possess similar properties.
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B. Standard Parametrization and Its Drawbacks

Certainly, the most common parametrization of S(ω|θ) is by the samples of its
corresponding impulse response s(n) [12], [24]. In this case, the inverse filter has the form
of (4) with Ψk(ω) = exp{−i(k·ω)} and θ = {s(k)}, where  and k ∈ Γ, with Γ being a

finite subset of . Specifically

(16)

In the case when s(n) is a causal FIR filter, the subset Γ can be defined as Γ ≡ Γ(L) = {k|0 ≤
kj ≤ Lj − 1, ∀j ∈ {1,2, …, d}}, where L ≡ [L1,L2 …, Ld] is a d-dimensional vector of
positive integers which define the filter extent along corresponding dimensions.

Although being very natural and convenient to use, the parameterization (16) has a number
of critical drawbacks in the case of band-limited PSF. This is because that the finiteness of
the support of s(n) implies that its DFT is given by a finite Fourier series that consists of the
complex exponentials at relatively low frequencies. It is well-known, however, that due to
the unboundedness of the support of the complex exponentials, a finite Fourier series cannot
be endowed with an arbitrarily fast rate of convergence. Moreover, for nontrivial s(n), finite

Fourier series are necessarily nonzero almost everywhere in .

The above property of the finite Fourier series presents a problem for the design of inverse
filters. Indeed, in the case when the PSF is band limited, the DFT of a regularized (linear)
inverse filter is band limited, as well [see Fig. 1(D)]. Moreover, the latter also has a “steep”
transition between its pass and stop bands. As a result, an accurate approximation of such a
filter by the Fourier series (16) would require rather more than a few exponentials, and this
is why, in most cases, regularized inverse filters have infinite impulse responses. This
property of (16) inevitably leads to a “tradeoff” between the numerical stability and
accuracy of the inverse filtering.

To overcome the above deficiency of the “standard” parameterization (16), we propose to
replace the complex exponentials by functions {Ψk(ω)} with compact support. Note that,
due to the compactness of the support of {Ψk(ω)}, it is no longer a problem to obtain an
S(ω) with an arbitrary “steep” stopband/passband transition and a virtually infinite
attenuation within the stop-band using relatively small number of parameters θ. In this
paper, the set {Ψk(ω)}is defined using the notion of principle shift-invariant (PSI)
subspaces, which is briefly introduced next.

C. Compact Parametrization of Inverse Filters

The concept of PSI subspaces has been comprehensively studied in several works as a
specific instance of shift-invariant subspaces [25], [26]. In the 1-D case, given an admissible
generator  of (typically) compact support, the corresponding PSI subspace 
is defined as a subspace spanned by all the integer shifts of φ, i.e.,

. Note that the admissibility of φ requires it to be chosen in such

a way that the set  is linearly independent and, hence, constitutes a Riesz

basis in . This requirement is known to be fulfilled when the Fourier transform  of φ
does not possess 2π-periodic zeros [26]. Moreover, if  has p-order zeros at each

 (while being nonzero everywhere else), then  can be used to stably
represent polynomials of degree (p − 1) on the intervals [2Jk,2J(k + 1)], where k = 0, 1, …,
M − 1 [39].
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Before defining a PSI subspace over , we first note that the subspace  defined above

can be scaled using a resolution parameter . In particular, a “ J-scaled” version 

of  can be defined as . Note that if φ is
admissible, then the set {φJ,k is also guaranteed to be a Riesz basis in . Moreover, the

scaled subspace  can be periodized to obtain a subspace  of functions defined
over  given by

(17)

where , with k = 0, 1, …, 2−J − 1. It should be

emphasized that the periodized PSI subspace  is finite dimensional, since it has only
2−J basis functions.

The subspace  can be thought of as an approximation subspace for the functions in

. The properties of  as an approximant are intimately related to those of the
generator φ[25]. For the case at hand, we note that for an arbitrary , the error of its

approximation in  can be shown to behave like , where

 denotes the operator of orthogonal projection onto  and p is a scalar related to the
degree of regularity of the generator φ(ω).3 From this perspective, the parameter J can be
thought of as a resolution parameter in the sense that the smaller J parameter is, the narrower

the support of  and, therefore, the higher the approximation order of the subspace .

The construction of the subspace  can be easily extended in higher dimensions by

means of the separable tensor product. In particular, a PSI subspace over  can be defined
as

(18)

where

(19)

with J being a d-dimensional vector of negative integers [J1, J2, …, Jd]T, which control the

resolution of  along the corresponding dimensions. Quite intuitively, if the generator φ is
admissible, then the set {ΦJ,k} is necessary linearly independent, and, hence, the PSI

subspace (18) can be used for stably approximating 2π-periodic functions from .

Having defined the periodic PSI subspace  via (18), we propose to model the real and
imaginary parts of the DFT S(ω|θ) of the inverse filter s(n) as members of this subspace,
with the latter being generated for some φ and a predefined value of J. In order to formalize
this construction, we first let the index set Υ(J) be defined as Υ(J)={k|0 ≤ kj ≤ 2-Jj−1, ∀j ∈
{1,2,…,d}}. Then, the proposed parameterization conforms to (4) by setting Ψk(ω) =

3In this paper, we used a compactly supported cubic B-spine as a generator for the corresponding PSI subspace. In this case, p = 4.
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ΦJ,k(ω), where Ψk(ω) is understood to be a complex-valued function from  to , with its
real and imaginary parts being equal to ΦJ,k(ω) and zero, respectively. Formally

(20)

with . For the sake of convenience, from now on, the parametrization (20)
will be referred to as “compact” (alluding to the compactness of the support of the basis
functions).

