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Abstract

This paper presents a novel approach to blind equalization (de-
convolution), which is based on direct examination of possible input
sequences. In contrast to many other approaches, it does not rely on
a model of the approximative inverse of the channel dynamics. To
start with, the blind equalization identifiability problem for a noise-
free finite impulse response channel model is investigated. A necessary
condition for the input, which is algorithm independent, for blind de-
convolution is derived. This condition is expressed in an information
measure of the input sequence. A sufficient condition for identifiabil-
ity is also inferred, which imposes a constraint on the true channel
dynamics. The analysis motivates a recursive algorithm where all
permissible input sequences are examined. The exact solution is guar-
anteed to be found as soon as it is possible. An upper bound on the
computional complexity of the algorithm is given. This algorithm is
then generalized to cope with time-varying infinite impulse response
channel models with additive noise. The estimated sequence is an arbi-
trary good approximation of the mazimum a posteriori estimate. The
proposed method is evaluated on a Rayleigh fading communication
channel. The simulation results indicate fast convergence properties
and good tracking abilities.



1 INTRODUCTION

1.1 Preliminaries

The problem of channel equalization is of considerable interest in data com-
munication and related fields. Given a received output sequence, we want to
determine (recover) the transmitted input sequence. In the case the channel
is modeled as a known tapped-delay line (finite impulse response filter) and
the input has a finite number of possible values, the Viterbi algorithm pro-
vides the optimal estimate of the input signal, see [12] and [21]. If the chan-
nel is unknown we have the problem of blind deconvolution, or equalization.
Methods for blind deconvolution are discussed in the surveys [2, 3, 5, 6, 13].
The most common approach is to filter the output by an estimate of the
inverse channel followed by some decision device. Limitations of this ap-
proach is discussed in Section 2. If the input contains a known training
sequence, it is straightforward to estimate a finite impulse response (FIR)
model of the channel. The input signal can then be recovered by applying
the Viterbi algorithm to the estimated model. However, in many applications
this approach cannot be used, for example when the channel is time vary-
ing. Another example is when the length of the transmitted data sequence
is limited, so it is desirable to have as short training sequence as possible. In
both cases, the FIR model needs to be updated continuously even after the
training sequence.

The key idea of the current paper is as follows. Assume that the input
signal belongs to a finite alphabet. Thus there are only a finite number of
possible input sequences. By considering each of these as a training sequence
a finite bank of FIR models is estimated, each associated with one input
sequence. By associating a cost function to the estimates, namely the a
posteriori probabilities of the input sequences, we can determine which one
is the most likely and thus use this as an estimate. However, the number
of possible input sequences increases exponentially with time. To limit the
computationally complexity we propose an approximate algorithm, where
only the most likely estimates are kept at each time instant. The properties of
the proposed blind equalization scheme is evaluated by applying the method
to a Rayleigh fading channel. The results are encouraging.

Consider for a moment the problem of system identification, for instance
estimating a channel model from a known training sequence. There are two
fundamental questions:

e [s it possible to identify the model from the actual observations?

e Will a particular estimator ever find the true model?



In the context of system identification, these properties are called identifiabil-
ity, which relates to the model and the data, and convergence, which depends
on the applied estimation method. It is well-known, see for instance [16], that
for linear regression models, as will be used in this paper, a necessary and
sufficient condition for identifiability is that the input is persistently exciting
of order n (as will be defined in Section 3).

Reported analysis of blind equalizers deals with the convergence prop-
erties of specific methods, and almost nothing seems to be known about
identifiability. That is, under what circumstances is it possible to recover the
input sequence? Obviously, this is a general property which is independent
of the actual blind equalizer which is going to be applied. One result in
this direction is reported in [22], although their approach assumes a specific
equalizer. We will provide an answer to this question by showing that a nec-
essary condition is a persistently exciting input sequence of order 2n — 1. By
also require a certain condition of the channel impulse response, a sufficient
condition for identifiability is obtained.

1.2 Problem Formulation

Consider the simplified but yet realistic digital communication system illus-
trated in Figure 1.
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Figure 1: A digital communication system

The transmitter generates a sequence {a,;} of encoded information be-
longing to a finite alphabet, which is sent over a channel before it reaches
the receiver as a sequence {y;}. The channel can be accurately modeled as
a linear system, which on physical grounds often can be approximated by a
a non-minimum phase FIR filter. Due to the non-ideal channel, the problem
of so called intersymbol inference implies that the sent symbol a; cannot be
reconstructed from y,; alone. Thus, there is a need for equalizing the channel
distortion. This is done in the second block in Figure 1.

The mathematical relations and notations are as follows. The output of
the channel is given by

yr = biag +bear1---bpas_pi



= B(q)a; (1)

where B(q) = by + byqg ' + ... + b,q~ V. Here ¢! denotes the backward
shift operator, ¢~'a; = a; 1. We will use the regression form of (1) as well,

Yt = W?ba (2)

where the n x 1 vector b contains the unknown parameters and the regression
vector is ¢y = (ay, @41, ..., a4_ns1)*. The outputs are collected into a (t —
n+ 1) x 1 vector Y; = (Yn,...,y:)T and the ¢ inputs into the ¢ x 1 vector
Ay = (ay,...,a,)T. We will sometimes refer to A; and Y; as the sequences
{ar} and {yx}, respectively. One can now rewrite the ¢t — n + 1 equations in
(2) in matrix form,

Y, = @b, (3)

Here ®,,, is the Toeplitz matrix with n columns containing the input sequence
Ata

Qn, ap—-1 **-* a1
an+1 e ag
(Dt,n = : : . (4)
Qg : At—n+1

The blind equalization problem can now be stated as solving the, possibly
perturbed, constrained non-linear equation system Y; = ®, ,b with respect to
b and ®;,. This seems like an underdetermined problem, even in the noise-
free case, with more unknown parameters than equations. For instance, if
A; = cA; is a permissible input sequence, where ¢ is a constant, then Y, =
c®;,, - 1/cb is another solution. Nevertheless, it will be shown that equation
(3) can be solved under quite general conditions due to the finite alphabet
property of a;. Furthermore, it is shown that all solutions can be written
cA;. This observation motivates the following definition of identifiability for
the blind equalization problem.

