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Blind Estimation of Sparse Broadband Massive

MIMO Channels with Ideal and One-bit ADCs
Amine Mezghani, Member, IEEE and A. Lee Swindlehurst, Fellow, IEEE

Abstract—We study the maximum likelihood problem for the
blind estimation of massive mmWave MIMO channels while tak-
ing into account their underlying sparse structure, the temporal
shifts across antennas in the broadband regime, and ultimately
one-bit quantization at the receiver. The sparsity in the angular
domain is exploited as a key property to enable the unambiguous
blind separation between user’s channels. The main advantage of
this approach is the fact that the overhead due to pilot sequences
can be dramatically reduced especially when operating at low
SNR per antenna. In addition, as sparsity is the only assumption
made about the channel, the proposed method is robust with
respect to the statistical properties of the channel and data and
allows the channel estimation and the separation of interfering
users from adjacent base stations to be performed in rapidly
time-varying scenarios. For the case of one-bit receivers, a blind
channel estimation is proposed that relies on the Expectation
Maximization (EM) algorithm. Additionally, performance limits
are derived based on the clairvoyant Cramér Rao lower bound.
Simulation results demonstrate that this maximum likelihood for-
mulation yields superior estimation accuracy in the narrowband
as well as the wideband regime with reasonable computational
complexity and limited model assumptions.

Index Terms—massive MIMO, millimeter-wave, blind broad-
band channel estimation, sparsity, one-bit ADCs.

I. INTRODUCTION

Channel estimation is recognized as one of the key issues

in developing the fifth generation of wireless communication

systems [2]. In particular, estimating massive MIMO

millimeter wave (mmWave) channels is challenging due

to the larger dimensions, larger bandwidths, hardware

imperfections and faster temporal variations. In addition,

such systems are expected to operate at low SNR values

per antenna due to several factors like increased path-loss,

hardware restrictions of the power amplifiers, larger noise

bandwidths and smaller antenna sizes, which, together with

the issues of pilot-contamination and carrier frequency offset,

renders common pilot based estimation methods inefficient

and even impossible.
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Some parts of this work have been published in [1], where the unquantized
and flat fading scenario was considered.

The high power consumption and complexity of massive

MIMO systems have led researchers to consider receivers

with low-resolution quantizers [3]–[18]. In the extreme case,

a one-bit A/D-converter (ADC) can be employed that consists

of a simple comparator and consumes negligible power.

One-bit ADCs do not require an automatic gain control

and the gain stages needed prior to them are substantially

reduced [19]. Ultimately, one-bit conversion is, in view of

the current CMOS technology, the only conceivable option

for direct mmWave bandpass sampling close to the antenna,

eliminating the need for power intensive RF components

such as mixers, frequency synthesizers and local oscillator

distribution networks [19]. In addition, the use of one-bit

ADCs not only simplifies the interface to the antennas by

relaxing the RF requirements but also simplifies the interface

between the converters and the digital signal processing unit

(DSP/FPGA).

Previous works have exploited the sparsity of mmWave

channels in the angle and delay domains to design pilot-based

channel estimation schemes [20], [21]. Other works have

considered pilot based channel and/or channel subspace

estimation in the context of hybrid MIMO mmWave systems

with analog preprocessing [22] and in the context of quantized

MIMO mmWave systems with one-bit receivers [23]. Most

of these works are based on a compressed sensing type of

formulation and usually require a sufficiently high SNR per

antenna before beamforming and/or a high degree of sparsity,

which is not applicable for certain scenarios such as indoor

and urban outdoor environments [24]. A maximum likelihood

approach for blind and semi-blind estimation of massive

MIMO mmWave channels has been presented in [25] for

Rayleigh fading channel models. Joint Bayesian channel-

and-data estimation has been considered and analyzed in

[26]–[28] and shown to yield a large improvement compared

to training-based methods. However, this approach requires an

iterative message passing algorithm applied to a sufficiently

large system with significant complexity and generally strict

assumptions on the prior distributions of the channel and

data, and on the time and frequency synchronization, while

convergence and optimality still cannot be guaranteed.

To address this issue, we present a maximum likelihood

approach for blind mmWave channel estimation that, unlike

[25], takes into account the sparsity of these channels. Under

this key property, we show that reliable estimation is possible

at low SNR per antenna and unambiguous separation between

users is still possible even though their channels are not

http://arxiv.org/abs/1709.06698v1
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orthogonal and prior distributions for the channel and data are

not available. An essential ingredient of our work compared

to recent work is that the broadband array model includes the

temporal shifts across the different elements, which is critical

in the context of mmWave systems with large bandwidth and

large array size.

Motivated by the advantages of one-bit receivers, in this

paper we additionally aim at considering the blind channel

estimation problem with one-bit observations. In contrast to

the existing works [10], [26], [28] that adopt the approximate

message passing algorithm [29] to solve this problem for a

sufficiently large number of users, we aim here to develop

a pure blind estimation approach based on non-convex

optimization that works even for a moderate number of users.

In fact, despite its theoretical potential [30], the popular

generalized approximate message passing algorithm [31]

and its extension to bivariate (data and channel) problems

[29] still require in practice a substantial amount of users

and pilots and a certain SNR level to exhibit convergence

and might suffer heavily from model mismatch. We show

that the proposed non-convex optimization approach with

appropriate initialization for the blind estimation of weakly

sparse channels can be applied for general cases (infinite

resolution, 1-bit resolution, narrowband/broadband channel)

while remaining robust to certain model assumptions, as for

instance the type of modulation alphabet, as well as the time

and frequency synchronization.

Our specific contributions consist of the following.

• We consider a general wideband channel model for

mmWave massive MIMO where not only the phase shifts

across the antennas are taken into account but also the

temporal shifts. This last phenomenon, usually neglected

in most related work, turns out to be essential in this

context and is due to the large bandwidth and the large

distance between widely-spaced antennas in terms of

wavelengths.

• We present a new maximum likelihood formulation for

blind channel estimation based on ℓ1 regularization with

ideal as well as with one-bit receivers. As the problem

turns out to be non-convex and has to be solved iter-

atively, we elaborate on the problem of finding a good

initialization in closed form. The proposed formulation of

the blind estimation problem does not require any time

or frequency synchronization.