Finally, before turning to a discussion on some numerical aspects for the minimization of the
functionals given by either (11) or (12), the validity of the “compact” parameterization (20)
needs to be established. In addressing this important question, we note that, under the
assumption that s(n) is absolutely summable, its DFT S(ω) is necessarily a uniformly
continuous function. Therefore, there always exists J and the corresponding unique
parameters {τk}k ∈ Υ(J) such that the norm of the difference between S(ω) and its orthogonal

projection onto  will be less than any predefined ε > 0 [25]. However, a rigorous way to
define the resolution of a PSI subspace that would be necessary to achieve a required
approximation accuracy requires formally specifying the functional space to which the PSF
belongs. This would allow us to define the smoothness properties of the DFT of the PSF,
and subsequently those of its (regularized) inversion. As a final point, the desired J could be
inferred using the basic results of the theory of PSI subspaces. However, such a rigorous
analysis is omitted in this paper, since it would have taken us too far astray from our main
goal—the proposal of a practical algorithm for the deconvolution of ultrasound images.
Based upon our belief that the above analysis certainly deserves a separate and more ample
treatment, in the present paper, the viability of the proposed parameterization is proven
indirectly via comparing the results of our experimental study given below.

VI. Numerical Implementation of Inverse Filtering

A. Regularization Revised

As noticed in Section IV-A, the Lebesgue measure dμ(ω) in (7) is intended to render the
problem of minimizing the functional E1(θ) well-posed in the case of band-limited PSF.
When the functions under consideration are continuous, this measure can be defined by
means of a density function ρ(ω), so that dμ(ω) = ρ(ω). During the experimental phase of
this study, however, it was observed that the density ρ(ω) can be set to be equal to unity

over the whole domain of integration , if the cost functional in (11) is complemented by a

simple (“Tikhonov-type” [40]) regularization term  which is supposed to penalize the ℓ1-
energy of the parameters of the inverse filter. In this case, the cost functional (11) becomes

(21)

where μ > 0 is a design constant, and the subscript “HBD” is introduced to concretize that
the functional (21) corresponds to the “hybrid” design of the inverse filter.

It should be noted that, even though the functionals (11) and (21) were observed to result in
virtually identical solutions for the inverse filter, the latter was found preferable from the

perspective of its numerical minimization. This is because of the property of  being a
convex function of θ, which contributes to the overall convexity of EHBD(θ). A practical
implication of this fact is that Newtonian-type optimization methods are able to converge to
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the minima of EHBD(θ) in considerably faster rates as compared with their convergence to
the minima of E(θ) given by (11).

By analogy, the same convex term  can be added to the ML cost functional (12) resulting
in

(22)

However, while in the case of (21), the addition of  was done in order to improve the
numerical characteristics of the resulting minimization, in the case of (22) this becomes a
necessity. The fact is that, for the PSF used in the present study, without adding this term, it
was found impossible to achieve stable convergence to the local minima of (12) for any
value of parameter λ. This issue of stability of the ML design of the inverse filter was
recently addressed in [41], where it was shown that the cost functional (22) can be formally
obtained via reformulating the problem of estimation of the inverse filter within the
framework of MAP estimation.

It goes without saying that properly determining the regularization parameters is crucial for
the inverse filtering results to be stable and reliable. In particular, the values of the
regularization parameters λ and μ in (21) and (22) are mainly dependent on the degree of
ill-posedness of the operator of convolution with the PSF as well as on the level of additive
noises. Moreover, since the ill-posedness of the convolution is defined by the aperture
geometry, central frequency, and bandwidth of an ultrasound transducer in use, one should
expect to observe different optimal values of the parameters for different transducers.
However, while evident in processing of RF-data, the above dependency appears to be much
less noticeable when IQ-signals were dealt with. This is because, after having been subjected
to the processes of demodulation and downsampling, the spectra of IQ-signals appear to be
similarly shaped, with their central frequencies being around zero and their bandwidths

fitting the entire band . This seems to be the main reason for the observation that as long
as IQ-images are processed, the optimal values of parameters λ and μ change insignificantly
when different types of PSF and tissues are used. On the other hand, the dependency of the
optimal values of the regularization parameters on the noise levels should not be neglected.
In particular, it was observed that the optimal values of μ change proportionally to the
variance of the additive noise u(n), with μ ∈ [0.01, 0.05] for SNR = 14 dB. Hence, μ seems
to function in a similar manner as the inverse-SNR in Wiener filtering. At the same time, the
dependency of parameter λ on the noise variance was found to be much less pronounced. In
particular, it was observed experimentally that, for SNR ranging between 7 and 20 dB, the
values of λ in the interval [0.1, 0.5] worked satisfactory for all tissues and PSFs tested in
this study (with larger λ corresponding to noisier data). Note that, in this study, the
particular values of μ and λ have been chosen by trial and error within the above intervals
so as to maximize the quality of resulting estimates.