Definition 1 The input sequence and the channel model are said to be iden-
tifiable from observations of the output sequence if all solutions to equation
(3) can be written cA; and 1/c-b for some ¢, where Ay is the true input
sequence and b the true channel model.

This symmetry property of the problem does not cause any problems in
practice, since the information is encoded in differential form so it is a;/a;_1
that contains the information rather than a; itself. Also notice that only
constants ¢ such that ca; belongs to the alphabet are possible.
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1.3 Outline Of The Paper

In Section 2, we will give a short review of methods for blind equalization
and related convergence properties. The identifiability issue of the blind
equalization problem without assuming any specific structure of the equalizer
is examined in in Section 3. The obtained result is then used to derive a novel
blind equalization approach, which is presented in Section 4. A simulation
evaluation of the method is undertaken in Section 5. Section 6 concludes the
paper. Parts of the results in the current paper have been presented in the
conference papers [9, 10, 11].

2 BLIND EQUALIZATION BY INVERSE
MODEL FILTERING

A standard approach to equalizing is to try to find an explicit model of the
inverse channel, and then recover the input using a simple static decision
device as shown in Figure 2.

Gy

“ 4 Bl &

Yt

Figure 2: Equalizing by using an inverse filter

Assume that B(q) is a non-minimum phase filter, and that the inverse
channel model filter is specified as a FIR filter

20 =C(q; )y = 1y + oY1 + oo + CnYt—m1- (5)

Define H(q) as the combined channel-equalizer, H(q) = B(q)C(q;c), which
ideally should be equal to 1. However, for nonminimum phase systems one
has to, at best, accept a time delay H(q) = ¢~*, for some unknown k.

The classical way of constructing equalizers C(g;c) is to use a known
training sequence to estimate the parameters ¢ and then apply a simple de-
cision device on its output in the transmitting mode, see Figure 2. If the
channel is time varying or the training sequence is too short to obtain a good
estimate of the channel inverse one can try to continue adjusting the parame-
ters ¢ in the inverse filter C'(g; ¢) even after the training sequence. This is the
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problem of blind equalization. The key question here is if the blind equalizer
will converge to a value corresponding to an open-eye equalizer, that is a; = a;
in Figure 2. This is usually called the admissibility problem. Admissibility
is a weaker condition than identifiability, as defined in Section 1, since the
actual parameter estimates are not considered in this context (because there
are no “true” values). In blind equalization, the filter C(g;¢) is adjusted to
resemble the inverse channel B(g) by minimizing some loss function in z;.
This can for example be done using stochastic gradient algorithms resem-
bling the least mean squares (LMS) method, see e.g. [17, 20, 7, 2, 4, 19]. Tt
is clear from examples that the aforementioned algorithms sometimes fail to
converge to an open-eye condition as shown in [13], or they may even diverge.
Nevertheless, some convergence results are known. They all apply under the
assumption that the equalizer is infinite dimensional. Then under certain
conditions the overall impulse response will converge to +¢~* for some time
delay k.

The so called decision directed algorithm is shown to converge in [20] if
the initial parameter setting is such that the overall impulse response satisfies
Soroy |hk| < |ho|. If the input is restricted to +1, then a; = sign(z;) =
sign(a;) = ay, so this assumption corresponds to open-eye initialization. That
open-eye initialization is generally sufficient for convergence is proved in [18].

The modulus restoral algorithm is shown to converge for an appropriate
initial setting in [7]. In [6], the convergence to the desired over-all impulse
response is proven if the equalizer is infinite dimensional (that is, m = oo in
(5)).

The conclusions of this discussion are as follows. The advantage with the
inverse filtering approach is that the algorithms are simple to implement and
computationally very fast. On the other hand, there are a number of basic
disadvantages:

e The choice of loss function is rather ad hoc.
e All suggested loss functions have undesired local minima.

e The inverse channel, which is often is an infinite impulse response
model, must be approximated by a FIR filter.

e The over-all impulse response contains an unknown delay.

e Not even asymptotic convergence of the parameter vector b can be
expected in the noise-free case of (14), since a constant step size is
used in proposed gradient schemes.

However, these drawbacks are not inherent in the problem formulation (14)
but depend on the inverse filtering approach. In the next sections, it is shown
that these problems all can be overcome.



3 IDENTIFIABILITY

We will here investigate the important question of identifiability of the pa-
rameters for a noise-free FIR channel. Recall the problem formulation (3) of
the noise-free FIR channel model, i.e. given the measurements Y; solve the
bilinear equation system,

Y, = &y ,b. (6)

with respect to b and ®,,. Here b is the n unknown FIR parameters in
the channel model and @, is a Toeplitz matrix with n columns constructed
by the input sequence of length ¢. The following simple example clearly
illustrates the problem at hand.