• We derive iterative solutions for the maximum likelihood

formulation which resemble the gradient descent based

thresholding algorithm. In the one-bit case, the itera-

tive solution additionally makes use of the Expectation

Maximization (EM) technique. Through simulations, we

demonstrate the benefits of the proposed approach, par-

ticularly compared to the common pilot-based method.

On the other hand, we observe that the loss due to the

1-bit quantization is not significant in relevant scenarios.

• As a theoretical performance measure, we determine

the Clairvoyant Cramér Rao lower bound (CRB) for

both cases. Since for the one-bit case the bound cannot

be found in closed form, we perform a Taylor series

expansion of the CRB expression up to the second order

in SNR.

The next section introduces the channel model assumed

in the paper. In Section III, the general blind channel

estimation problem is formulated and approximately solved

with a subspace approach. Then, taking this solution as

an initialization, an iterative sparsity-based blind method is

derived in Section IV. In Section V, the Clairvoyant Cramér

Rao lower bound (CRB) is derived, providing a theoretical

performance measure. These studies are also carried out

for the one-bit case in Sections VI and VII and a similar

iterative estimation algorithm is obtained by means of the EM

algorithm. Finally, simulation results are given in Section VIII

to illustrate the performance gains compared with existing

methods.

Notation: Vectors and matrices are denoted by lower and

upper case italic bold letters. The operators (•)T, (•)H, tr(•)
and (•)∗ stand for transpose, Hermitian (conjugate transpose),

trace, and complex conjugate, respectively. The terms 1M and

IM represent the all ones vector and the identity matrix of size

M , respectively. The vector xi denotes the i-th column of a

matrix X and [X]i,j denotes the (ith, jth) element, while xi

is the i-th element of the vector x. We represent the Hadamard

(element-wise) and the Kronecker product of vectors and

matrices by the operators ”◦” and ”⊗”, respectively. Addi-

tionally, diag(B) denotes a diagonal matrix containing only

the diagonal elements of B and nondiag(B) = B− diag(B).
Further, F{•} and F−1{•} are the Fourier and inverse Fourier

transform operators, respectively, used for both the continuous

and discrete time domain depending on the context, and

UN represents the normalized DFT matrix of size N with

UNUH
N = IN . Finally, x̃[n] is a time domain signal and

x[m] is the corresponding frequency domain signal.

II. WIDEBAND CHANNEL MODEL

In mmWave massive MIMO transmissions with N antennas

at the receiver, the wireless propagation channel can be de-

scribed by a sparse scattering model, where the N -dimensional

channel vector hk of user k consists of the superposition

of Lk ≪ N multi-path components, typically including the

line-of-sight (LOS) and some reflected paths [24], [32]. The

resulting ray-based channel model is variable in time and space

and can be expressed as the following convolution

h̃k(t) =

Lk∑

ℓ=1

sℓ,kã(θℓ,k, ϕℓ,k, t) ∗ δ(t− tℓ,k), (1)

where sℓ,k are the path coefficients (including path phase and

strength), a(θℓ,k, ϕℓ,k, n) the array impulse response for the

angles-of-arrival (AoA) θ and ϕ in a spherical coordinate

system as a function of time, and tℓ,k the associated time

delay. In the frequency domain, we have the channel transfer

function

hk(ω) = F{h̃k(t)} =
Lk∑

ℓ=1

sℓ,ka(θℓ,k, ϕℓ,k, ω)e
−jωtℓ,k . (2)
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Sampling the delay-angle space on a grid, we introduce the

angular array response matrix or dictionary A(ω), obtained by

evaluating a(θℓ,k, ϕℓ,k, ω) at a sufficiently dense grid of angles

(at least N ) and, assuming the delays are integer multiple of

the symbol period 1/B, we can write the channel transfer

function as1

hk(ω) =
(
[1, e−j ωB , · · · , e−j

TDω

B ]⊗A(ω)
︸ ︷︷ ︸

F (ω)

)
· sk,

(3)

where sk is a sparse vector containing the corresponding

delay and AoA coefficients and TD is the maximum delay

spread, i.e. tℓ,k ∈ {0, 1/B, · · · , TD/B}.

As an example, for a uniform planar array (UPA) of

isotropic antennas with element spacing d in wavelengths

at the center frequency and dimensions N1 × N2, we have

the following broadband steering vector assuming all the

frequencies propagate with the same speed and in the absence

of antenna mutual coupling [33]:

a(θ, ϕ, ω)T=
1√

N1N2

[

1, · · ·, e−j2πd sin θ(n1 sinϕ+n2 cosϕ)(1+ ω
fc

),

· · · , e−j2πd sin θ((N1−1) sinϕ+(N2−1) cosϕ)(1+ ω
fc

)
]

,

(4)

where fc is the center frequency. The term ω
fc

, which is often

neglected in other work, accounts for the time shift across the

antennas in the baseband and is essential in the context of

mmWave massive MIMO with array dimensions of several

wavelengths and a large available bandwidth. However, if√
Ni · Bfc ≪ 1 for both i = 1 and i = 2, then the array response

is nearly frequency independent and a possible dictionary A

for the UPA that covers the 3-dimensional space can be based

on the normalized DFT matrices UN1/2
of size N1 and N2,

providing a sufficient dictionary for the case of large uniform

arrays:

AUPA = UN1 ⊗UN2 . (5)

In such case, the matrices F (ω) fulfill the following property

using the equality (D ⊗C) · (B ⊗A) = (D ·B)⊗ (C ·A)
∫ πB

−πB

F (ω)HF (ω)dω = ITD ⊗AHA = ITDN . (6)

Apart from sparsity of the propagation channel, i.e., Lk ≪ N ,

no assumption about the array geometry or the channel’s

statistical properties is actually needed for the derivation of

the estimation method and the analysis. Later on, for the

simulations, we assume for simplicity a uniform linear array

(ULA) (N1 = N, N2 = 1) and that the AoAs θℓ,k are

random and uniformly distributed between 0 and π, while

the multi-path coefficients sℓ,k are drawn from a complex

Gaussian distribution with unit variance.

We assume a block fading channel with K single antenna

users and N receive antennas in the uplink. During a coherence

time of T symbols, each user constructs a block of T data

symbols using for instance single carrier pulse shaping or

1Later, in the simulations, we generate the delays and angles as continuous
random variables not necessarily drawn from the constructed discrete grid.