B. Numerical Optimization Method

In this work, all cost functionals were minimized using the Newton method, which is known
to be among the most efficient tools of unconstrained optimization [42]. The standard
Newton minimization of functional E(θ) consists in iteratively finding its minimizer
according to

(23)

where αt is determined via the line search αt = arg minα E(θt + αdt) with dt being the
Newton direction, which is computed as a solution to the following system of equations:
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(24)

Here, ∇E(θt) and ∇2E(θt) denote the gradient and the Hessian of the functional E(θ),
respectively, evaluated at the iteration point θt.

It is worthwhile noting that, independently of the given parameterization, the parameters θ
of the inverse filter S(ω θ) can be arranged (via the lexicographic ordering, for example) as
a complex vector of dimension N, with the latter equal to the cardinality of either the set
Γ(L) in (16) or the set Υ(J) in (20) (depending on whether the parametrization is standard or
compact). In this case, the functionals (21) and (22) can be considered to be real-valued
functions of a complex vector, whose first and second derivatives can be computed by the
standard methods of calculus.

Due to the use of second-order information on the minimization functional E(θ) (i.e., its
Hessian), the Newton algorithm often provides a quadratic rate of convergence near the
optimal point. However, as E(θ) is nonconvex for the case at hand, the direction dt as
defined by (24) cannot be guaranteed to be a descent direction for all t. To alleviate this
problem, we solve the system (24) using the modified Cholesky factorization algorithm [42],
which replaces ∇2E(θt) by ∇2E(θt) + Δ, where Δ is a diagonal matrix. The latter is chosen
automatically to guarantee that ∇2E(θt) +Δ is positive definite, and, as a result, dt = (∇2E(θt)
+Δ)−1 ∇E(θt) defines a descent direction.

C. Optimization Complexity

In order to digitally implement the inverse filtering, the functional (21) [or, alternatively,
(22)] needs to be discretized. The discretization amounts to replacing the Fourier transforms
by their sampled versions and approximating the integrations by finite summations. Thus, in

practice, all the computations are supposed to be performed over a discrete subset ΩM of ,
which is usually obtained through uniformly sampling the latter at M discrete points. In the
current study, M was set to be equal to the number of samples of IQ-data (implying that no
oversampling was used).

The speed of minimization of both EHBD and EML is largely determined by the complexity
of evaluating (16) and (20), respectively, as well as by the complexity of computing the

inner product between an arbitrary function from  and the functions of the set
{Ψk(ω)}. In the case of the standard parametrization, these operations requires only a few

FFT operations, which can be performed with logarithmic complexity . In
the case of the compact parametrization, the same operations may be performed by
convolutions with FIR filters as detailed in [43], [44], and, thus, their complexity is basically
linear, i.e., . However, as computing the second term in either (21) or (22) still requires
FFT operations, the overall complexity of the computations here remains logarithmic, as
well.

Finally, we note that the ℓ1-norm involved in the definition of the cost functionals is not a
smooth function, and, hence, it should be replaced by its smooth approximation to make the
Newton optimization technique well defined. For such an approximation, we use

, where  and  stand for the real and imaginary parts,
respectively, and 0 ≤ ε [ckr] 1.4

4In our computations, we used ε = 10−3.
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VII. MAP Formulation of Blind Deconvolution Problem

A. Nonblind Deconvolution Versus Inverse Filtering

In the case of the “hybrid” approach, the estimated inverse filter can be further used for
estimation of the PSF according to (6). The estimated PSF, in turn, can be used to perform
nonblind deconvolution of IQ-images, which has a number of advantages over the linear
filtering. In particular, nonblind deconvolution can be advantageous, since it admits a closed
form solution via Wiener filtering (15), thereby allowing the possibility of a fast
implementation. Additionally, in the case of nonblind deconvolution, it is easy to
incorporate diverse statistical priors on the tissue reflectivity function. As a result, once the
PSF is known, it is no longer crucial to stick to the assumption of “sparse tissue,” which
plays the central role in the proposed method for estimating the inverse filter (see Section
IV-C). Finally, the inverse filtering is a linear operator, and, hence, it is incapable of
interpolating the spectral components of the tissue reflectivity function which are lost in the
process of image formation. On the other hand, among nonblind deconvolution methods, a
number of nonlinear algorithms are available which can successively interpolate the lost
spectral components. For the above reasons, the nonblind deconvolution should be
considered as an important boosting stage supplementing the inverse filtering.

B. MAP Estimation of the Reflectivity Function

It is well known that for smooth PSF, the solution of the deconvolution problem does not
depend continuously on the data, and hence, the problem of recovering the reflectivity
function is ill-posed. However, this solution can be rendered stable via incorporating some a
priori information on the function to be recovered. This can be conveniently done using a
statistical estimation framework, within which the MAP estimation provides the most likely
solution given the observed data and a reasonable assumption regarding the statistical nature
of the object of interest [27]. Specifically, in the case when the measurement noise and the
tissue reflectivity function can be assumed to be mutually independent white Gaussian noise,
the MAP estimate of the reflectivity function can be shown to be given by the Wiener
filtering (15) [45]. The main shortcoming of this method, however, is the Gibbs-like
artifacts, which are usually produced by the filter near discontinuities of f(n). Moreover,
being linear in nature, the Wiener filter is incapable of interpolating the information lost in
the process of image formation. As a result, the Wiener solutions are frequently overly
smoothed.

In the case when the samples of the reflectivity function are assumed to be independent,
zero-mean random variables obeying the Laplacian distribution (corresponding to the
assumption of “sparse tissue”), the MAP estimation requires solving the minimization
problem given by [7] and [33]

(25)

where γ > 0 is a regularization parameter.