Example 1 The bilinear equation system

—0.65 o QA1
—1.35 o as as b1
065 | ~ | as a3 by
—0.65 as Qg
has the unique solution b = (1, 0.35)T, A, = (1,-1,—1,1,—1)T, while
—0.65 o QA1
—1.35 . as ag bl
065 | = | as as by
1.35 as Ay

has the two solutions b = (1, 0.35)T, A, = (1,—-1,-1,1,1)T and b = (0.35, —1)T,
A = (1,1,-1,-1,1)7.

The explanation turns out to be in terms of an information measure of the
input sequence.
If the input sequence was known, then the FIR parameters can be com-
puted uniquely if and only if ®;,, has full column rank. Then, we have
b= ((I)an)t,n)ilq)gnn (7)
This is a classical result in system identification c.f. [16] which has motivated
the following definition of input excitation.

Definition 2 The sequence {a;} is persistently exciting (P.E.) of order k at
time t of @1y has full column rank, where the Toeplitz matriz @,y is defined

in (4).



Note that the number of columns in ®;; is a free parameter here. In the
current application where the input sequence belongs to a finite set, this
basically means that the input sequence may not be periodical with a period
shorter than k. This is certainly true in practice, where the input contains
information and is encoded to resemble white noise.

One can argue that it is more logical to study the identifiability of the
input sequence directly since the channel model is not of interest in itself.
However, it is clear from (7) that if the input sequence is P.E. of order n
and known, then the channel model can be calculated. Conversely, if the
channel model is known then the input can always be calculated. Thus,
the two problems of identifiability of the input and the channel model can be
considered as equivalent if the input is P.E. of order n (which is in accordance
with Definition 1).

Let A; and b denote the true values. Assume now that there exists another
solution A; and b such that

Y;g == 615,7), E == q)t,nb- (8)

Lemma A.2 proves that also ®;, must have full column rank. Hence, b =
0] ,3;,,b where ], = (&7, ®,,)'®},, denotes the pseudo-inverse. Equation
(8) then implies

(10}, B1 — B1) D= Th =0, (9)

The question of identifiability is now equivalent to prove that I'b = 0 implies
® = c®, which is a trivial solution to I' = 0. B
We will proceed in two steps. First it is shown that I' # 0 if and only if A,
is P.E. of order 2n — 1, which means that P.E. of order 2n — 1 is a necessary
condition for identifiability. Then a condition on b is derived guaranteeing
that ['b # 0 for all possible A # 0 that the finite alphabet can generate.

Theorem 3.1 Consider the two sequences A, and A;, not necessarily be-
longing to a finite alphabet. The equation T' = @t,n@[ﬁt,n - 5,57” = 0 with
®,,, defined in (4) has only the trivial solution ® = ¢® if and only if A, is
P.E. of order 2n — 1. Thus, a necessary condition for identifiability is P.F.
of order 2n — 1.

Proof: Define the n x n matrix S = @I,nit,n = (81, ..., Sp), where s; is the
it" column of S. T' = 0 can now be expressed as

bS =3,



or

a/n ) a/l a/n .« s e a/l
(517"'7571) = . (10)

g - Oppyt Qg -+ Qi py1

Eliminating @ for kK = n,n+1,..,t—n+1, using the Toeplitz structure, and
solving (10) for s; and s, gives the following system of equations:

a2n_1 ) an an " e a‘l
Qonp st Opyt Ap41 v a2 —s A
, ( S“):th:o. (11)
1
Qy 0t Oppy1l Gt—py1 0 T Op2p42

Note that F; is identical to ®;9,_1 except for the middle column which is
repeated twice in F;.

Firstly, assume P.E. of order 2n—1. Then rank F; = rank ®; 9,1 = 2n—1.
But F; contains 2n columns so there exists exactly one non-zero linearly
independent solution x, which is trivially seen to be

z=¢(0,---0,—1,1,0,---,0)7, (12)

where ¢ is a (possibly complex) constant. Hence s; = ce; and s,, = ce,, where
e; is the i"* column in the identity matrix /. Continuing solving (10) for s
and s; immediately gives s; = ce; and we conclude that

S =cl

and thus ®;,, = 1/c®,,, so b=cb and A; = 1/c 4,.

Secondly, assume rank ®;5, 1 < 2n — 1. Then there exists at least one
more solution of Fyz, which is linearly independent of (12). Again, we can
continue solving (10) for s;, and we get a solution ®,,S = 5,57”, where S # cl.
This proves non-identifiability in the case of P.E. less than 2n — 1. a

Theorem 3.1 shows that P.E. of order 2n — 1 is a necessary condition in
all blind deconvolution problems, even if the input is not in a finite alphabet.

Example 2 Theorem 3.1 now explains the result in Example 1. The first
mput sequence in Example 1 is P.E. of order 3 = 2n — 1, while the two
solutions in the second case are only P.E. of order 2. This explains why
there are two solutions in the second case.

Next we state a sufficient condition for blind deconvolution.



Theorem 3.2 A sufficient condition for identifiability if the input belongs
to the finite alphabet a; € {£1,£3,..,£(M —1)} is that the input sequence is
P.E. of order 2n—1 and that the FIR coefficients {b;} are linearly independent
with respect to coefficients in the set

Zo = {0, 41,42, ., #2 (M = 1)* "2t — n +1)"} (13)

Here ty is defined as the first time instant A, is P.E. of order n.