OFDM processing and appends a cyclic prefix that is longer

than the delay spread. After convolution with the channel, and

discarding the cyclic prefix, the base station receives a block

of T sampled signal vectors. By means of the DFT of the

T−length discrete-time signals, while indexing the discrete

frequencies as

ωm = 2πB
(m

T
− ⌊m/T + 1/2⌋

)

∈ [−πB, πB), 0 ≤ m < T,

(7)

the sampled received signal in the DFT domain reads as

y[m] = H [m] · x[m] + z[m] = FmS · x[m] + z[m], (8)

where z[m] ∈ C
N is the noise vector in the frequency domain

having i.i.d. elements with unit variance, S = [s1, . . . , sK ] ∈
CNTD×K , H[m] = [h1[m], . . . ,hK [m]] ∈ CN×K comprises

the user channels hk[m], k = 1, . . . ,K , in the DFT domain

that are assumed to be unknown and x[0], . . . ,x[T −1] ∈ CK

is the transmitted data block in the DFT domain.

III. BLIND CHANNEL ESTIMATION: APPROXIMATIVE

SUBSPACE METHOD

Assuming the data from the users xk[m] are i.i.d. Gaussian

distributed2 with variance ρ (representing the SNR), then the

conditional distribution of the received signal y[m] given S

can be expressed as a multivariate Gaussian distribution with

covariance matrices (ρH [m]H[m]H + I):

p(y[0], . . . ,y[T − 1]|S) =

exp

(

−∑
m

y[m]H
(

ρFmSSHFH
m + I

)−1

y[m]

)

πN ·T ∏

m

∣
∣
∣ρFmSSHFH

m + I
∣
∣
∣

.
(9)

The corresponding log-likelihood function reads as

L(S) = −
∑

m

(

y[m]H
(

ρFmSSHFH
m+I

)−1

y[m]

)

−
∑

m

log
∣
∣
∣ρFmSSHFH

m+I
∣
∣
∣ .

(10)

Maximizing this log-likelihood function with respect to S

is a non-convex problem, which in general cannot be solved

in closed form. However, for the low SNR regime ρ ≪ 1 or

for the flat-fading channel case with Fm = F , ∀m, a closed

form solution can be obtained. In fact, for ρ ≪ 1, and using

the first order Taylor approximations log |ρB+I| ≈ ρtr(B)
and (ρB+I)

−1 ≈ I − ρB, we obtain the approximation

L(S) ≈
−
∑

m

y[m]Hy[m] +
∑

m

ρtr
(

SHFH
m(y[m]Hy[m]− I)FmS

)

.

(11)

One possible solution for the blind estimation of S with rank

K that approximately maximizes the first order approximation

of the log-likelihood function (11) is given by

Ŝ=argmaxS p(y[0], . . . ,y[T−1]|S)≈ 1√
Tρ

V 1:K

√

[Σ1:K ]+,

(12)

2From a practical point of view, the Gaussian assumption is not essential
for the presented methods, as we obtain very similar simulation results with
practical discrete input distributions as shown later in the simulation results.
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where V 1:K are the K eigenvectors corresponding to the K
largest eigenvalues Σ1:K of the matrix

∑

m

FH
m(y[m]y[m]H −

I)Fm = V ΣV H and [a]+ = max(a, 0). This approximate

solution is actually the optimal solution for the narrowband

case with Fm = F , ∀m, being a unitary matrix [25]. It

should be also noticed that this solution is not unique and

that multiplication from the right with any unitary matrix will

also provide another valid solution. The particular channel

estimate in (12) is characterized by the fact that the users

are assumed to be orthogonal to each other. Therefore the

quality of the subspace-based estimate strongly depends on

this assumption, which requires a very large number of an-

tennas. In the following section, we provide a modification of

the method exploiting the sparsity of the propagation scenario

that can relax this assumption while performing well also

for the frequency selective case. The method consists of an

iterative algorithm for solving a non-convex problem, where

this subspace solution can serve as an efficient initialization.

IV. BLIND SPARSE CHANNEL ESTIMATION

For the case of mmWave massive MIMO, with dozens or

hundreds of antennas, the number of multi-path components

from each user to the base station is usually much less than the

number of antenna elements N . Therefore, assuming a large

antenna array, the channel can be represented as

H[m] = Fm · S, (13)

where Fm is the angular array dictionary at frequency index

m and S is a sparse matrix representing the coefficients of

the different multi-path components. Strictly speaking, the

matrix S is not perfectly sparse since the path directions from

the users to the base stations do not correspond exactly to

the discrete directions and delays defined by the dictionary

Fm, resulting in a clustered type of sparsity known as the

leakage phenomenon. Nevertheless, the assumption of sparsity

becomes more valid the higher the number N of base station

antennas.

Based on these assumptions, we can state the following ℓ1
regularized maximum likelihood problem for estimating the

channel:

max
S

L(S)− λ ‖S‖1,1 =

−
∑

m

(

y[m]H
(

ρFmSSHFH
m+I

)−1

y[m]

)

−
∑

m

log
∣
∣
∣ρFmSSHFH

m+I

∣
∣
∣−λ‖S‖1,1

≡ max
S

∑

m

ρy[m]HFmS
(

ρSHFH
mFmS+I

)−1

SHFH
my[m]

−
∑

m

log
∣
∣
∣ρSHFH

mFmS+I
∣
∣
∣−λ‖S‖1,1 ,

(14)

where the ℓ1,1 matrix norm ‖S‖1,1 =
∑

n,k |sn,k| is used to

encourage sparse solutions with regularization parameter λ,

and the matrix inversion lemma has been applied in the last

step. The advantage of this formulation is that apart from

the channel sparsity, no further assumption is made on the

channel’s distribution, which provides robustness and allows

for the estimation of even the channels of interfering users

from adjacent base stations without any assumption about

time and frequency synchronization.