The minimization problem (25) results from assuming f(n) to be “sparse.” Note that the very
same assumption underpinned the design of the inverse filtering in Section IV-B. However,
it should be noted that assuming the same statistical properties for the reflectivity function
does not produce identical results in both cases. This is because the highly nonlinear nature
of the MAP estimation (25) allows it to interpolate the high-frequency harmonic
components of the reflectivity function, which have been destroyed by convolution with a
band-limited PSF. On the other hand, being linear in nature, the inverse filtering cannot
achieve an analogous result.
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Finally, we note that, in this paper, the minimization of (25) was performed using the
truncated Newton method [46], with the regularization parameter γ set empirically so as to
obtain the most reasonable results.5 We also note that (25) can be reformulated as the

problems of minimizing the norm ||f||1 subject to , where κ is an “SNR-
dependent” constant. This problem could be efficiently solved by means of Conic
Programming [47].

VIII. Experimental Results

A. In Silico Experiments

In silico experimental study is commonly accepted as an important stage in the development
of novel reconstruction methods, since it allows evaluating their performance under
controlled conditions. In this paper, the simulation study has been conducted using 1-D RF-
data. Note that the simulations have been confined to the 1-D case for the reason of its being
more demonstrable and quickly computable, while being completely equivalent (from the
viewpoint of the evaluation criteria used) to higher dimensional cases. The 1-D RF-
sequences were simulated according to the model of (1) using the same PSF, whose complex
counterpart is shown in Fig. 1(A). The reflectivity functions were simulated as random
sequences of i.i.d. random variables obeying the zero-mean, Generalized Gaussian (GG)
distribution, whose pdf is defined as

(26)

where σ is the standard deviation, ν is the shape parameter, , and
Γ is the Gamma function. Note that the GG distribution contains the Laplacian distribution
as a special case, when ν = 1. In the course of the simulations, a number of values for ν in
the range [0.6, 1.4] were tried to investigate the robustness of the deconvolution to violation
of the assumption of “Laplacian tissue.” However, since the resulting estimates showed
robustness to the value of ν, throughout the rest of the simulation study, ν was set to be 1.

The length of all simulated RF-sequences was set to be equal to 512 sample points, which
would have corresponded to the interrogation depth of approximately 40 mm, if the
sequences were acquired in vivo at the sampling rate of 20 MHz. All the RF-sequences were
corrupted by white Gaussian noise of different sizes that gave rise to a number of values of
SNR, namely, 10, 14, and 20 dB. Subsequently, the simulated RF-sequences were filtered,
demodulated, and subsampled by the factor of 4 resulting in a set of related IQ-sequences.
Fig. 2(A)-(C) demonstrates a simulated reflectivity function, the corresponding RF-sequence
and the absolute value of the related IQ-sequence (commonly referred to as the envelope),
respectively. Note that the envelope is shown against the absolute value of the reflectivity
function.

The simulated IQ-sequences were used for estimation of the Fourier magnitude of the PSF
according to the procedure discussed in Section III. The robust wavelet de-noising was
based on the classical three-step algorithm of [48], which was implemented by means of the
WaveLab package available at http://www-stat.stanford.edu/wavelab/. The universal

threshold  was used to perform soft-thresholding of wavelet coefficients. In
the above formula, M was defined to be the length of the IQ-sequences, while  was set to

5Note that, in order for (25) to be solvable by means of a gradient-based optimization algorithm, the ℓ1-norm ||f||1 should be
approximated by a smooth function, e.g., as discussed in Section VI-C.
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be equal to 0.5 that is the theoretically predicted standard deviation of the noise to be
rejected.6 The nearly symmetric wavelets of I. Daubechies with four vanishing moments
[49, Ch. 6] were used to perform the wavelet decomposition.

Finally, the IQ-sequences were processed by different deconvolution algorithms, whose
performances were being compared. All the inverse filters under comparison were
parameterized using the same number of filter parameters. In particular, in the case of the
standard parameterization, S(ω θ) was modeled as a linear combination of M = 32 complex
exponentials, while in the case of the compact parameterization, a set of M = 32 B-splines
(that corresponds to J = −5) was used to model the real and imaginary parts of S(ω|θ)
according to (20). Moreover, to make it possible to compare the deconvolution algorithms
by their computational efficiency, the functionals (21) and (22), as well as their derivatives,
were computed by means of explicit vector-matrix multiplications.

To assess the reconstruction quality, the deconvolved IQ-sequences were compared against
the corresponding reflectivity functions. In order for such a comparison to be possible, the
latter were demodulated and low-pass filtered using the filter P(ω) defined by

(27)

where ε is the inverse SNR. Note that applying the Wiener filter (15) to both sides of the
model (2) results in G(ω)W(ω) = P(ω)F(ω) + W(ω)U(ω). Consequently, assuming the noise
u(n) to be a zero-mean, white noise (while treating F(ω) as a deterministic quantity) implies
that a demodulated reflectivity function obtained in the manner specified above is equal to
the expected value of its estimate computed using the Wiener filter (15) with the known
H(ω). Thus, since the Wiener filter is the optimal linear estimator, using the demodulated
reflectivity functions filtered by (27) seems to be a reasonable reference.