Proof: Theorem 3.1 shows that I' # 0 if A; P.E. of order 2n — 1. Now,
Lemma A.1 proves that for a certain integer K the elements of KT belong to
Z,. Since the coefficients of b are supposed to be linearly independent with
respect to elements in Z,, it follows that I'b # 0 which proves identifiability.
a

The condition on b means that there must not exist relationships like
3by + 7bs = 0. This restriction is not too severe. Losely speaking it is
satisfied with probability one. Even if it is not satisfied, simulations have
shown that A; is still identifiable which can be explained as follows. Assume
that b is linearly dependent over Z,. Then one of the rows of I' may be
orthogonal to b although it is not likely. Equation (10) still holds except for
some rows that must be deleted. The key point is that an equation like (11)
still holds if there are enough rows in A that are not orthogonal to b and the
conclusion S = ¢l remains. The problem is that the complicated interaction
of ®;, and b makes it difficult to give any necessary conditions on A, in the
theorem. Thus, this sufficient condition is rather conservative.

Example 3 The first input sequence in Example 1 is P.E. of order 2 = n
at time to = 3. The integer set is thus with M = 2, Z, = {0,£1,..,+2 -
1-2'-(3—=2+1)%} = {0,41,..,+16}. The smallest integer solution to
m-1+4+n-035=014s7-1—-20-0.35 = 0. Since 20 does not belong to
Zn, we could have concluded directly without any computations that there is
only one solution to the first problem. On the other hand, if the true channel
parameters were b = (1, 0.3)7 the sufficient condition is not satisfied since
3-1—-10-0.3 = 0. However, the solution is still unique which shows that the
sufficient condition is conservative.

Another approach to identifiability is examined in [22]. They note that
also the output belongs to a finite alphabet (though quite large). This fact is
used to come up with an algebraic solution to the non-linear equation system
(14). The idea is to define equivalent output measurement sets. Identifiability
conditions, which are based on the specific algorithm used, are also given.
However, these conditions are not easy to relate to standard identifiability
assumptions.
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4 A DIRECT EQUALIZER
4.1 The Noise-Free Case

We will first present an algorithm to solve the non-linear system of equations
Yi = @b, (14)

consistent with the identifiability result in Section 3, which gives the correct
values of A; and b as fast as possible. It will be extended in the next sub-
sections to cover more realistic channel models. The algorithm is graphically
illustrated in Figure 3. Notice first that if ®,,, is one solution to (14), then

it holds that Y; = ®,,®],V;.

t

Figure 3: Recursive solution of Y; = @, ,,b for M = 2

Algorithm 1 A recursive solution to Y, = ®,,b is given by the following
scheme:

1. At time t, there are L; permissible sequences Al = 1,2,..L; that
satisfy Yy = (Pi,n((I);n)TYt. The corresponding channel models are given

by b = (®;,,)"Y:.

2. Let each of the permissible sequences split into M sequences where M
s the size of the alphabet of a,. These are the a priori permissible
sequences at time t + 1.

11



3. Let the a posteriori permissible sequences at time t + 1 be those which

satisfy _ .
Yip = (I)f‘,+1,n((1)7£+1,n)TY;5+1- (15)
If Al is P.E. of order n, this condition can be replaced by
Ytr1 = (@iﬂ)Tbi- (16)

4. Repeat the above steps.

We remark that if a sequence is not P.E. of order n, then the pseudo-inverse
(®; )7 cannot be computed as (97, P;,) 7, but it can always be com-
puted by the singular value decomposition, see [8].

Consider now the sequences that are P.E. of order n at time ¢, so that b’ is
uniquely determined. It is then clear that each survivor at time ¢ will have at
most one survivor at time ¢ + 1, since the relation a,, = 1/b%(yp11 — bha, —
bhay_pyo) defines aj,; uniquely and gives at most one permissible value
in the finite alphabet of a;. This means that {L,;} will be a non-increasing
sequence if only sequences which are P.E. of order n are considered. Lemma
A.2 in the appendix strengthens this result, since it claims that if the true
sequence is P.E. of order n then all other sequences that satisfies (14) must
be P.E. of order n as well. The conclusion is that if the true input sequence
is P.E. of order n at time ¢y, then there exists an upper bound M™ ( M is the
size of the alphabet) on the number of sequences that have to be examined in
the algorithm. Thus, in some sense, there is no exponential complexity in the
problem as could be expected as a consequence of the exponential increase
of input sequences.

Theorem 4.1 Consider the channel description (14) and assume that the
input sequence {a;} is P.E. of order n at time ty. If ty is known a priori
then the number of sequences that have to be considered in Algorithm 1 is
bounded by M™, where M is the size of the alphabet of a,. Furthermore, if
to us unknown but the parameter vector b is linearly independent over Z,, as
defined in Theorem 3.2, then the number of sequences is still bounded by M",

Proof: The first part follows immediately from the discussion above. If b
is linearly independent over Z,, then Lemma A.2 gives that all ®; , that
satisfy (14) for some b must have rank n. According to the definition of P.E.,
all permissible input sequences are P.E. of order n and the discussion above
still holds. O

In practice it is not realistic to assume that ¢, is known since the input
is stochastic. The first statement in the theorem is still useful for designing

12



recursive algorithms which will work with a high probability, since the num-
ber of sequences that can be examined must always be limited. This can be
achieved by assuming a large enough t,.