Unfortunately, the problem in (14) is non-convex since the

cost function is not concave. Nevertheless, it has been observed

that in many cases, solving a non-convex problem locally with

appropriate initialization using efficient gradient based meth-

ods [34] can be very successful in practice. Therefore, we use

the gradient descent based iterative thresholding algorithm to

determine a local optimal solution, as derived in Appendix A

(see also [11], [35]):

Sℓ+1 =

exp(j∠(Sℓ − µ∆)) ◦max

(

abs(Sℓ − µ∆)− µ
λ

2
1 · 1T,0

)

,

(15)

where the phase and the absolute value operations symbolized

by ∠(•) and abs(•), respectively, are applied element-wise to

their matrix arguments and the gradient is given by

∆ =− ∂L(S)

∂S∗

=− ρ
∑

m

FH
m

(

ρFmSSHFH
m + I

)−1

y[m]·

y[m]H
(

ρFmSSHFH
m + I

)−1

FmS+

ρFH
m

(

ρFmSSHFH
m + I

)−1

FmS.

(16)

As initialization for the iterative algorithm we take the

subspace solution (12). The iterative method is summarized

in Algorithm 1. We note that if one user happens to be

inactive, then the corresponding column in the estimate of S

will be near zero, and thus the algorithm can be also used

to determine the set of active users or find potential interferers.

The solution of the optimization problem (14) is not unique,

in the sense that any transformation of the form

H ′[m] = H [m]diag([e−j2π
d1
T m+jφ1 , . . . , e−j2π

dK
T m+jφK ])Π,

(17)

with any diagonal phase and time shift3 matrix and any user

permutation matrix Π provides an equally valid solution, a fact

that reflects the non-uniqueness of assigning the channels to

the user’s indices. These ambiguities in terms of phase and

time shifts and user assignment can be resolved easily by

taking advantage of the finite-alphabet structure of the signals

and information from the higher layers or by including a short

training phase.

A. Complexity Analysis

Apart from determining the initialization, the most costly

operation of Algorithm 1 in each iteration is the calculation

of the gradient (16), since the other steps consists mainly

3Non-uniqueness of the solution in terms of time shift occurs only if the
maximum delay spread TD is not reached.
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Algorithm 1 Blind ℓ1 Regularized Channel Estimation

1: Input: y[m] = F{ỹ[n]}/
√
T , 0 ≤ m ≤ T−1 in the DFT

domain

2: Initialize: V ΣV H ←∑

m

FH
m(y[m]y[m]H − I)Fm

S(0) = 1√
Tρ

(V 1:K

√

[Σ1:K ]+)
µ > 0, 0 < β < 1, l← 0

3: repeat

4: i← i+ 1
5: Compute ∆(i−1) from (16)

6: Gradient update:

S(i) ← S(i−1) − µ∆(i−1)

7: Thresholding:

S(i)←exp(j∠(S(i)))◦max
(

abs(S(i))−µλ
21 · 1T,0

)

8: if L(S(i−1)) − λ
∥
∥
∥S

(i−1)
∥
∥
∥
1,1

> L(S(i))− λ
∥
∥
∥S

(i)
∥
∥
∥
1,1

then

9: µ← βµ, i← i− 1
10: end if

11: until desired accuracy for S is achieved

12: Back conversion:

Ĥ [m] = Fm · S

of element-wise operations with much lower complexity. The

expression is composed of several repeated terms and therefore

it is possible to reduce the number of arithmetic operations at

the cost of some memory. Since the matrix to be inverted

in (16) contains a lower rank matrix, the matrix inversion

lemma can be used to reduce the dimensionality and thus the

complexity:

(

ρFmSSHFH
m + I

)−1

FmS = FmS
(

ρSHFH
mFmS + I

)−1

.

(18)

Further, for each frequency index m, the gradient expression

(16) is comprised of the sum of two terms. The first

term is a rank-one matrix obtained from the outer

product of two vectors whereas the second summand

ρFH
m

(

ρFmSSHFH
m + I

)−1

FmS is a full rank matrix

and requires therefore higher computational complexity. The

complexity of computing this second term of the gradient

expression (16) is presented in Table I.

The resulting total complexity per iteration is of the order

T · o(4N2TDK + 3NK2 +K3). It should be noted that the

complexity analysis in Table I does not take into account the

sparsity of S. This fact can be used to significantly reduce the

complexity to the order of only T ·(3NK2), by neglecting the

operations associated with the matrix multiplication FmS. In

addition, if the channel changes only slowly across consecutive

blocks, an adaptive implementation of the algorithm as a

stochastic gradient update with very few iterations per block

can be envisaged, in order to further improve the performance

while drastically lowering the number of iterations. Hence,

we conclude that the complexity of the proposed algorithm

is expected to be comparable to state-of-the-art pilot-based

techniques.

TABLE I
COMPLEXITY ANALYSIS PER ITERATION AND FREQUENCY SAMPLE

Operation Number of FLOPs [36]

P 1 = FmS ∈ CN×K 2N ·NTD ·K −NK (worst case)

P 2 = PH

1
P 1 ∈ CK×K NK2 +NK −K2/2 −K/2

P 3 = (ρP 2 + I)−1 ∈ CK×K K3 +K2 +K
P 4 = P 1P 3 ∈ CN×K 2N ·K2 −NK

P 5 = FH
mP 4 ∈ CNTD×K 2N ·NTD ·K −NTD ·K

Total o(4N2TDK + 3NK2 +K3)

V. CLAIRVOYANT CRAMÉR RAO LOWER BOUND (CRB)

For a given channel H[m] = [· · ·hk[m] · · · ] =
[· · ·Fmsk · · · ], and assuming that the right singular vectors

are perfectly known - to ensure the uniqueness of the spectral

separation and thus the maximum likelihood solution - then the

Fisher information matrix, leading to the so-called clairvoyant

Cramér Rao lower bound with “genie” side information, can

be written as [37], [38]

[J ]TDN(k−1)+i,TDN(k′−1)+i′

=

T∑

m=1

tr

(

Q−1
m

∂Qm

∂s∗k,i
Q−1

m

∂Qm

∂sk′,i′

)

=
∑

m

ρ2 · tr
(

Q−1
m Fmske

T
i F

H
mQ−1

m Fmei′s
H
k′F

H
m

)

=
∑

m

ρ2 · eTi FH
mQ−1

m Fmei′ · sHk′F
H
mQ−1

m Fmsk,

(19)

with Qm = ρH[m]H[m]H + I . This can be written in a

compact way as

J =
∑

m

ρ2 ·H [m]HQ−1
m H [m]⊗ FH

mQ−1
m Fm. (20)

