
BLIND EQUALIZATION BY DIRECT
EXAMINATION OF THE INPUT

SEQUENCES

Fredrik Gustafsson
Dept� of Electrical Engineering

Link�oping University� Sweden

Bo Wahlberg
S� � Automatic Control

Royal Institute of Technology� Sweden

Submitted for publication in IEEE Trans� on Communication

Abstract

This paper presents a novel approach to blind equalization �de�
convolution�� which is based on direct examination of possible input
sequences� In contrast to many other approaches� it does not rely on
a model of the approximative inverse of the channel dynamics� To
start with� the blind equalization identi	ability problem for a noise�
free 	nite impulse response channel model is investigated� A necessary
condition for the input� which is algorithm independent� for blind de�
convolution is derived� This condition is expressed in an information
measure of the input sequence� A su
cient condition for identi	abil�
ity is also inferred� which imposes a constraint on the true channel
dynamics� The analysis motivates a recursive algorithm where all
permissible input sequences are examined� The exact solution is guar�
anteed to be found as soon as it is possible� An upper bound on the
computional complexity of the algorithm is given� This algorithm is
then generalized to cope with time�varying in	nite impulse response
channel models with additive noise� The estimated sequence is an arbi�
trary good approximation of the maximum a posteriori estimate� The
proposed method is evaluated on a Rayleigh fading communication
channel� The simulation results indicate fast convergence properties
and good tracking abilities�
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� INTRODUCTION

��� Preliminaries

The problem of channel equalization is of considerable interest in data com�
munication and related �elds� Given a received output sequence� we want to
determine �recover� the transmitted input sequence� In the case the channel
is modeled as a known tapped�delay line ��nite impulse response �lter� and
the input has a �nite number of possible values� the Viterbi algorithm pro�
vides the optimal estimate of the input signal� see ��	
 and �	�
� If the chan�
nel is unknown we have the problem of blind deconvolution� or equalization�
Methods for blind deconvolution are discussed in the surveys �	� �� �� 
� ��
�
The most common approach is to �lter the output by an estimate of the
inverse channel followed by some decision device� Limitations of this ap�
proach is discussed in Section 	� If the input contains a known training
sequence� it is straightforward to estimate a �nite impulse response �FIR�
model of the channel� The input signal can then be recovered by applying
the Viterbi algorithm to the estimated model� However� in many applications
this approach cannot be used� for example when the channel is time vary�
ing� Another example is when the length of the transmitted data sequence
is limited� so it is desirable to have as short training sequence as possible� In
both cases� the FIR model needs to be updated continuously even after the
training sequence�

The key idea of the current paper is as follows� Assume that the input
signal belongs to a �nite alphabet� Thus there are only a �nite number of
possible input sequences� By considering each of these as a training sequence
a �nite bank of FIR models is estimated� each associated with one input
sequence� By associating a cost function to the estimates� namely the a
posteriori probabilities of the input sequences� we can determine which one
is the most likely and thus use this as an estimate� However� the number
of possible input sequences increases exponentially with time� To limit the
computationally complexity we propose an approximate algorithm� where
only the most likely estimates are kept at each time instant� The properties of
the proposed blind equalization scheme is evaluated by applying the method
to a Rayleigh fading channel� The results are encouraging�

Consider for a moment the problem of system identi�cation� for instance
estimating a channel model from a known training sequence� There are two
fundamental questions�

� Is it possible to identify the model from the actual observations�

� Will a particular estimator ever �nd the true model�

	



In the context of system identi�cation� these properties are called identi�abil�
ity� which relates to the model and the data� and convergence� which depends
on the applied estimation method� It is well�known� see for instance ��

� that
for linear regression models� as will be used in this paper� a necessary and
su�cient condition for identi�ability is that the input is persistently exciting
of order n �as will be de�ned in Section ���

Reported analysis of blind equalizers deals with the convergence prop�
erties of speci�c methods� and almost nothing seems to be known about
identi�ability� That is� under what circumstances is it possible to recover the
input sequence� Obviously� this is a general property which is independent
of the actual blind equalizer which is going to be applied� One result in
this direction is reported in �		
� although their approach assumes a speci�c
equalizer� We will provide an answer to this question by showing that a nec�
essary condition is a persistently exciting input sequence of order 	n� �� By
also require a certain condition of the channel impulse response� a su�cient
condition for identi�ability is obtained�

��� Problem Formulation

Consider the simpli�ed but yet realistic digital communication system illus�
trated in Figure ��

Channel Equalizer� � �
at yt �at

Figure �� A digital communication system

The transmitter generates a sequence fatg of encoded information be�
longing to a �nite alphabet� which is sent over a channel before it reaches
the receiver as a sequence fytg� The channel can be accurately modeled as
a linear system� which on physical grounds often can be approximated by a
a non�minimum phase FIR �lter� Due to the non�ideal channel� the problem
of so called intersymbol inference implies that the sent symbol at cannot be
reconstructed from yt alone� Thus� there is a need for equalizing the channel
distortion� This is done in the second block in Figure ��

The mathematical relations and notations are as follows� The output of
the channel is given by

yt � b�at � b�at�� � � � bnat�n��
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� B�q�at ���

where B�q� � b� � b�q
�� � ��� � bnq

��n���� Here q�� denotes the backward
shift operator� q��at � at��� We will use the regression form of ��� as well�

yt � �T
t b� �	�

where the n�� vector b contains the unknown parameters and the regression
vector is �t � �at� at��� ���� at�n���

T � The outputs are collected into a �t �
n � �� � � vector Yt � �yn� ���� yt�

T and the t inputs into the t � � vector
At � �a�� ���� at�

T � We will sometimes refer to At and Yt as the sequences
fakg and fykg� respectively� One can now rewrite the t� n� � equations in
�	� in matrix form�

Yt � �t�nb� ���

Here �t�n is the Toeplitz matrix with n columns containing the input sequence
At�

�t�n �

�
BBBB�

an an�� � � � a�
an�� � � � a�
���

���

at
��� at�n��

�
CCCCA � ���

The blind equalization problem can now be stated as solving the� possibly
perturbed� constrained non�linear equation system Yt � �t�nb with respect to
b and �t�n� This seems like an underdetermined problem� even in the noise�
free case� with more unknown parameters than equations� For instance� if
At � cAt is a permissible input sequence� where c is a constant� then Yt �
c�t�n � ��c b is another solution� Nevertheless� it will be shown that equation
��� can be solved under quite general conditions due to the �nite alphabet
property of at� Furthermore� it is shown that all solutions can be written
cAt� This observation motivates the following de�nition of identi�ability for
the blind equalization problem�

De�nition � The input sequence and the channel model are said to be iden�
ti�able from observations of the output sequence if all solutions to equation
��� can be written cAt and ��c � b for some c� where At is the true input
sequence and b the true channel model�

This symmetry property of the problem does not cause any problems in
practice� since the information is encoded in di�erential form so it is at�at��
that contains the information rather than at itself� Also notice that only
constants c such that cat belongs to the alphabet are possible�
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��� Outline Of The Paper

In Section 	� we will give a short review of methods for blind equalization
and related convergence properties� The identi�ability issue of the blind
equalization problem without assuming any speci�c structure of the equalizer
is examined in in Section �� The obtained result is then used to derive a novel
blind equalization approach� which is presented in Section �� A simulation
evaluation of the method is undertaken in Section �� Section 
 concludes the
paper� Parts of the results in the current paper have been presented in the
conference papers ��� ��� ��
�

� BLIND EQUALIZATION BY INVERSE

MODEL FILTERING

A standard approach to equalizing is to try to �nd an explicit model of the
inverse channel� and then recover the input using a simple static decision
device as shown in Figure 	�

B�q� C�q� Decision� � � �
at yt zt �at

Figure 	� Equalizing by using an inverse �lter

Assume that B�q� is a non�minimum phase �lter� and that the inverse
channel model �lter is speci�ed as a FIR �lter

zt � C�q� c�yt � c�yt � c�yt�� � ���� cmyt�m��� ���

De�ne H�q� as the combined channel�equalizer� H�q� � B�q�C�q� c�� which
ideally should be equal to �� However� for nonminimum phase systems one
has to� at best� accept a time delay H�q� � q�k� for some unknown k�

The classical way of constructing equalizers C�q� c� is to use a known
training sequence to estimate the parameters c and then apply a simple de�
cision device on its output in the transmitting mode� see Figure 	� If the
channel is time varying or the training sequence is too short to obtain a good
estimate of the channel inverse one can try to continue adjusting the parame�
ters c in the inverse �lter C�q� c� even after the training sequence� This is the

�



problem of blind equalization� The key question here is if the blind equalizer
will converge to a value corresponding to an open�eye equalizer� that is �at � at
in Figure 	� This is usually called the admissibility problem� Admissibility
is a weaker condition than identi�ability� as de�ned in Section �� since the
actual parameter estimates are not considered in this context �because there
are no �true� values�� In blind equalization� the �lter C�q� c� is adjusted to
resemble the inverse channel B�q� by minimizing some loss function in zt�
This can for example be done using stochastic gradient algorithms resem�
bling the least mean squares �LMS� method� see e�g� ���� 	�� �� 	� �� ��
� It
is clear from examples that the aforementioned algorithms sometimes fail to
converge to an open�eye condition as shown in ���
� or they may even diverge�
Nevertheless� some convergence results are known� They all apply under the
assumption that the equalizer is in�nite dimensional� Then under certain
conditions the overall impulse response will converge to �q�k for some time
delay k�

The so called decision directed algorithm is shown to converge in �	�
 if
the initial parameter setting is such that the overall impulse response satis�esP�

k�� jhkj � jh�j� If the input is restricted to ��� then �at � sign�zt� �
sign�at� � at� so this assumption corresponds to open�eye initialization� That
open�eye initialization is generally su�cient for convergence is proved in ���
�

The modulus restoral algorithm is shown to converge for an appropriate
initial setting in ��
� In �

� the convergence to the desired over�all impulse
response is proven if the equalizer is in�nite dimensional �that is� m �� in
�����

The conclusions of this discussion are as follows� The advantage with the
inverse �ltering approach is that the algorithms are simple to implement and
computationally very fast� On the other hand� there are a number of basic
disadvantages�

� The choice of loss function is rather ad hoc�

� All suggested loss functions have undesired local minima�

� The inverse channel� which is often is an in�nite impulse response
model� must be approximated by a FIR �lter�

� The over�all impulse response contains an unknown delay�

� Not even asymptotic convergence of the parameter vector b can be
expected in the noise�free case of ����� since a constant step size is
used in proposed gradient schemes�

However� these drawbacks are not inherent in the problem formulation ����
but depend on the inverse �ltering approach� In the next sections� it is shown
that these problems all can be overcome�






� IDENTIFIABILITY

We will here investigate the important question of identi�ability of the pa�
rameters for a noise�free FIR channel� Recall the problem formulation ��� of
the noise�free FIR channel model� i�e� given the measurements Yt solve the
bilinear equation system�

Yt � �t�nb� �
�

with respect to b and �t�n� Here b is the n unknown FIR parameters in
the channel model and �t�n is a Toeplitz matrix with n columns constructed
by the input sequence of length t� The following simple example clearly
illustrates the problem at hand�

Example � The bilinear equation system

�
BB�
���
�
�����
��
�

���
�

�
CCA �

�
BB�

a� a�
a� a�
a	 a�
a
 a	

�
CCA
�
b�
b�

�

has the unique solution b � ��� �����T � At � ��������� �����T � while

�
BB�
���
�
�����
��
�
����

�
CCA �

�
BB�

a� a�
a� a�
a	 a�
a
 a	

�
CCA
�
b�
b�

�

has the two solutions b � ��� �����T � At � ��������� �� ��T and b � ������ ���T �
At � ��� �������� ��T �

The explanation turns out to be in terms of an information measure of the
input sequence�

If the input sequence was known� then the FIR parameters can be com�
puted uniquely if and only if �t�n has full column rank� Then� we have

b � ��T
t�n�t�n�

���T
t�nYt� ���

This is a classical result in system identi�cation c�f� ��

 which has motivated
the following de�nition of input excitation�

De�nition � The sequence fatg is persistently exciting �P�E�� of order k at
time t if �t�k has full column rank� where the Toeplitz matrix �t�k is de�ned
in �	��
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Note that the number of columns in �t�k is a free parameter here� In the
current application where the input sequence belongs to a �nite set� this
basically means that the input sequence may not be periodical with a period
shorter than k� This is certainly true in practice� where the input contains
information and is encoded to resemble white noise�

One can argue that it is more logical to study the identi�ability of the
input sequence directly since the channel model is not of interest in itself�
However� it is clear from ��� that if the input sequence is P�E� of order n
and known� then the channel model can be calculated� Conversely� if the
channel model is known then the input can always be calculated� Thus�
the two problems of identi�ability of the input and the channel model can be
considered as equivalent if the input is P�E� of order n �which is in accordance
with De�nition ���

Let �At and �b denote the true values� Assume now that there exists another
solution At and b such that

Yt � �t�n b � �t�nb� ���

Lemma A�	 proves that also �t�n must have full column rank� Hence� b �

�yt�n�t�n
�b where �yt�n � ��T

t�n�t�n�
���T

t�n denotes the pseudo�inverse� Equation
��� then implies �

�t�n�
y
t�n�t�n � �t�n

�
b
�
�  b � �� ���

The question of identi�ability is now equivalent to prove that  �b � � implies
� � c�� which is a trivial solution to  � ��

We will proceed in two steps� First it is shown that  �� � if and only if �At

is P�E� of order 	n� �� which means that P�E� of order 	n� � is a necessary
condition for identi�ability� Then a condition on �b is derived guaranteeing
that  �b �� � for all possible A �� � that the �nite alphabet can generate�

Theorem ��� Consider the two sequences �At and At� not necessarily be�
longing to a �nite alphabet� The equation  � �t�n�

y
t�n�t�n � �t�n � � with

�t�n de�ned in �	� has only the trivial solution � � c� if and only if �At is
P�E� of order 	n� �� Thus� a necessary condition for identi�ability is P�E�
of order 	n� ��

Proof
 De�ne the n� n matrix S
�
� �yt�n�t�n � �s�� ���� sn�� where si is the

ith column of S�  � � can now be expressed as

�S � ��

�



or
�
B�

an � � � a�
���

���
at � � � at�n��

�
CA �s�� � � � � sn� �

�
B�

an � � � a�
���

���
at � � � at�n��

�
CA � ����

Eliminating ak for k � n� n��� ��� t�n��� using the Toeplitz structure� and
solving ���� for s� and sn gives the following system of equations�

�
BBB�

a�n�� � � � an an � � � a�
a�n � � � an�� an�� � � � a�
���

���
at � � � at�n�� at�n�� � � � �at��n��

�
CCCA
�
�sn
s�

�
�
� Ftx � �� ����

Note that Ft is identical to �t��n�� except for the middle column which is
repeated twice in Ft�

Firstly� assume P�E� of order 	n��� Then rank Ft � rank �t��n�� � 	n���
But Ft contains 	n columns so there exists exactly one non�zero linearly
independent solution x� which is trivially seen to be

x � c��� � � ������ �� �� � � � � ��T � ��	�

where c is a �possibly complex� constant� Hence s� � ce� and sn � cen where
ei is the i

th column in the identity matrix I� Continuing solving ���� for s�
and si immediately gives si � cei and we conclude that