We have from Theorems 3.1 and 3.2 that identifiability is determined by
the first time instant when the input sequence is P.E. of order 2n — 1. The
second statement of Theorem 4.1 shows that the complexity of the problem
is determined by the time instant when the input sequence is P.E. of order
n. Thus, the goal of the encoder should be to generate an input sequence
that becomes P.E. as quickly as possible.

4.2 A Heuristical Motivation

The algorithm above is easy to explain but the channel model is not very
realistic. We will now motivate how it should be extended to cover a possibly
time-varying channel disturbed by noise. First, consider the model (14) with
additive noise e; collected in the vector Ej,

Y, =®,,b+ E;.
The algorithm above can still be used if the condition (15) is replaced by
[Vier = @y '] <€ (17)

for some norm and threshold e. This is intuitively appealing and the problem
is how to choose the norm and threshold in an optimal way and to minimize
(17) in an efficient and recursive way. The choices of norm and threshold are
of course dependent on the noise but also on the uncertainty in b caused by
the noise.

If the channel is time-varying so y, = gotht + €4, the estimate of b; must
be updated recursively in some way and used in (17) instead of b’.

We will now derive this heuristically motivated algorithm in a mathemat-
ical way by recursively computing the exact a posteriori distribution of A,
and then using a search scheme to obtain an implementable algorithm like
Algorithm 1.

4.3 Optimal Estimates

Consider the channel model in Figure 4.
The output of the channel is given by

Y= —di(t)ye-1 — - — dpy, (V) Yt-ny +01(t)as + - - -+ by, (t) a4y 1 + €1
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Figure 4: Time-varying channel model with noise

This model is equivalent to (14) if the parameters are constant, ny = 0 and
e; = 0. The auto-regressive part is introduced to be as general as possible
without increasing the complexity. We will assume that the parameter varia-
tion can be modeled as a random walk so a total state space linear regression
model is

Oy = 0+,

v = ¢l +e. (18)

Here,
Yt = (_ytfla oy T Ytngy Gyttt atfnb+1)T (19)
0y = (dl(t)a T dnd (t)v by (t)v ) bnb (t))T' (20)

We assume that v; and e; are uncorrelated white Gaussian noises with co-
variance matrices ); and A;, respectively. Assume we have an arbitrary
enumeration of the M! sequences Ay, say AL, i = 1,2..., M’ and denote
the corresponding regression vector ¢i. The a posteriori probabilities of a
sequence A!, given the observations Y}, is given by the following theorem.

Theorem 4.2 Consider the model (18). The a posteriori probability of A’

s given by
p(AllY,) = Cp(al| AL )v(ye — (0070, ()" Pigh + Ay) - p(A; Y- (1)
t
= Cp(4) IT v(we — (0})" 0%, (0}.)" Pl + Ay) (22)
k=1

where C' and Cy are constants given by the condition ¥ p(Al|Y;) = 1. Here
v(x—p, P) denotes the value of the Gaussian probability density function with

14



mean p and covariance P evaluated in x. The parameter estimate 0¢ and its
covariance matriz P} are computed recursively by

-1 .
9§+1 - 91 PtZ ((‘Pt)TPtZ + At) (yt - ((10;)7’9;) (23)
Ptl+1 = P+ Py} ((Sot)TPtZ + At) (0})" P+ @ (24)
with the initial values 6y and P,.

Proof: Repeated use of Bayes’ rule gives

p(Y, A} p(4)

AN = =T = m

p(YiA)). (25)

Now 1/p(Y;) can be regarded as a constant C;. Bayes’ rule gives,

p(4}Y) = Cp(ADp(y, Yio1|A})
= Cip(ADp(Yi 11ADP(yi] A, Yiv)
= Utp(atlA DP(AL_D)p(Yica AL )p(yilet, o ¢4 Yier)
= Cp(A;_ [Yi)p(atl Al )y (v — (01701 (0) Plegy + Ay)

which is (21) and (22) follows by expanding the recursion. The last constant
C, is equal to C, /ag,l. The last equality is a consequence of a well-known
result from linear filtering theory that the prediction error of (18) is Gaussian
if ¢y is known. See for instance [1]. The equations (23) and (24) are just the
Kalman filter equations for the state space model (18). O

A logical estimate of the input sequence is the mazimum a posteriori
(MAP) estimate,

AT = argmax p(A}]Y;). (26)
The mazimum likelihood (ML) estimate,

AN = arg max p(Y;|4)). (27)

is closely related to the MAP estimate as seen from (25). It can be computed
from the MAP estimate by letting the prior being non-informative, that is
p(A) = 1/M". L

The prior information p(a;|A}_;) in (21) can be used to decode the infor-
mation by rejecting “impossible” sequences, thus eliminating the need of a
separate decoder. It can also be used to incorporate a training sequence in
a very natural way, by letting p(A®") = 1. However, most often the inputs

15



are considered as independent variables so the ML estimate is equivalent to
the MAP estimate.

Theoretically, Theorem 4.2 holds in the noiseless case as well, especially
for the channel model (14). What happens is that the a posteriori probabil-

ities become either zero, if y, — (i)70i # 0 for some t, or Dirac impulses, if
yr — ()70 = 0 for all t. A consequence is the following:

Corollary 4.3 Consider the noise-free FIR channel model (14) and assume
that the same conditions as in Theorems 3.1 and 3.2 hold. Then the MAP
estimate (26) yields the true sequence (except for a possible scaling factor c)
if the true sequence is P.E. of order 2n—1. Furthermore, if the true sequence
1s P.E. of order n at time ty, then the number of filters needed to compute
the MAP estimate is bounded by M.