At low SNR, i.e., Qm ≈ I , this can be approximated as

J
ρ≪1≈ ρ2

∑

m

H[m]HH[m]⊗ (FH
mFm). (21)

Additionally, knowing the sparsity support of the chan-

nel, i.e., the indices of the non-zero elements of sk, S =
{TDN(k − 1) + i|sk,i 6= 0}, a reduced-dimension Fisher

information matrix can be obtained by taking the rows and

the columns given by the subset S as follows

J̃ = JS,S . (22)

VI. BLIND ESTIMATION WITH ONE-BIT OBSERVATIONS

In this section, we reconsider the blind estimation problem

where the receiver only has access to the sign of the received

signal in each dimension. The time domain received signal

reads as

r̃[n] =
1√
2
sign(Re{ỹ[n]}) + j√

2
sign(Im{ỹ[n]}). (23)
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We can thus write the conditional probability as follows [9]:

P (r̃[0], . . . , r̃[T − 1]|S) =
Ex[0],...,x̃[T−1] [P (r̃[0], . . . , r̃[T − 1]|S, x̃[0], . . . , x̃[T − 1])] =
∫

∏

C∈{Re,Im}

∏

n,j

Φ
(
2C{r̃j[n]}C{[F−1(H[m]x[m])]j}

)
dP (x̃[n]),

(24)

where Φ(z) = 1√
2π

∫ z

−∞ e−
t2

2 dt = 1√
2π

∫∞
0 e−

(t−z)2

2 dt is

the cumulative normal distribution function. Maximizing this

conditional probability with respect to S is a difficult non-

convex problem, besides the fact that the integrals cannot be

obtained in closed form. Therefore, as done for the ideal case,

we aim first at finding an approximate solution for the ML

problem, which serves as an initialization for an iterative EM

algorithm that exploits the sparsity of the multi-path coefficient

matrix S.

A. Approximate Solution

In a manner similar to the unquantized case, we derive an

approximate solution of the maximum-likelihood problem

max
S

P (r̃[0], . . . , r̃[T − 1]|S), (25)

which can serve as initialization for a more sophisticated itera-

tive algorithm solving the non-convex problem and exploiting

the sparsity. To this end, we use the results of Appendix B to

obtain the following first order approximation of the one-bit

conditional probability:

P (r̃[0], . . . , r̃[T − 1]|S) ≈
1

4NT

(

1+
2ρ

π

∑

m

tr
(

SHFH
m(r[m]r[m]H − I)FmS

)
)

,

(26)

where r[m] = F−1{r̃[n]}. We notice the similarity to the

unquantized case (11). Again, a possible solution for the

blind estimation of S with rank K based on the first order

approximation of the log-likelihood function (26) is given by

Ŝ=argmaxSP (r[0], . . . , r[T−1]|S)≈
√

π

2Tρ
V1:K

√

[Σ1:K ]+,

(27)

where V 1:K are the K eigenvectors corresponding to the K
largest eigenvalues Σ1:K of the matrix

∑

m

FH
m(r[m]r[m]H −

I)Fm = V ΣV H.

B. Blind EM Algorithm Exploiting Sparsity

Now, we aim at deriving an iterative algorithm for broad-

band sparse channel estimation with one-bit receivers. Blind

estimation with one-bit data is in general mathematically more

challenging than the ideal case [12], [39]. Therefore, we

formulate the ML problem as an EM step similar to [12] with

the hidden quantity y[m]y[m]H. The expectation step can be

written as (c.f. (14))

max
S

L(S|S(i−1))− λ ‖S‖1,1 ≡

max
S
−
∑

m

tr

[

E
[

y[m]y[m]H|r[n],S(i−1)
]

Q−1
m

]

−
∑

m

log |Qm|−λ‖S‖1,1 ,

(28)

where Qm = ρSHFH
mFmS+I . Next, we derive an approxi-

mation for the expectation step (E-Step).

The optimal reconstruction of the unquantized covariance

matrix in (28) from the quantized data is in general mathe-

matically intractable and hence we have to resort to approx-

imations. Let Cy[n] and Cr[n] be the temporal correlation

matrices of ỹ[n] and r̃[n], respectively. By the arcsine law

[40], [41], we have the following relationship between the

quantized and the unquantized covariance matrices in the time

domain

Cr[n] =
2

π
arcsin

(

diag(Cy[0])
1
2Cy[n]diag(Cy[0])

1
2

)

,

(29)

where the arcsin function is applied element-wise and to the

real part and imaginary part separately. In other words, the

unquantized covariance matrix can be reconstructed from 1-

bit observations up to an unknown diagonal scaling

Cy[n] = diag(Cy[0])
1
2 sin

(π

2
Cr[n]

)

diag(Cy[0])
1
2 . (30)

Thus, we use the following approximation for the E-step,

which is asymptotically unbiased and consistent for a large

number of observations:

E[y[m]y[m]H|r[n],S(i−1)]

≈ 1√
T

(
T∑

m=1

diagQ(i−1)
m

)1
2

F
{

sin
(π

2
Ĉr[n]

)}
(

T∑

m=1

diagQ(i−1)
m

)1
2

= Φ̂y[m](i−1),
(31)

with Q(i−1)
m = ρS(i−1),HFH

mFmS(i−1)+I obtained from the

last step and the sampled temporal covariance matrix4

Ĉr[n] =







1√
T
F−1{r[m]r[m]H} 0 ≤ n ≤ TD

0 TD < n < T − TD

Ĉr[T − n]H T − TD ≤ n ≤ T − 1.
(32)

Now, we recalculate the gradient of the log-likelihood function

for the M-Step

− ∂L(S|S(i−1))

∂S∗ = ∆(i−1), (33)

with

∆(i−1) =− ρ
∑

m

FH
mQ−1,(i−1)

m Φ̂y[m](i−1)·

Q−1,(i−1)
m FmS(i−1) + ρFH

mQ−1,(i−1)
m FmS(i−1),

(34)

where Φ̂y[m](i−1) comes from (31). The resulting iterative

method for blind channel estimation with one-bit observations

is summarized in Algorithm 2.