S � cI

and thus �t�n � ��c�t�n so b � cb and At � ��cAt�
Secondly� assume rank �t��n�� � 	n � �� Then there exists at least one

more solution of Ftx� which is linearly independent of ��	�� Again� we can
continue solving ���� for si� and we get a solution �t�nS � �t�n� where S �� cI�
This proves non�identi�ability in the case of P�E� less than 	n� �� �

Theorem ��� shows that P�E� of order 	n� � is a necessary condition in
all blind deconvolution problems� even if the input is not in a �nite alphabet�

Example � Theorem ��� now explains the result in Example �� The �rst
input sequence in Example � is P�E� of order � � 	n � �� while the two
solutions in the second case are only P�E� of order 	� This explains why
there are two solutions in the second case�

Next we state a su�cient condition for blind deconvolution�
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Theorem ��� A su�cient condition for identi�ability if the input belongs
to the �nite alphabet at � f������ �����M ���g is that the input sequence is
P�E� of order 	n�� and that the FIR coe�cients fbig are linearly independent
with respect to coe�cients in the set

Zn �
n
������	� �����	 �M � ���n�� nn���t� � n� ��n

o
� ����

Here t� is de�ned as the �rst time instant �At is P�E� of order n�

Proof
 Theorem ��� shows that  �� � if At P�E� of order 	n � �� Now�
Lemma A�� proves that for a certain integer K the elements of K belong to
Zn� Since the coe�cients of b are supposed to be linearly independent with
respect to elements in Zn it follows that  b �� � which proves identi�ability�
�

The condition on b means that there must not exist relationships like
�b� � �b� � �� This restriction is not too severe� Losely speaking it is
satis�ed with probability one� Even if it is not satis�ed� simulations have
shown that At is still identi�able which can be explained as follows� Assume
that b is linearly dependent over Zn� Then one of the rows of  may be
orthogonal to b although it is not likely� Equation ���� still holds except for
some rows that must be deleted� The key point is that an equation like ����
still holds if there are enough rows in A that are not orthogonal to b and the
conclusion S � cI remains� The problem is that the complicated interaction
of �t�n and b makes it di�cult to give any necessary conditions on At in the
theorem� Thus� this su�cient condition is rather conservative�

Example � The �rst input sequence in Example � is P�E� of order 	 � n
at time t� � �� The integer set is thus with M � 	� Zn � f����� ����	 �
� � 	� � �� � 	 � ���g � f����� �����
g� The smallest integer solution to
m � � � n � ���� � � is � � � � 	� � ���� � �� Since 
� does not belong to
Zn� we could have concluded directly without any computations that there is
only one solution to the �rst problem� On the other hand� if the true channel
parameters were b � ��� ����T the su�cient condition is not satis�ed since
� � �� �� � ��� � �� However� the solution is still unique which shows that the
su�cient condition is conservative�

Another approach to identi�ability is examined in �		
� They note that
also the output belongs to a �nite alphabet �though quite large�� This fact is
used to come up with an algebraic solution to the non�linear equation system
����� The idea is to de�ne equivalent output measurement sets� Identi�ability
conditions� which are based on the speci�c algorithm used� are also given�
However� these conditions are not easy to relate to standard identi�ability
assumptions�
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� A DIRECT EQUALIZER

��� The Noise�Free Case

We will �rst present an algorithm to solve the non�linear system of equations

Yt � �t�nb� ����

consistent with the identi�ability result in Section �� which gives the correct
values of At and b as fast as possible� It will be extended in the next sub�
sections to cover more realistic channel models� The algorithm is graphically
illustrated in Figure �� Notice �rst that if �t�n is one solution to ����� then

it holds that Yt � �t�n�
y
t�nYt�

XXXXXX

��
��
��

XXXXXX

��
��
��

XXXXXX

��
��
��

������

��
��
��

������

��
��
��
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��

�

t
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�

��

�

��

�

��

�

��

�

��

�

Figure �� Recursive solution of Yt � �t�nb for M � 	

Algorithm � A recursive solution to Yt � �t�nb is given by the following
scheme


�� At time t� there are Lt permissible sequences Ai
t� i � �� 	� ��Lt that

satisfy Yt � �i
t�n��

i
t�n�

yYt� The corresponding channel models are given

by bi � ��i
t�n�

yYt�


� Let each of the permissible sequences split into M sequences where M
is the size of the alphabet of at� These are the a priori permissible
sequences at time t � ��

��



�� Let the a posteriori permissible sequences at time t � � be those which
satisfy

Yt�� � �i
t���n��

i
t���n�

yYt��� ����

If Ai
t is P�E� of order n� this condition can be replaced by

yt�� � ��i
t���

T bi� ��
�

	� Repeat the above steps�

We remark that if a sequence is not P�E� of order n� then the pseudo�inverse
��i

t�n�
y cannot be computed as ��T

t�n�t�n�
���T

t�n� but it can always be com�
puted by the singular value decomposition� see ��
�

Consider now the sequences that are P�E� of order n at time t� so that bi is
uniquely determined� It is then clear that each survivor at time t will have at
most one survivor at time t � �� since the relation ait�� � ��bi��yt�� � bi�at �
���binat�n��� de�nes a

i
t�� uniquely and gives at most one permissible value

in the �nite alphabet of at� This means that fLtg will be a non�increasing
sequence if only sequences which are P�E� of order n are considered� Lemma
A�	 in the appendix strengthens this result� since it claims that if the true
sequence is P�E� of order n then all other sequences that satis�es ���� must
be P�E� of order n as well� The conclusion is that if the true input sequence
is P�E� of order n at time t�� then there exists an upper boundM

t� �M is the
size of the alphabet� on the number of sequences that have to be examined in
the algorithm� Thus� in some sense� there is no exponential complexity in the
problem as could be expected as a consequence of the exponential increase
of input sequences�

Theorem ��� Consider the channel description ��	� and assume that the
input sequence fatg is P�E� of order n at time t�� If t� is known a priori
then the number of sequences that have to be considered in Algorithm � is
bounded by M t� � where M is the size of the alphabet of at� Furthermore� if
t� is unknown but the parameter vector b is linearly independent over Zn� as
de�ned in Theorem ��
� then the number of sequences is still bounded by M t� �

Proof
 The �rst part follows immediately from the discussion above� If b
is linearly independent over Zn� then Lemma A�	 gives that all �t��n that
satisfy ���� for some b must have rank n� According to the de�nition of P�E��
all permissible input sequences are P�E� of order n and the discussion above
still holds� �

In practice it is not realistic to assume that t� is known since the input
is stochastic� The �rst statement in the theorem is still useful for designing
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recursive algorithms which will work with a high probability� since the num�
ber of sequences that can be examined must always be limited� This can be
achieved by assuming a large enough t��

We have from Theorems ��� and ��	 that identi�ability is determined by
the �rst time instant when the input sequence is P�E� of order 	n � �� The
second statement of Theorem ��� shows that the complexity of the problem
is determined by the time instant when the input sequence is P�E� of order
n� Thus� the goal of the encoder should be to generate an input sequence
that becomes P�E� as quickly as possible�

��� A Heuristical Motivation

The algorithm above is easy to explain but the channel model is not very
realistic� We will now motivate how it should be extended to cover a possibly
time�varying channel disturbed by noise� First� consider the model ���� with
additive noise et collected in the vector Et�

Yt � �t�nb � Et�

The algorithm above can still be used if the condition ���� is replaced by

jjYt�� � �i
t���nb

ijj � � ����

for some norm and threshold �� This is intuitively appealing and the problem
is how to choose the norm and threshold in an optimal way and to minimize
���� in an e�cient and recursive way� The choices of norm and threshold are
of course dependent on the noise but also on the uncertainty in bi caused by
the noise�

If the channel is time�varying so yt � �T
t bt � et� the estimate of bt must

be updated recursively in some way and used in ���� instead of bi�
We will now derive this heuristically motivated algorithm in a mathemat�

ical way by recursively computing the exact a posteriori distribution of At

and then using a search scheme to obtain an implementable algorithm like
Algorithm ��

��� Optimal Estimates

Consider the channel model in Figure ��
The output of the channel is given by

yt � �d��t�yt�� � � � � � dnd�t�yt�nd � b��t�at � � � �� bnb�t�at�nb�� � et�

��
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Figure �� Time�varying channel model with noise

This model is equivalent to ���� if the parameters are constant� nd � � and
et 	 �� The auto�regressive part is introduced to be as general as possible
without increasing the complexity� We will assume that the parameter varia�
tion can be modeled as a random walk so a total state space linear regression
model is

�t�� � �t � vt

yt � �T
t �t � et� ����

Here�

�t � ��yt��� � � � ��yt�nd� at� � � � � at�nb���
T ����

�t � �d��t�� � � � � dnd�t�� b��t�� � � � � bnb�t��
T � �	��

We assume that vt and et are uncorrelated white Gaussian noises with co�
variance matrices Qt and "t� respectively� Assume we have an arbitrary
enumeration of the M t sequences At� say Ai

t� i � �� 	����M t� and denote
the corresponding regression vector �i

t� The a posteriori probabilities of a
sequence Ai

t� given the observations Yt� is given by the following theorem�

Theorem ��� Consider the model ����� The a posteriori probability of Ai
t

is given by

p�Ai
tjYt� � Ctp�a

i
tjA

i
t���	�yt � ��i

t�
T ��it� ��

i
t�
TP i

t�
i
t � "t� � p�A

i
t��jYt����	��

� Cp�Ai
t�

tY
k��

	�yk � ��i
k�

T ��ik� ��
i
k�

TP i
k�

i
k � "t� �		�

where C and Ct are constants given by the condition
PMt

i�� p�A
i
tjYt� � �� Here

	�x�
� P � denotes the value of the Gaussian probability density function with

��



mean 
 and covariance P evaluated in x� The parameter estimate ��it and its
covariance matrix P i