In the following subsections, we will quantitatively compare all the tested deconvolution
methods. As a quality measure, we will use the normalized mean squared error (NMSE)
criterion defined as

(28)

where y and  denote the desired quantity and its estimate, respectively. In this paper, the
expectation in (28) has been estimated based on the results of 200 independent trials.

1) Experiment 1: The objective of this experiment was to compare the proposed “hybrid”
deconvolution approach with the formal ML approach, which are based on minimizing the
functionals given by (21) and (22), respectively. The “hybrid” deconvolution method based
on the “standard” (i.e., Fourier) and “compact” parameterization schemes will be referred
below to as “Hybrid-Fourier” and “Hybrid-Spline” methods, respectively. By analogy, the
corresponding ML methods will be referred to as “ML-Fourier” and “ML-Spline” methods.
As an additional reference, the deconvolution results computed using the Wiener filter (15)
for the known PSF are provided as well. The latter method will be referred to as “Oracle
Wiener” (metaphorically implying that such estimation could only be possible, if an oracle
provided us with the true PSF).

6Note that, in the current case, by the noise, we mean the log magnitudes of the DFT of reflectivity functions, after they have been
subjected to the procedure of outlier shrinkage, as detailed in [17].
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Table I summarizes the NMSE computed for the original IQ-envelope and for different
reconstruction methods. Analyzing this table, one can see that the “Oracle Wiener” provides
the best result reducing the NMSE of the original envelope by an average factor of 8.96.
However, among the blind deconvolution methods, the best performer is “Hybrid-Spline,”
which reduces the NMSE of the original envelope by an average factor of 7.05. At the same
time, analogous factors for the “Hybrid-Fourier,” “ML-Spline,” and “ML-Fourier” methods
were found to be 2.39, 1.39, and 1.09, respectively. Therefore, one can conclude that the
“hybrid” methods perform considerably better than the ML methods. Furthermore, between
the two “hybrid” algorithms, “Hybrid-Spline” results in the NMSE, which is three times
smaller than the error of “Hybrid-Fourier.”

Fig. 3 shows an example of the estimation results obtained by (top-to-bottom) “Hybrid-
Spline,” “Hybrid-Fourier,” “ML-Spline,” and “ML-Fourier” (solid lines) versus the
corresponding demodulated reflectivity function (dotted line). One can see that “Hybrid-
Spline” obviously provides the most accurate reconstruction. Additionally, the left column
of Fig. 4 shows the DFT magnitudes of the inverse filters corresponding to (top-to-bottom)
the “Hybrid-Spline,” “Hybrid-Fourier,” “ML-Spline,” and “ML-Fourier” methods, while the
right column shows the related combined frequency responses. One can see that the DFT
magnitude of the inverse filter of “Hybrid-Spline” has the form of the optimal Wiener filter
[see Fig. 1(D) for comparison]. Moreover, the amplitude of the combined response of
“Hybrid-Spline” has the desired properties of a band-limiting filter. The inverse filter of
“Hybrid-Fourier” also has its spectral shape resembling that of the Wiener filter. However,
in this case, the presence of the Gibbs phenomenon implies nonzero amplification out of the
passband. Moreover, the combined response of “Hybrid-Fourier” also exhibits the “ringing”
effect that stems from the property of complex exponentials to be noncompactly supported
functions. Finally, we note that the spectral shapes of the inverse filters corresponding to
“ML-Spline” and “ML-Fourier” are of high-pass type. However, due to the lack of
regularization, their spectral shapes, as well as those of their combined responses, are
intractable.

In addition to NMSE, the deconvolution methods were compared using some other
performance measures. As it was pointed out in Section II, the inverse filtering can perform
the estimation only up to an arbitrary “shift” error, which can be used to compare the
algorithms. Additionally, the average number of Newton iterations which are required to
reduce the norm of the gradient of the cost functions below 10−6, together with the average
duration of one Newton iteration, also constitute informative measures that can used for
comparison.

The mean values of the above measures (as computed based on the results of 200
independent trials) are tabulated in Table II. One can see that the methods using the compact
parameterization have zero “shift” error and faster convergence, as compared to the methods
based on the standard parametrization. In particular, comparing “Hybrid-Spline” with “ML-
Fourier,” one can see that, on average, the former requires about 4.3 times fewer iterations
than the latter does. Moreover, the duration of one Newton iteration for “Hybrid-Spline” is
about 1.5 times shorter than that for the “ML-Fourier” method.

2) Experiment 2: The experiments of Section VIII-A1 have demonstrated that the “Hybrid-
Spline” deconvolution method significantly outperforms the alternative approaches. In this
section, we compare the results of non-blind deconvolution of IQ-sequences. To this end, we
estimate the PSF according to (6) with S(ω) being the inverse filter computed by the
“Hybrid-Spline” method, and compare the performance of the Wiener filtering (15) with that
of the nonlinear MAP estimation (25). Below, these methods are referred to as “Blind
Wiener” and “Blind Sparse,” respectively.
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Fig. 5(A)-(D) shows the estimates (solid lines) of a reflectivity function (dotted line)
computed by means of the “Oracle Wiener,” “Hybrid Spline,” “Blind Wiener,” and “Blind
Sparse” algorithms, respectively. One can see that, while all the linear solutions are of
comparable quality, the solution computed by the “Blind Sparse” method has superior
resolution, thereby much better representing the reflectivity function. Unfortunately, we
have found it very difficult to compare the above results quantitatively, as the NMSE
criterion turned out to be no longer suitable for this purpose. This is because the nonlinear
solution by the “Blind Sparse” method does not belong to the same “signal subspace” as the
linear solutions. This fact is illustrated in Fig. 6 which shows the DFT magnitudes of the
estimates depicted in Fig. 5. One can see that, while in the case of linear estimation, all the
resulting DFT are supported over the transducer passband, the spectrum of the estimate
computed by the “Blind Sparse” method is virtually white.