VII. LOW SNR CLAIRVOYANT CRAMÉR RAO BOUND

(CRB) WITH ONE-BIT MEASUREMENTS

We derive here the clairvoyant CRB for the one-bit case.

As the conditional distribution is not available in closed form,

we provide a low SNR approximation based on (26):

4Window functions other than rectangular can be used to account for the
limited length of the impulse response and hence improve performance.
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Algorithm 2 1-Bit Blind ℓ1 Regularized Channel Estimation

1: Input: r[m] = F{r̃[n]}/
√
T , 0 ≤ m ≤ T −1 in the DFT

domain

2: Initialize: µ > 0, 0 < β < 1, l ← 0
Calculate Cr[n] from (32) and F

{
sin
(
π
2Cr[n]

)}

V ΣV H ←∑

m

FH
m(r[m]r[m]H − I)Fm

S(0) =
√

π
2Tρ

(V 1:K

√

[Σ1:K ]+)

3: repeat

4: i← i+ 1
5: Q(i−1)

m = ρS(i−1),HFH
mFmS(i−1)+I

6: E-Step: compute Φ̂y[m](i−1) from (31)

7: M-Step: Compute ∆(i−1) from (34)

8: Gradient update:

S(i) ← S(i−1) − µ∆(i−1)

9: Thresholding:

S(i)←exp(j∠(S(i)))◦max
(

abs(S(i))−µλ
21 · 1T,0

)

10: if L(S(i−1)) − λ
∥
∥
∥S

(i−1)
∥
∥
∥
1,1

> L(S(i))− λ
∥
∥
∥S

(i)
∥
∥
∥
1,1

then

11: µ← βµ, i← i− 1
12: end if

13: until desired accuracy for S is achieved

14: Back conversion: Ĥ[m] = Fm · S

[

J1−bit
]

TDN(k−1)+i,TDN(k′−1)+i′
=
∑

r̃[0,··· ,T−1]

P (r̃[0, · · · , T − 1]|S)

∂ lnP (r̃[0, · · · , T − 1]|S)
∂s∗k,i

∂ lnP (r̃[0, · · · , T − 1]|S)
∂sk′,i′

≈ 1

4NT

∑

r̃[0,··· ,T−1]

∑

m

(
2ρ

π
)2 · eTi FH

m(r[m]r[m]H − I)Fmsk·
∑

m′

sHk′F
H
m′(r[m′]r[m′]H − I)Fm′ei′

(35)

Then, we concatenate all terms along the index m
in a compact way using the block diagonal matri-

ces H̄k = diag(F 0sk, · · · ,F T−1sk) and Ēi =
diag(F 0ei, · · · ,F T−1ei), and the stacked vector r̄ =
[rH[0], · · · , rH[T − 1]]H, to obtain

[

J1−bit
]

TDN(k−1)+i,TDN(k′−1)+i′
≈

1

4NT

∑

r̄

(
2ρ

π

)2

tr(ĒT
i (r̄r̄

H − I)H̄k)tr(H̄
H
k′(r̄r̄H − I)Ēi′)

=
1

4NT

∑

r̄

(
2ρ

π

)2

tr(ĒT
i ŪŪ

H
(r̄r̄H − I)Ū Ū

H
H̄k)·

tr(H̄
H
k′ŪŪ

H
(r̄r̄H − I)ŪŪ

H
Ēi′)

=
1

4NT

∑

r̄

(
2ρ

π

)2

tr(ĒT
i Ū(Ū

H
r̄r̄HŪ − I)Ū

H
H̄k)·

tr(H̄
H
k′Ū(Ū

H
r̄r̄HŪ − I)Ū

H
Ēi′),

(36)

where Ū = UT ⊗ IN and Ū
H
r̄ ∈ {± 1√

2
± j 1√

2
}NT is the

time domain 1-bit signal. Now, we make use of the following

equality for any matrices B and D:

1

4N

∑

r∈{± 1√
2
±j 1√

2
}N

rHDr · rHBr =

tr(D · nondiag(B)) + tr(D)tr(B),

(37)

to finally obtain

[

J1−bit
]

TDN(k−1)+i,TDN(k′−1)+i′
≈

(
2ρ

π

)2

tr(Ū
H
H̄kĒ

T
i Ūnondiag(Ū

H
Ēi′H̄

H
k′Ū)).

(38)

For the special case of flat fading (Fm = F , ∀m), we

obtain

[

J1−bit
]flat channel

TDN(k−1)+i,TDN(k′−1)+i′
≈

T

(
2ρ

π

)2

tr(Fske
T
i F

Hnondiag(Fei′s
H
k′F

H))

= T

(
2ρ

π

)2 [

sHk′F
HFske

T
i F

HF ei′−

tr(Fske
T
i F

Hdiag(F ei′s
H
k′F

H))
]

.

(39)

After some matrix manipulations and defining hk = Fsk, we

have

[

J1−bit
]flat channel

TDN(k−1)+i,TDN(k′−1)+i′
≈

T

(
2ρ

π

)2
(

HHH ⊗ FHF−

(I⊗ FH)






diag(h1h
H
1 ) diag(h2h

H
1 ) · · ·

diag(h1h
H
2 ) diag(h2h

H
2 ) · · ·

...
...

. . .




 (I⊗ F )

)

.

(40)

We notice the similarity to the low SNR CRB (21) in the

ideal unquantized case to within a loss factor 4/π2 and the

subtraction of the diagonal terms as the amplitude information

cannot be used. In the same way, assuming that the support

of the sparse vectors sk is known, then the clairvoyant Fisher

information matrix is obtained as in (22).