It is reasonable to believe that the result still holds if the noise level is small
enough.

4.4 Basic Limitations

The MAP estimate (26) completely eliminates the disadvantages of equalizing
by an inverse filter which are mentioned in Section 2. However, it introduces
some new problems:

e The computational complexity is exponential increasing, since it re-
quires M* Kalman filters at time t.

e It is not guaranteed that AMAP resembles AMAP  although it is very
likely. Thus, a new measurement can alter the entire estimated se-
quence.

In the next section, we will present an approximative MAP estimate that
contains a fixed number of filters. It turns out that the second disadvantage
disappears as a consequence of the approximation.

4.5 A Local Search Algorithm

We will now give a recursively implementable approximation of the MAP
estimate. It contains a fixed number, K, of filters. In words, only sequences
which have turned out to be likely are considered. The others are rejected.

Algorithm 2 Assume there are K sequences Al given at time t and that
their relative a posteriori probabilities p(Aj}|Y;) have been computed.
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1. Compute p(Aj, Y1) by using Theorem 4.2 for the KM sequences
obtained by considering all expansions of the sequences at time t.

2. Reject all but the K most probable sequences — that is, those which
have the largest p(Aj,;|Yii1).

3. Repeat from step 1.

We conclude from Corollary 4.3 that this algorithm is asymptotically optimal
in the measurement noise for a time-invariant FIR model if K > M, that
is, if the number of parallel filters are chosen to be large enough.

This remarkably simple algorithm works very well in simulations as will be
demonstrated in Section 5. The second step resembles the Viterbi algorithm,
see [21], because unlikely sequences are rejected. In the Viterbi algorithm the
channel model b is assumed to be known and the most probable sequence is
saved for every possible combination of the last n inputs, so there are totally
M™ sequences under consideration. All other sequences are rejected, because
the MAP estimate of the input sequence is guaranteed to be among these M™
sequences. Here, where b is unknown, the uncertainty in the estimate b° is
taken consideration of automatically and the sequences that are not rejected
are not restricted to be different in the last n inputs (because this is no longer
optimal).

5 SIMULATION RESULTS

In this section we will examine how Algorithm 2 performs in the case of
a Rayleigh fading communication channel. Rayleigh fading is an important
problem in mobile communication. The motion of the receiver causes a time-
varying channel characteristics. The Rayleigh fading channel is simulated
using the following premises: The frequency of the carrier wave is 900 MHz
and the baseband sampling frequency is 25 kHz. The receiver is moving
with the velocity 83 km/h so the maximum doppler frequency can be shown
to be approximately 70 Hz. A channel with two complex time-varying taps,
corresponding to this maximum doppler frequency, will be used.! An example
of a tap is shown in Figure 5. For more details and a thoroughly treatment
of fading in mobile communication, see [15].

The input is assumed to belong to the finite alphabet {—1,+1, —i, +i},
with equal probability for each symbol. An input sequence of length 100

!The taps are simulated by filtering white Gaussian noise with unit variance by a second
order resonance filter, with the resonance frequency equal to 70/25000 Hz, followed by a
7’th order Butterworth low-pass filter with cut-off frequency /2 - 70/25000.
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Figure 5: Example of a complex tap in a Rayleigh fading channel (real and

imaginary parts)

is filtered through a simulated Rayleigh fading channel and Gaussian noise
with variance A is added. 100 different realizations of the input sequence,
the noise sequence and the channel is used throughout all simulations. The
magnitude of the noise was changed so the noise variance A is 0.001, 0.002,
0.005, 0.01, 0.02, 0.05 and 0.1, respectively.

To obtain a feeling for the problems involved in estimating the input
sequence we begin with computing an upper bound of the performance of
any algorithm. This is here done by assuming that the time-varying channel
really is known to the receiver and using the Viterbi algorithm, which is in
this case optimal in the maximum likelihood sense. The estimated bit error
probability is shown in Figure 6, where the first value, corresponding to the
smallest A, is zero and is not shown.

The input sequence is then estimated by Algorithm 2 with a number
of parallel filters. The true measurement noise variance was used and the
variance (@) of the random walk was chosen to 0.01. Before showing the
result, let us comment on the number of filters. From Theorem 4.1 we have
an upper bound on this number as M?. This was derived for the time-
invariant noise-free case, but it should provide a reasonable guideline here as
well. Assuming that the input is P.E. of order n already at time tq = n this
upper bound implies M?"~! = 43 = 64 parallel filters. We will compare this
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Figure 6: Bit-error as a function of the measurement noise for the Viterbi

algorithm when the channel model is assumed to be known.

choice with a simpler algorithm with 16 filters.

The total bit error probability is estimated by comparing the estimated
and the true input sequence and is shown by the dashed line in Figure 7
in the case of 16 parallel filters. Since no training sequence is used most of
the erroneously estimated inputs are caused by transients. A better estimate
of the bit error in the long run is computed by only comparing the last 20
inputs in each sequence as shown by the solid line.

It is almost inevitable to avoid so called zero crossings where all taps in the
channel model are approximately zero at the same time. This phenomenon
results in a very low signal-to-noise ratio for a while and it was observed that
the algorithm was not capable to recover after a zero-crossing in some cases.
Non-convergence of the algorithm is also possible when the input sequence is
not persistently exciting for a long time in the beginning. To get insight into
the influence of totally erroneously estimated sequences, the dotted line in
Figure 7 shows the total bit error probability when sequences with bit error
less than 10% are considered.