t are computed recursively by

��it�� � �it � P i
t�

i
t

�
��i

t�
TP i

t�
i
t � "t

��� �
yt � ��i

t�
T ��it
�

�	��

P i
t�� � P i

t � P i
t�

i
t

�
��i

t�
TP i

t�
i
t � "t

���
��i

t�
TP i

t �Qt �	��

with the initial values �� and P��

Proof
 Repeated use of Bayes# rule gives

p�Ai
tjYt� �

p�Yt� A
i
t�

p�Yt�
�

p�Ai
t�

p�Yt�
p�YtjA

i
t�� �	��

Now ��p�Yt� can be regarded as a constant Ct� Bayes# rule gives�

p�Ai
tjYt� � Ctp�A

i
t�p�yt� Yt��jA

i
t�

� Ctp�A
i
t�p�Yt��jA

i
t�p�ytjA

i
t� Yt���

� Ctp�a
i
tjA

i
t���p�A

i
t���p�Yt��jA

i
t���p�ytj�

i
�� ���� �

i
t� Yt���

� Ctp�A
i
t��jYt���p�a

i
tjA

i
t���	�yt � ��i

t�
T ��it� ��

i
t�
TP i

t�
i
t � "t�

which is �	�� and �		� follows by expanding the recursion� The last constant
Ct is equal to Ct�Ct��� The last equality is a consequence of a well�known
result from linear �ltering theory that the prediction error of ���� is Gaussian
if �t is known� See for instance ��
� The equations �	�� and �	�� are just the
Kalman �lter equations for the state space model ����� �

A logical estimate of the input sequence is the maximum a posteriori
�MAP� estimate�

�AMAP
t � argmax

i
p�Ai

tjYt�� �	
�

The maximum likelihood �ML� estimate�

�AML
t � argmax

i
p�YtjA

i
t�� �	��

is closely related to the MAP estimate as seen from �	��� It can be computed
from the MAP estimate by letting the prior being non�informative� that is
p�At� � ��M t�

The prior information p�aitjA
i
t��� in �	�� can be used to decode the infor�

mation by rejecting �impossible� sequences� thus eliminating the need of a
separate decoder� It can also be used to incorporate a training sequence in
a very natural way� by letting p�Atrain

t � � �� However� most often the inputs

��



are considered as independent variables so the ML estimate is equivalent to
the MAP estimate�

Theoretically� Theorem ��	 holds in the noiseless case as well� especially
for the channel model ����� What happens is that the a posteriori probabil�

ities become either zero� if yt � ��i
t�
T ��it �� � for some t� or Dirac impulses� if

yt � ��i
t�
T ��it � � for all t� A consequence is the following�

Corollary ��� Consider the noise�free FIR channel model ��	� and assume
that the same conditions as in Theorems ��� and ��
 hold� Then the MAP
estimate �
�� yields the true sequence �except for a possible scaling factor c�
if the true sequence is P�E� of order 	n��� Furthermore� if the true sequence
is P�E� of order n at time t�� then the number of �lters needed to compute
the MAP estimate is bounded by M t� �

It is reasonable to believe that the result still holds if the noise level is small
enough�

��� Basic Limitations

The MAP estimate �	
� completely eliminates the disadvantages of equalizing
by an inverse �lter which are mentioned in Section 	� However� it introduces
some new problems�

� The computational complexity is exponential increasing� since it re�
quires M t Kalman �lters at time t�

� It is not guaranteed that �AMAP
t resembles �AMAP

t�� � although it is very
likely� Thus� a new measurement can alter the entire estimated se�
quence�

In the next section� we will present an approximative MAP estimate that
contains a �xed number of �lters� It turns out that the second disadvantage
disappears as a consequence of the approximation�

��� A Local Search Algorithm

We will now give a recursively implementable approximation of the MAP
estimate� It contains a �xed number� K� of �lters� In words� only sequences
which have turned out to be likely are considered� The others are rejected�

Algorithm � Assume there are K sequences Ai
t given at time t and that

their relative a posteriori probabilities p�Ai
tjYt� have been computed�

�




�� Compute p�Ai
t��jYt��� by using Theorem 	�
 for the KM sequences

obtained by considering all expansions of the sequences at time t�


� Reject all but the K most probable sequences � that is� those which
have the largest p�Ai

t��jYt����

�� Repeat from step ��

We conclude from Corollary ��� that this algorithm is asymptotically optimal
in the measurement noise for a time�invariant FIR model if K 
 M t� � that
is� if the number of parallel �lters are chosen to be large enough�

This remarkably simple algorithmworks very well in simulations as will be
demonstrated in Section �� The second step resembles the Viterbi algorithm�
see �	�
� because unlikely sequences are rejected� In the Viterbi algorithm the
channel model b is assumed to be known and the most probable sequence is
saved for every possible combination of the last n inputs� so there are totally
Mn sequences under consideration� All other sequences are rejected� because
the MAP estimate of the input sequence is guaranteed to be among theseMn

sequences� Here� where b is unknown� the uncertainty in the estimate �bi is
taken consideration of automatically and the sequences that are not rejected
are not restricted to be di�erent in the last n inputs �because this is no longer
optimal��

� SIMULATION RESULTS

In this section we will examine how Algorithm 	 performs in the case of
a Rayleigh fading communication channel� Rayleigh fading is an important
problem in mobile communication� The motion of the receiver causes a time�
varying channel characteristics� The Rayleigh fading channel is simulated
using the following premises� The frequency of the carrier wave is ��� MHz
and the baseband sampling frequency is 	� kHz� The receiver is moving
with the velocity �� km$h so the maximum doppler frequency can be shown
to be approximately �� Hz� A channel with two complex time�varying taps�
corresponding to this maximum doppler frequency� will be used�� An example
of a tap is shown in Figure �� For more details and a thoroughly treatment
of fading in mobile communication� see ���
�

The input is assumed to belong to the �nite alphabet f�������i��ig�
with equal probability for each symbol� An input sequence of length ���

�The taps are simulated by �ltering white Gaussian noise with unit variance by a second
order resonance �lter� with the resonance frequency equal to �������� Hz� followed by a
��th order Butterworth low	pass �lter with cut	o
 frequency ��� � ���������

��
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Figure �� Example of a complex tap in a Rayleigh fading channel �real and
imaginary parts�

is �ltered through a simulated Rayleigh fading channel and Gaussian noise
with variance � is added� ��� di�erent realizations of the input sequence�
the noise sequence and the channel is used throughout all simulations� The
magnitude of the noise was changed so the noise variance � is ������ ����	�
������ ����� ���	� ���� and ���� respectively�

To obtain a feeling for the problems involved in estimating the input
sequence we begin with computing an upper bound of the performance of
any algorithm� This is here done by assuming that the time�varying channel
really is known to the receiver and using the Viterbi algorithm� which is in
this case optimal in the maximum likelihood sense� The estimated bit error
probability is shown in Figure 
� where the �rst value� corresponding to the
smallest �� is zero and is not shown�

The input sequence is then estimated by Algorithm 	 with a number
of parallel �lters� The true measurement noise variance was used and the
variance �Q� of the random walk was chosen to ����� Before showing the
result� let us comment on the number of �lters� From Theorem ��� we have
an upper bound on this number as M t� � This was derived for the time�
invariant noise�free case� but it should provide a reasonable guideline here as
well� Assuming that the input is P�E� of order n already at time t� � n this
upper bound implies M�n�� � �� � 
� parallel �lters� We will compare this

��
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Figure 
� Bit�error as a function of the measurement noise for the Viterbi
algorithm when the channel model is assumed to be known�

choice with a simpler algorithm with �
 �lters�
The total bit error probability is estimated by comparing the estimated

and the true input sequence and is shown by the dashed line in Figure �
in the case of �
 parallel �lters� Since no training sequence is used most of
the erroneously estimated inputs are caused by transients� A better estimate
of the bit error in the long run is computed by only comparing the last 	�
inputs in each sequence as shown by the solid line�

It is almost inevitable to avoid so called zero crossings where all taps in the
channel model are approximately zero at the same time� This phenomenon
results in a very low signal�to�noise ratio for a while and it was observed that
the algorithm was not capable to recover after a zero�crossing in some cases�
Non�convergence of the algorithm is also possible when the input sequence is
not persistently exciting for a long time in the beginning� To get insight into
the in%uence of totally erroneously estimated sequences� the dotted line in
Figure � shows the total bit error probability when sequences with bit error
less than ��& are considered�

Figure � shows the same estimates for the same realizations when the
number of parallel �lters is increased to 
� in the algorithm� In this case�
the di�erence between the solid and the dashed line is less signi�cant� so the
e�ect of the transients is almost negligible� Furthermore� the bit error rate

��
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Figure �� Bit�error as a function of the measurement noise with �
 parallel
�lters� Averages over all inputs and all simulations �dashed�� only the last
	� samples of the inputs �solid� and only for simulations with less than �� &
bit error �dotted��

is much lower� Even compared to the lower bound in Figure 
 the bit error
is quite small� it only di�ers a factor �� approximately� It is noteworthy�
that for the largest noise variance� � � ���� the bit error rate for simulations
with a total bit error less than �� & is the same as for the Viterbi algorithm�
The conclusion is that the e�ect of transients and zero crossings are less the
better approximation of the MAP estimate is used�

The problem of non�convergence of the algorithm for some simulations is
a bit discouraging� However� it is important to note that this is an observ�
able phenomenon� since it can be concluded from a perpetually switching
between completely di�erent estimated input sequences� Thus� it is easy to
incorporate this test in the algorithm and in that case restart the algorithm�
for instance by temporarily increasing Q� This idea is not persuaded here�

In Figure � a typical parameter convergence is shown� The true FIR
real and imaginary parameter values are here compared to the least squares
estimates conditioned on the estimated input sequence at time t� The con�
vergence to the true parameter settings is quite fast and the tracking ability
very good�

As previously mentioned it is easy to incorporate a known training se�
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Figure �� Bit�error as a function of the measurement noise with 
� parallel
�lters� Averages over all inputs and all simulations �dashed�� only the last
	� samples of the inputs �solid� and only for simulations with less than �� &
bit error �dotted��

quence with Algorithm 	� One may believe that this would increase the
performance drastically� Figure �� shows the same estimates as in Figure
� for the same realizations but where the �rst �� samples of the input se�
quence are used as a training sequence� As expected there is no di�erence
between the stationary �dashed line� bit error and the bit error rate when
the transients are included �solid line�� Compared with Figure � we see that
the bit error rates are comparable� The conclusion� from this example� is
that Algorithm 	 performs equally well with training sequence and without
training sequence� but with a greater complexity of the algorithm�

� CONCLUSIONS

We have herein studied the problem of blind deconvolution by direct exami�
nation of the input sequences� First� the identi�ability problem of a noise�free
FIR channel model was investigated� We know from the theory of system
identi�cation that the channel model is identi�able if the input is known
and persistently exciting of order n� Here� when the input is unknown but
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Figure �� Example of estimated and true parameters in a Rayleigh fading
channel�

belongs to a �nite alphabet we have shown the following result�

� The channel model and the input sequence are simultaneously identi��
able only if the input sequence is persistently exciting of order 	n� ��

� The complexity of the problem is determined by the �rst time instant
when the input sequence is persistently exciting of order n�

Algorithm � gives a recursive scheme to solve the aforementioned deconvo�
lution problem which works as follows� If the input sequence is known� then
it is straight�forward to compute the channel model exactly �since there is
no noise� and the next measurement can be computed exactly as well� Since
the input belongs to a �nite alphabet� there is only a �nite number of in�
put sequences� By computing the corresponding prediction to each sequence
and rejecting all sequences that gives non�zero prediction error� the correct
sequence is sooner or later found� The �rst point above gives a su�cient con�
dition for this and the second point concerns an upper bound of the number
of sequences that have to be examined�

A noise�free FIR channel model is not realistic in practice so next a time�
varying IIR channel model with additive noise was studied� The maximum a
posteriori estimate was derived� It can be computed recursively for each input
sequence but the problem is that the number of input sequences increases
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Figure ��� Bit�error as a function of the measurement noise with �
 parallel
�lters and a training sequence� Averages over all inputs and all simulations
�dashed�� only the last 	� samples of the inputs �solid� and only for simula�
tions with less than �� & bit error �dotted��

exponentially� Now the theoretically results above were used to motivate
a truly recursive approximation of the statistically optimal estimate� which
only uses a �xed number of �lters� It is given in Algorithm 	� We pointed
out that the algorithm can be designed to be asymptotically optimal in the
measurement noise for a time�invariant FIR �lter�

The performance of Algorithm 	 was evaluated on a Rayleigh fading chan�
nel model� The bit error rate was compared for di�erent complexities of the
algorithm and also with the Viterbi algorithm when the true channel model
was used� The algorithm turned out to show a very fast convergence to the
true parameter settings� low bit error rate and it is fairly robust to a high
noise level and zero crossings of the parameters�
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A Two lemmas

Here we use a somewhat di�erent de�nition of  than in ���� If �At is P�E� of
order n at time m� we can solve ��� for b as b � ��T

m�n�m�n�
���T

m�nYm� This
gives the following alternate de�nition of  in the equation  b � ��

 � �t�n��
T
m�n�m�n�

���T
m�n�m�n � �t�n�

This reduces the set Zn somewhat�

Lemma A�� Consider the t � n � � � n Toeplitz matrices �t�n and �t�n

containing elements in the set f������ ������M � ��g� The elements of

det��T
m�n�m�n�

�
�t�n��

T
m�n�m�n�

���T
m�n�m�n � �t�n

�
�
� ' �	��

belong to the �nite integer set

Zn �
n
������	� �����	 �M � ���n�� nn���m� n� ��n

o
�

Proof
 First we have from adj��T
m�n�m�n� � det��T

m�n�m�n���
T
m�n�m�n�

�� that
the elements of

' � �t�nadj��
T
m�n�m�n��

T
m�n�m�n � det��T

m�n�m�n��t�n �	��

must be integers� since they can be computed by only additions and multi�
plications� Next we �nd an upper bound on them�

Consider �rst the second term in �	��� The elements of �T
m�n�m�n are

trivially bounded by �m� n � ���M � ���� From Hadamard�s inequality

j detAj� �
nY

j��

nX
i��

jaijj
��

see ���
 page 
�� we have

det��T
m�n�m�n� � �M � ���n�m� n� ��nnn���

Thus� the elements of the second term in �	�� are bounded by �M����n���m�
n� ���nnn���

In the �rst term in �	��� the elements of adj��T
m�n�m�n� are computed by

determinants of �n���� �n��� submatrices and are thus bounded by �M�
����n����m�n���n���n����n����� so the elements of �t�n adj��

T
m�n�m�n��

T
m�n�m�n

are bounded by �M���n�M�����n����m�n���n���n����n������M�����m�
n� �� � �M � ���n���n� ���n�����n�m� n � ��n and the result follows� �

The important implication of this lemma is that we now can conclude
that ' � � if ' b � ��
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Lemma A�� Assume
�b � � b� ����

where � is a Toeplitz matrix as de�ned in �	� �for simplicity� we drop the
indices here�� and that b is linearly independent over Zn �as de�ned in Lemma
A���� Then � has full column rank if � has full column rank�

Proof
 Assume � has rank k� Let '� consist of k linearly independent columns
of �� Then there must exist a 'b � �'�T '���� '�TY such that Y � '�'b� Thus�
we have

�I � '��'�T '���� '�T ��b � �I � P ��b � �� ����

where P � '��'�T '���� '�T � Since the elements in �I � P �� belong to Zn we
have by assumption that �I � P �� � �� or equivalently P� � �� Now P
is a projection matrix so range '� � rangeP � range� and thus '� is of full
column rank if � is of full column rank� �

The conclusion of this lemma is that sequences that are not P�E� of order
n are out of question if the true sequence is P�E� and b is linearly independent
over Zn�
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