VIII. SIMULATION RESULTS WITH IDEAL AND 1-BIT

OBSERVATIONS

As a performance measure for evaluating the presented

algorithms, we use the correlation coefficient between the
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estimated and exact channel vector, given by

ηk =

max
−TD≤dk≤TD

∣
∣
∣
∣

∑

m

hk[m]Hĥk[m]e−j2π
dk
T m

∣
∣
∣
∣

√
∑

m

‖hk[m]‖22
∑

m

∥
∥
∥ĥk[m]

∥
∥
∥

2

2

(41)

≤

∑

m

|hk[m]Hĥk[m]|
√
∑

m

‖hk[m]‖22
∑

m

∥
∥
∥ĥk[m]

∥
∥
∥

2

2

=

∑

m

|hk[m]H(hk[m] + ek[m])|
√
∑

m

‖hk[m]‖22
∑

m

‖hk[m] + ek[m]‖22

=
|hk[m]H(hk[m] + ek[m])|
‖hk[m]‖2 ‖ek[m]‖2

·
√

‖hk[m]‖2 ‖ek[m]‖2
‖hk[m] + ek[m]‖22

·

·
√

‖ek[m]‖2
‖hk[m]‖2

, (42)

where ek denotes the channel estimation error. As a theoretical

performance benchmark, we obtain the following expression

based on the Fisher information matrix in (20) and (22) or

(39) for the one-bit case:

ηCRB,k ≈

∑

m

‖hk[m]‖2
√
∑

m

‖hk[m]‖22 +
∑

m

‖ek[m]‖22

≈ 1
√
√
√
√1 +

∑

m
tr
[

FmΠkJ̃
−1

Π
H
k FH

m

]

∑

m
‖hk[m]‖22

,
(43)

with the selection matrix for the corresponding user and its

active coefficients

[Πk]i,j =







1 if sk,i 6= 0 ∧
j − i =

k−1∑

k′=1

Lk′ − |{i′ < i|sk,i′ = 0}|
0 otherwise,

(44)

where we neglect in (43) the correlation factor between the

estimation error ek[m] and the channel vector hk[m] for the

unbiased estimator in the large system limit, i.e.,

lim
N→∞

|hk[m]Hek[m]|
‖ek[m]‖2 ‖hk[m]‖2

−→ 0. (45)

Further, we approximate the squared norm of e by the Cramér

Rao Bound due to the law of large numbers.

A. Narrowband Channel

In the first simulation scenario, we assume a frequency flat

scenario, i.e., B ≪ fc and TD = 0, and we use K = 2 users,

a uniform linear array of size N = 32 with half-wavelength

element spacing, Lk = 3 multi-path components per user

and a coherence length of T = 1000. The empirical com-

plementary cumulative distribution of the correlation factor

among all users and 100 channel realizations obtained by the

proposed sparsity-based blind estimation, the subspace-based

blind estimation (without any sparsity assumption) and the

state-of-the-art pilot-based method are shown in Fig. 1. The

ℓ1 regularization parameter is fixed at λ = 4. We note that the

generated angles of arrival do not necessarily fall on the DFT

grid, which means that the sparsity in the discretized angular

domain does not perfectly hold. For the pilot-based methods,

we use K = 2 orthogonal pilot sequences XT ∈ CN×TT of

length TT = 10, and, when the sparsity is taken into account,

the estimation is formulated as the popular regularized least

squares problem for sparse reconstruction

min
S
‖FSXT − Y T‖22 + λ‖S‖1,1 , (46)

where Y T is the received data during the pilot phase.

We first notice in Fig. 1 the inferior performance of the

conventional pilot-only based least squares channel estimation,

even, surprisingly, if it takes sparsity into account. In fact, the

blind methods clearly outperform pilot-only based methods,

due to the low SNR per antenna (ρ = −12dB). Moreover,

taking into account the sparsity of the propagation channel

improves the blind estimation performance significantly and

enables the algorithm to approach the clairvoyant Cramér

Rao Bound. Concerning the non-uniqueness of the solution

with respect to user permutations as described in (17), in this

simulation we chose for both blind methods the permutation

maximizing η1 + η2.

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

Pilot−based least square estimation
Pilot and sparsity−based
Blind, no sparsity assumption
Blind, sparsity−based (proposed)
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Fig. 1. Narrowband channel estimation performance for ρ = −12dB, N =
32, K = 2, L = 3, T = 1000, TT = 10.

Furthermore, we compare the proposed approach with the

semi-blind algorithm presented in [25], where TT symbols,

denoted by XT, out of the T sized block are dedicated for

training. In this approach sparsity is not taken into account

and the maximum likelihood optimization is formulated as

(c.f. (14))

max
H

L(H)− ‖HXT − Y T‖22 =

−tr
(

Y H
D

(

ρHHH+I
)−1

Y D

)

−(T − TT) log
∣
∣
∣ρHHH+I

∣
∣
∣

− ‖HXT − Y T‖22 ,
(47)
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where Y T and Y D represent the received signals corre-

sponding to the known training block (commonly orthogonal

sequences) and the unknown data block, respectively. For

the simulation scenario, we take K = 2 orthogonal pilot

sequences of length TT = 10 and solve the optimization

problem using the gradient based method. Fig. 1 shows that

the proposed pure blind approach only exploiting the sparsity

still outperforms the semi-blind approach [25] using a pilot of

length TT = 10. This confirms the usefulness of the presented

blind method in terms of reducing the training overhead.

In Fig. 2, we double the system size to N = 64 antennas

and K = 4 users. The performance improvement of the

proposed approach compared to the pure subspace method

is even higher in this case. It is also expected that further

performance advantages will be observed with higher numbers

of users and larger antenna arrays.
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Fig. 2. Narrowband channel estimation performance for ρ = −12dB, N =
64, K = 4, L = 3, T = 1000.

In Fig. 3 we evaluate the performance for the same scenario

as the first with N = 32 and K = 2 while using one-bit

quantizers and we observe that the performance is very close

to the unquantized case, which confirms the advantage of using

low resolution in the context of massive MIMO. In addition,

the performance achieved using QPSK and Gaussian inputs is

very similar, mainly due to the robustness of the Gaussian

assumption used in the derivation of the algorithm, which

maximizes the entropy given the variance.