Figure 8 shows the same estimates for the same realizations when the
number of parallel filters is increased to 64 in the algorithm. In this case,
the difference between the solid and the dashed line is less significant, so the
effect of the transients is almost negligible. Furthermore, the bit error rate
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Figure 7: Bit-error as a function of the measurement noise with 16 parallel

filters. Averages over all inputs and all simulations (dashed), only the last
20 samples of the inputs (solid) and only for simulations with less than 10 %
bit error (dotted).

is much lower. Even compared to the lower bound in Figure 6 the bit error
is quite small, it only differs a factor 10 approximately. It is noteworthy,
that for the largest noise variance, A = 0.1, the bit error rate for simulations
with a total bit error less than 10 % is the same as for the Viterbi algorithm.
The conclusion is that the effect of transients and zero crossings are less the
better approximation of the MAP estimate is used.

The problem of non-convergence of the algorithm for some simulations is
a bit discouraging. However, it is important to note that this is an observ-
able phenomenon, since it can be concluded from a perpetually switching
between completely different estimated input sequences. Thus, it is easy to
incorporate this test in the algorithm and in that case restart the algorithm,
for instance by temporarily increasing (). This idea is not persuaded here.

In Figure 9 a typical parameter convergence is shown. The true FIR
real and imaginary parameter values are here compared to the least squares
estimates conditioned on the estimated input sequence at time ¢. The con-
vergence to the true parameter settings is quite fast and the tracking ability
very good.

As previously mentioned it is easy to incorporate a known training se-
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Figure 8: Bit-error as a function of the measurement noise with 64 parallel

filters. Averages over all inputs and all simulations (dashed), only the last
20 samples of the inputs (solid) and only for simulations with less than 10 %
bit error (dotted).

quence with Algorithm 2. One may believe that this would increase the
performance drastically. Figure 10 shows the same estimates as in Figure
7 for the same realizations but where the first 10 samples of the input se-
quence are used as a training sequence. As expected there is no difference
between the stationary (dashed line) bit error and the bit error rate when
the transients are included (solid line). Compared with Figure 8 we see that
the bit error rates are comparable. The conclusion, from this example, is
that Algorithm 2 performs equally well with training sequence and without
training sequence, but with a greater complexity of the algorithm.

6 CONCLUSIONS

We have herein studied the problem of blind deconvolution by direct exami-
nation of the input sequences. First, the identifiability problem of a noise-free
FIR channel model was investigated. We know from the theory of system
identification that the channel model is identifiable if the input is known
and persistently exciting of order n. Here, when the input is unknown but
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belongs to a finite alphabet we have shown the following result:

e The channel model and the input sequence are simultaneously identifi-
able only if the input sequence is persistently exciting of order 2n — 1.

e The complexity of the problem is determined by the first time instant
when the input sequence is persistently exciting of order n.

Algorithm 1 gives a recursive scheme to solve the aforementioned deconvo-
lution problem which works as follows. If the input sequence is known, then
it is straight-forward to compute the channel model exactly (since there is
no noise) and the next measurement can be computed exactly as well. Since
the input belongs to a finite alphabet, there is only a finite number of in-
put sequences. By computing the corresponding prediction to each sequence
and rejecting all sequences that gives non-zero prediction error, the correct
sequence is sooner or later found. The first point above gives a sufficient con-
dition for this and the second point concerns an upper bound of the number
of sequences that have to be examined.

A noise-free FIR channel model is not realistic in practice so next a time-
varying [IR channel model with additive noise was studied. The mazimum a
posteriori estimate was derived. It can be computed recursively for each input
sequence but the problem is that the number of input sequences increases
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tions with less than 10 % bit error (dotted).

exponentially. Now the theoretically results above were used to motivate
a truly recursive approximation of the statistically optimal estimate, which
only uses a fixed number of filters. It is given in Algorithm 2. We pointed
out that the algorithm can be designed to be asymptotically optimal in the
measurement noise for a time-invariant FIR filter.

The performance of Algorithm 2 was evaluated on a Rayleigh fading chan-
nel model. The bit error rate was compared for different complexities of the
algorithm and also with the Viterbi algorithm when the true channel model
was used. The algorithm turned out to show a very fast convergence to the
true parameter settings, low bit error rate and it is fairly robust to a high
noise level and zero crossings of the parameters.
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A Two lemmas

Here we use a somewhat different definition of I" than in (9). If A, is P.E. of
order n at time m, we can solve (8) for b as b = (®] | @) '@ ¥y, This
gives the following alternate definition of I' in the equation I'b = 0:

I'= q)t,n(q)gz,nq)m,n)ilq)ﬁ,nam,n - 6t,n-
This reduces the set Z, somewhat.

Lemma A.1 Consider the t — n + 1 x n Toeplitz matrices ®,, and 5,57”
containing elements in the set {+1,+3,...,4(M — 1)}. The elements of

det(®F, ,@pnn) (Po(®F, @) B By — Byy) =T (28)
belong to the finite integer set
T = {0, 1,42, ., £2 (M — 1) 02 (m = n+ 1)”} .