In order to compare the above methods in a quantitative way, a different criterion was used.
In particular, the width of the autocorrelation function of the envelope of a deconvolved IQ-
sequence, as measured at its -3-dB level, was used to assess the resolution improvement [6].
Fig. 7 shows the autocorrelation function of an original IQ-sequence (dotted line) together
with those of its deconvolved versions (solid lines) computed using (top-to-bottom) the
“Oracle Wiener,” “Hybrid-Spline,” “Blind Wiener,” and “Blind Sparse” methods,
respectively. One can see that the autocorrelation function corresponding to the nonlinear
“Blind Sparse” method has a much faster rate of convergence than those of the linear
methods, thereby implying a higher resolution gain. Specifically, the resolution
improvement by the “Blind Sparse” method was found to be 7.29, while for the “Oracle
Wiener,” “Hybrid-Spline,” and “Blind Wiener” methods it was equal to 1.64, 1.58, and 1.64,
correspondingly.

B. In Vivo Experiments

As a next step, the proposed deconvolution algorithms were compared using in vivo
ultrasound data. To this end, a set of RF-images was recorded from adult volunteers with a
VIVID3 (GE Medical Ultrasound, Inc.) commercial ultrasound scanner equipped with a
special (digital) data-transfer board. The recorded set of images was comprised of 15
abdominal and 15 vascular images, acquired using C358 and 546L probes, respectively.7 All
the images were acquired with a single transmission focal point, localized approximately at
the center of the field of view. The sampling rate and resolution of data acquisition were 20
MHz and 14 bits, correspondingly.

Each of the acquired RF-images was partitioned into several overlapped image segments
along the radial direction. The length of the segments was set to be 512 sample points.
Subsequently, the resulting segments were demodulated, subsampled by a factor of 4, and
deconvolved. As a final step, the nonoverlapped portions of the deconvolved image
segments were “stacked up” to produce the whole-image reconstructions, whose absolute
values were normalized and log compressed for visualization in 8-bit resolution (so that all
the images presented in this paper have the same dynamic range). The fast scan conversion
method of [50] was used to transform the abdominal images to the polar coordinate system.

In the in vivo study, we compared the performance of the “Hybrid-Spline” and “Blind-
Sparse” algorithms with that of the homomorphic deconvolution method of [6], which will
be referred to below as the “cepstrum-based” deconvolution. It should be noted that the
switch-over to a different reference method has been a necessary step, since for the data at
hand, no parameters of the ML design (22) of the inverse filter could be found for which the

7A detailed specification of the probes is available at the manufacturer’s website at http://www.gehealthcare.com/helpcenter/html.

Michailovich and Tannenbaum Page 18

IEEE Trans Image Process. Author manuscript; available in PMC 2013 May 03.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t

http://www.gehealthcare.com/helpcenter/html


latter would provide stable reconstruction. On the other hand, the process of “cepstrum-
based” deconvolution consists of two stages: the PSF is first estimated using the
homomorphic relationship (5) [14], followed by non-blindly deconvolving the related
image. Since the latter stage can always be regularized (e.g., using the MAP estimation
framework of Section VII-B), it is normally not a problem to implement the “cepstrum-
based” deconvolution in a stable manner. In the current paper, the nonblind deconvolution is
performed using the Wiener filter (15), as it was proposed in [6].

In the in vivo experiments, the resolution parameter J of the “Hybrid-Spline” method was
set to be equal to [4, 4], while in the case of the “cepstrum-based” deconvolution, the
cepstral cutoff parameters were set empirically so as to produce the most accurate
reconstruction results in terms of the minimality of blurring artifacts and the maximality of
image contrast.

The obtained deconvolution results were similar for all the acquired images. A typical result
is shown in Fig. 8(A): an original (i.e., unprocessed) fragment of the image of a right kidney.
At the same time, Fig. 8(B) and (C) shows the deconvolved images computed by the
“cepstrum-based” and “Hybrid-Spline” algorithms, respectively, while Fig. 8(D) shows the
reconstruction obtained by means of the “Blind-Sparse” deconvolution. Clearly, the latter
provides the result of superior quality as judged by the apparent gain in both image
resolution and contrast. One can see that all structures within the “Blind-Sparse”
reconstruction appear considerably less blurred than in the original image. At the same time,
the property of the “cepstrum-based” and “Hybrid-Spline” methods of being linear
estimators does not allow them to achieve analogous results. Although these methods
produce deconvolved images the speckle patterns of which are noticeably “finer” than that
of the original image, the linearly reconstructed images still appear to be lacking in high-
frequency components. It should be noted, however, that the reconstruction obtained by the
“Hybrid-Spline” method seems to be somewhat “sharper” as compared with the
reconstruction obtained by the “cepstrum-based” deconvolution. This might be caused by
sizable inaccuracies in estimating the PSF by the latter approach. Such a conclusion,
however, is hard to vindicate based on merely visual observations of the deconvolution
results because of both an intricate nature of the represented anatomy and the unavailability
of the “true” reflectivity function.

To support the above conclusion a different in vivo result is demonstrated in Fig. 9(A): an
original fragment of the longitudinal view of a carotid artery. The image has been chosen
over the others owing to its explicit anatomical structure that includes a portion of the
vessel’s intima appearing as two oblong “stripes” near the upper and lower boundaries of the
lumen. Because of the relatively low resolution of the ultrasound scanner, however, the
intima can be seen to be poorly separated from the neighboring tissue in the image plane.
Thus, deconvolution is expected to result in a reconstructed image in which the intima is
represented in a more clear-cut manner. Unfortunately, the “cepstrum-based” deconvolution,
whose result is shown in Fig. 9(B), does not seem to be capable of producing such a
reconstruction. Even though the speckle pattern of the deconvolved image is seemingly finer
than that of the original image, one can see that the intima (as well as the overall wall-lumen
interface of the artery) have remained considerably blurred—the effect that is likely to have
been caused by inaccuracies in estimating the PSF. On the other hand, Fig. 9(C) shows the
reconstruction obtained by means of the “Hybrid-Spline” method. One can see that, in this
case, the deconvolved image provides a far clearer representation of vessel’s anatomy as
compared to the previous results. Moreover, due to the increase in image resolution, those
portions of the intima which had been indistinguishable from the vessel wall, are now
clearly separated (notice, in particular, the “upper” layer of the intima). This result can be
further improved by using the “Blind-Sparse” method, as it is shown in Fig. 9(D). The
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property of “Blind-Sparse” of being a nonlinear estimation method allows it to efficiently
interpolate those spectral components of the reflectivity function which have been lost in the
process of image formation. As a result, this method is capable of recovering the reflectivity
structure of interrogated organs at a resolution substantially exceeding that of the linear
estimators.

To qualify and compare the resolution gains provided by the (linear) “Hybrid-Spline” and
(nonlinear) “Blind-Sparse” methods, the normalized 2-D autocorrelation functions of the
standard and corresponding deconvolved images were computed (prior to performing the
dynamic range compression and scan conversion). These functions are depicted in Fig. 10
where (A)–(C) correspond to the original image, the “Hybrid-Spline” solution, and the
“Blind-Sparse” solution, respectively. A numerical measure of the resolution gain was
defined by the ratio between the number of pixels of the autocorrelation function with values
higher than 0.75, computed for the standard envelope image, and that for the deconvolved
image [6]. The mean resolution gains obtained for the “Hybrid-Spline” method was 2.24,
while the gain of the “Blind-Sparse” method was found to be 6.52.

IX. Discussion and Conclusions

This paper addresses the problem of blind deconvolution of medical ultrasound images by
formulating a solution which is innovative in two main ways. First, the proposed
methodology is based on recovering the tissue reflectivity function by means of linear
inverse filtering, the design of which involves some partial information about the PSF. For
the application at hand, this partial information is given by the power spectrum of the PSF,
which is estimated directly from the IQ-data before the estimation of inverse filter is
initiated. However, even though, in this paper, the deconvolution is structured as a two-stage
process, in general, it does not need to be necessarily so. Indeed, we believe that the
proposed technique can be applied for enhancing the resolution of optical images, in which
case there is no need for estimating the power spectrum of the PSF, since it can be computed
analytically based on the aperture geometry [51]. It should be noted that, from this
perspective, the methodology described in this paper is conceptually different from
approaches in which an initial estimate of the PSF is computed first, followed by its update
via an optimization procedure [52].

The second contribution of this paper consists in the introduction of a different method for
modeling the inverse transfer function. In particular, it was proposed to model the latter as a
linear combination of compactly-supported basis functions, as opposed to the case of
standard parameterization that is based on complex exponentials of infinite support. Such a
“compact” parameterization was shown to result in considerably smaller reconstruction
errors as compared to the standard case. The compactly-supported functions used for
parameterizing the inverse filter were defined to be shifts of a scaled version of an
admissible generating function (e.g., a cubic B-spline). In this case, the scale J is
independent of the shift index, which makes the resulting approximations be nonadaptive to
local variations of the inverse transfer function S(ω). In order to alleviate this deficiency,
one can make the parameterization adaptive by using a set of the scale parameters. Although
unexplored in this study, such adaptive modeling constitutes an important direction for a
future research, since it is expected to noticeably increase the estimation quality, as well as
to reduce its complexity.

An additional contribution in this work is in demonstrating the connection between the
proposed inverse filtering and some nonblind deconvolution methods. Specifically, it was
shown that the Fourier phase of estimated inverse filters can be used for recovering the
related PSF, which can, in turn, be used for deconvolving the ultrasound images in a
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nonblind manner. In this case, it is possible to further improve the deconvolution quality in
terms of its computational efficiency and resolution gain.

In this paper, we have also provided some theoretical insights concerning the notion of
sparse representation of tissue reflectivity functions. We demonstrated that the assumption
of “sparse tissue” plays a crucial role in convergence of the “hybrid” inverse filter to its
optimal form as defined by the correct value of its spectral phase. However, due to the
linearity of this method, it was shown to be incapable of providing sparse reconstructions
per se, as it forced the estimates to be devoid of high frequencies due to the effect of
regularization. On the other hand, truly sparse solutions were obtained by means of the MAP
deconvolution under Laplacian priors (see Section VII-A2). Due to its highly nonlinear
nature, the latter was capable of interpolating the high frequencies of the reflectivity
function, which were lost in the process of image formation.