Proof: First we have from adj(®], , ®p.n) = det(®] | Py ) (D), D) ™" that
the elements of

must be integers, since they can be computed by only additions and multi-
plications. Next we find an upper bound on them.
Consider first the second term in (29). The elements of ®]  ®,,, are

trivially bounded by (m —n + 1)(M — 1)2. From Hadamard’s inequality

[det A < T > lay I,

j=1i=1
see [14] page 65, we have
det(®,, Py p) < (M —1)*"(m —n+ 1)"p"2,

Thus, the elements of the second term in (29) are bounded by (M —1)*"*!(m—
n -+ 1)2nnn/2.

In the first term in (29), the elements of adj(®] , ®p, ) are computed by
determinants of (n —1) x (n — 1) submatrices and are thus bounded by (M —
1)20=Y (m—n+1)""' (n—1)"=Y/2 50 the elements of ®, ,, adj(P?, , Prn ) OL, P
are bounded by (M —1)n(M —1)2"Y (m—n+1)""1(n—1)""V/2(M —1)?(m—
n+1)=(M—-1)""(n—-1)""2n(m —n+1)" and the result follows. O

The important implication of this lemma is that we now can conclude
that T' = 0 if T'b = 0.
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Lemma A.2 Assume o
b= Db, (30)

where ® is a Toeplitz matriz as defined in (4) (for simplicity, we drop the
indices here),_cmd that b is linearly independent over Z,, (as defined in Lemma
A.1). Then ® has full column rank if ® has full column rank.

Pro_of: Assume ® has rank k. Let P consist of k linearly independent columns
of ®. Then there must exist a b = (®7®)~'®”Y such that Y = ®b. Thus,
we have

(I — ®(d"®)"'o")db = (I — P)db =0, (31)

where P = ®(®7®)~'®”. Since the elements in (I — P)® belong to Z, we
have by assumption that (I — P)® = 0, or equivalently P® = ®. Now P

is a projection matrix so range ® = rangeP D range® and thus & is of full
column rank if ® is of full column rank. O

The conclusion of this lemma is that sequences that are not P.E. of order
n are out of question if the true sequence is P.E. and b is linearly independent
over Z,.

References

[1] B.D.O. Anderson and J.B. Moore. Optimal Filtering. Prentice Hall,
Englewood Cliffs, NJ., 1979.

(2] S. Bellini. Blind equalization. Alta Frequenza, 1LVII:445-450, 1988.

(3] A. Benveniste and M. Goursat. Blind equalizers. IEEFE Transactions on
Communications, 32:871-883, 1984.

[4] A. Benveniste, M. Goursat, and G. Ruget. Robust identification of a
non-minimum phase system: Blind adjustment of a linear equalizer in

data communication. IEEE Transactions on Automatic Control, 25:385—
399, 1980.

[5] Z. Ding. Application Aspects of Blind Adaptive Equalizers in QAM Data
Communications. PhD thesis, Cornell University, 1990.

(6] G.J. Foschini. Equalizing without altering or detecting data. AT&T
Technical Journal, 64, 1985.

[7] D.N. Godard. Self-recovering equalization and carrier tracking in two-
dimensional data communication systems. IEEE Transactions on Com-
munications, 28:1867-1875, 1980.

25



8]
9]

[10]

[11]
[12]
[13]
[14]

[15]
[16]

[17]
[18]

[19]

[20]

[21]

G.H. Golub and C.F. van Loan. Matriz Computations. The John Hop-
kins University Press, 1989.

F. Gustafsson and B. Wahlberg. Blind equalization by direct exami-
nation of the input sequences. In Proceedings on ICASSP ’92, pages
IV,701-704, San Francisco, USA, March 23-26 1992.

F. Gustafsson and B. Wahlberg. On simultaneous system and input
sequence estimation. In 4th IFAC Symposium on Adaptive Systems in
Control and Signal Processing, pages 93-98, Grenoble, France, 1-3 July
1992.

F. Gustafsson and B. Wahlberg. Identifiability in blind equalization. In
Proc. on the IFAC World Congress, 1993, volume VII, pages 125-128,
Sydney, Australia, 1993.

S. Haykin. Digital Communication. John Wiley & Sons, Inc., 1988.

C.R. Johnson. Admissibility in blind adaptive channel equalization.
IEEE Control Systems Magazine, 11:3—15, 1991.

P. Lancaster and M. Tismenetsky. The theory of matrices. Academic
Press, Inc, London, 1985.

W.C.Y Lee. Mobile Communications Engineering. McGraw-Hill, 1982.

L. Ljung and T Soéderstrom. Theory and Practice of Recursive Identifi-
cation. MIT Press, Cambridge MA, 1983.

R.W. Lucky. Techniques for adaptive equalization of digital commu-
niqation systems. Bell System Technical Journal, 45:255-286, 1966.

O. Macchi and E. Eweda. Convergence analysis of self-adaptive equal-
izers. IEEE Transactions on Information Theory, 30:161-176, 1984.

G. Picchi and G. Prati. Blind equalization and carrier recovery using a
"stop-and-go” decision-directed algorithm. IEEE Transactions on Com-
munications, 35:877-887, 1987.

Y. Sato. A method of self-recovering equalization for multilevel
amplitude-modulation systems. IEEE Transactions on Communica-
tions, 23:679-682, 1975.

A.J. Viterbi. Error bounds for convolutional codes and an asymp-
totically optimum decoding algorithm. IEEE Trans. Inform. Theory,
13:260-269, 1967.

26



[22] D. Yellin and B. Porat. Blind identification of FIR systems excited
by discrete-alphabet inputs. IFEE Transactions on Signal Processing,
pages 1331-1339, 1993.

27