Finally, a number of interesting research questions prompted by this study should be
outlined. First, it is tempting to establish a firm theoretical basis underpinning the compact
parametrization of the inverse filters using the notion of shift-invariant subspaces.
Conditions and criteria should be defined with which one could predict the properties of the
approximating subspace given, e.g., an observed PSF. Moreover, the present study focused
on the application of the inverse filtering of the “hybrid” type to the problem of
deconvolution of ultrasound images. However, we believe that this method can be applied to
signals acquired by different imaging modalities. A demonstration of such applications
deserves a separate study as well.
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Fig. 1.
(A) (solid line) Real and (dotted line) imaginary parts of a measured 1-D PSF; (B) amplitude
of the DFT of the PSF; (C) corresponding Wiener filter as defined by (15) for ε = 10−4; (D)
amplitude of the DFT of the Wiener filter.
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Fig. 2.
(A) Example of the reflectivity function used in the in silico experiments of Section VIII-A;
(B) corresponding RF-sequence; (C) magnitude of (solid line) the corresponding IQ-
sequence versus (dotted line) the absolute value of the reflectivity function.
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Fig. 3.
(From top to bottom) IQ sequences deconvolved using the “Hybrid-Spline,” “Hybrid-
Fourier,” “ML-Spline,” and “ML-Fourier” methods. (Dotted line) Note that all the estimates
are shown together with the corresponding demodulated reflectivity function.
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Fig. 4.
(Left column) DFT magnitude S(ω) of the inverse filters computed by [from top to bottom]
the “Hybrid-Spline,” “Hybrid-Fourier,” “ML-Spline,” and “ML-Fourier” methods. (Right
column) DFT magnitude of the combined response H(ω) S(ω) corresponding to [from top to
bottom] the “Hybrid-Spline,” “Hybrid-Fourier,” “ML-Spline,” and “ML-Fourier” methods.
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Fig. 5.
(Solid lines) Estimates of the (dotted line) reflectivity function computed using (from top to
bottom) the “Oracle Wiener,” “Hybrid-Spline,” “Blind Wiener,” and “Blind Sparse”
deconvolution methods.
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Fig. 6.
(A)–(D) Magnitude of the DFT of the estimates shown Fig. 5(A)–(D), in the same order.
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Fig. 7.
(A) Autocorrelation function of the “Oracle Wiener” estimates; (B) auto-correlation function
of the “Hybrid-Spline” estimates; (C) autocorrelation function of the “Blind Wiener”
estimates; (D) autocorrelation function of the “Blind Sparse” estimates. Note that all these
autocorrelation functions have been computed by ensemble-averaging the results of 100
independent trials.
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Fig. 8.
(A) Fragment of the original image of a right kidney; (B) reconstruction by the “cepstrum-
based” deconvolution method of [6]; (C) reconstruction by the “Hybrid-Spline” method; (D)
reconstruction by the “Blind-Sparse” method.
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Fig. 9.
(A) Fragment of the original image of a carotid artery (longitudinal view); (B)
reconstruction by the “cepstrum-based” deconvolution method; (C) reconstruction by the
“Hybrid-Spline” method; (D) reconstruction by the “Blind-Sparse” method.
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Fig. 10.
Autocorrelation functions of: (A) original images; (B) images reconstructed by the “Hybrid-
Spline” method; (C) images reconstructed by the “Blind-Sparse” method.
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TABLE I

NMSE (“Plus-Minus” Its Standard Deviation) Computed for the Original IQ-Envelope and the Estimates
Obtained by the “Oracle Wiener,” “Hybrid-Spline,” “Hybrid-Fourier,” “ML-Spline,” and “ML-Fourier”
Methods

SNR=10 dB SNR=14 dB SNR = 20 dB

Original envelope 0.230 ± 0.036 0.120 ± 0.019 0.082 ± 0.012

“Oracle Wiener” 0.026 ± 0.008 0.013 ± 0.004 0.009 ± 0.003

“Hybrid-Spline” 0.031 ± 0.007 0.016 ± 0.004 0.011 ± 0.002

“Hybrid-Fourier” 0.101 ± 0.026 0.048 ±0.013 0.034 ± 0.009

“ML-Spline” 0.174 ± 0.058 0.082 ± 0.022 0.058 ± 0.013

“ML-Fourier” 0.222 ± 0.076 0.103 ± 0.035 0.076 ± 0.025
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TABLE II

Average Values of the “Shift” Error, the Number of Iterations, and of the Duration of One Newton Iteration
for the “Oracle Wiener,” “Hybrid-Spline,” “Hybrid-Fourier,” “ML-Spline,” “ML-Fourier” Deconvolution
Methods

“Shift”
Error

Number of
Iterations

Duration of One
Iteration (msec)

“Hybrid-Spline” 0.00 ± 0.00 31.8 ± 4.0 10.8 ± 0.3

“Hybrid-Fourier” 3.21 ± 1.57 53.2 ± 8.7 15.0 ± 0.9

“ML-Spline” 0.01 ± 0.00 40.5 d= 5.7 13.2 ± 0.8

“ML-Fourier” 9.10 ± 4.03 137.8 ± 35.1 17.8 ± 0.9
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