B. Wideband Channel

In the simulation that follows, we consider a wideband

signal with bandwidth B = 7GHz and carrier frequency

fc = 60.5GHz, corresponding to the unlicensed band at 57-

64GHz. As in the previous setting, we use K = 2 users, a

uniform linear array of size N = 32 with half-wavelength

element spacing, Lk = 3 multi-path components, and a

coherence length of T = 128. The scattering parameters

sℓ,k are chosen as independent circular-symmetric complex

Gaussian random variables distributed as sℓ,k ∼ CN (0, 1).
The path delays tℓ,k are selected from a uniform distribution in
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Fig. 3. Estimation performance for ρ = −12dB, N = 32, K = 2, L = 3,
T = 1000, λ = 4 for the unquantized, and λ = 8 for the one-bit case.

the interval [0, TD], for TD = 5 symbol periods. The physical

DoAs ϕℓ,k for the antenna arrays are drawn from a uniform

distribution in [0, 2π]. Finally, the cumulative distribution of

the correlation factor ηk as defined in (41) is obtained in

Fig. 4 by simulating 100 independent channel realizations for

ρ ∈ {3, 9, 12}dB.
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Fig. 4. Wideband channel estimation performance for ρ ∈ {3, 9, 12}dB,
N = 32, K = 2, L = 3, T = 128, TD = 5.

Next, in Fig. 5 we use the same wideband channels as

in the previous case to determine the performance obtained

by applying Algorithm 2 to one-bit quantized observations.

We note that the regularization parameter λ is chosen to

be higher for the one-bit case in order to account for the

additional quantization effects. The obtained results are still

encouraging for the one-bit case showing the potential of this

simple solution for mmWave massive MIMO implementations.
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Fig. 5. Wideband channel estimation performance with one-bit observations
for ρ = 9dB, N = 32, K = 2, L = 3, T = 128, TD = 5.

IX. CONCLUSION

This work has considered the CRB and maximum likelihood

approaches for blind massive MIMO channel estimation with

ideal and one-bit receivers. An essential aspect of the assumed

system model is that the array response is frequency dependent

in the wideband regime due to the time shift across the

antennas. Based on the sparsity in the angular frequency

domain, a non-convex ℓ1 regularized optimization problem is

formulated and solved iteratively with appropriately chosen

initialization. The method significantly improves the spectral

efficiency by dramatically reducing the overhead caused by

pilot sequences and only exploits the sparsity property, and it

is therefore robust to any type of statistical properties of the

data and channels. Simulations demonstrate that this maximum

likelihood approach can achieve a dramatic improvement in

performance at low SNR. In fact, it allows blind separation

of non-orthogonal channels just by taking advantage of the

sparsity assumption. Finally, reliable channel estimation is

shown to be still possible with simple one-bit receivers.

APPENDIX A

First consider the subdifferentials of the ℓ1,1-norm ‖S‖1,1
with respect to any element si,j using Wirtinger’s calculus:

∂|z|
∂z

=
∂
√
z · z∗
∂z

=
z∗

2
√
z · z∗

=
1

2
e−j∠(z). (48)

Therefore, we get the subdifferentials

∂si,j ‖S‖1,1 ∈
{

1
2e

−j∠(si,j) for si,j 6= 0,
{ 12e−jφ|∀φ} for si,j = 0.

(49)

Then, the KKT conditions of the optimization problem (14)

can be written as

− ∂si,jL(S) ∈
{
−λ

2 e
−j∠(si,j) for si,j 6= 0,

{λ2 e−jφ|∀φ} for si,j = 0.
(50)

Considering now the following fixed point equation

S =

exp(j∠(S − µ∆)) ◦max

(

abs(S − µ∆)− µ
λ

2
1 · 1T,0

)

,

(51)

with ∆∗ = −∇SL(S) and µ > 0, any of its solutions is also

a solution of the KKT conditions (50). Solving (51) using

the fixed point iteration (15) with µ small enough converges

provided that the gradient ∆ is bounded and yields a local

optimum for the optimization problem (14).

APPENDIX B

For ease of illustration, we consider for simplicity the fre-

quency flat case with y = Hx+η and r = 1√
2
sign(Re{y})+

j√
2
sign(Im{y}). The frequency selective case can be tackled

in a very similar way by constructing the circulant convolution

matrix based on the channel associated with the channel

impulse response H̃ [n] and adopting again a matrix-vector

notation. We first rewrite the conditional probability of the

one-bit output r in (24) using the conditional probability of

the unquantized output y in (9)

P (r|H) = P (Re{r ◦ y} ≥ 0 ∧ Im{r ◦ y} ≥ 0|H)

=

∫ ∞

0

· · ·
∫ ∞

0

p(
√
2r ◦ y|H)dy

=

∫ ∞

0

· · ·
∫ ∞

0

exp(−2(r ◦ y)H(IN + ρHHH)−1(r ◦ y))
πN

∣
∣
∣IN + ρHHH

∣
∣
∣

dy,

(52)

where the integration is performed over the positive orthant

of the complex hyperplane and y ◦ r denotes a dimension-

wise vector product with Re/Im{[y ◦ r]i} = Re/Im{yi} ·
Re/Im{ri}. Next, we compute the first order Taylor expansion

of P (r|y) around ρ = 0

P (r|H) ≈ P (r|H)ρ=0 + ρP ′(r|H)ρ=0, (53)

where P ′(y|x)ρ=0 is the first derivative of P (r|H) with

respect to ρ. Clearly we have P (r|H)ρ=0 = 1/4N due to

the i.i.d. noise. In order to calculate the first derivative, we

use the first order approximation of the Gaussian conditional

probability density5

p(
√
2r ◦ y|H) ≈ exp(−‖y‖2)

πN

(

1− ρtr(HHH)

+2ρtr{(r ◦ y)(r ◦ y)HHHH}
)

.
(54)

Afterwards, we can show that
∫ ∞

0

· · ·
∫ ∞

0

2
e−‖y‖2

πN
(ri ◦ yi)(rj ◦ yj)∗dy =

{
1
4N for i = j

2
rir

∗
j

π4N
else.

(55)

Thus,
∫ ∞

0

· · ·
∫ ∞

0

e−‖z‖2

πN
tr((r ◦ y)(r ◦ y)HHHH)dy =

1

4N
tr

(

(IN +
2

π
nondiag(rrH))HHH

)

.

(56)

5The following identities are useful: ∂
∂ρ

detQ = detQ · tr(Q−1 ∂Q
∂ρ

) and

∂Q−1

∂ρ
= −Q−1 ∂Q

∂ρ
Q−1.
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Combining (56), (54) and (52), we get finally

P ′(r|H)ρ=0 =
1

4N
2

π
tr
(

HH ·
(
rrH − diag(rrH)

)
·H
)

.

(57)

In conclusion, the first order approximation of P (r|H) is

P (r|H) ≈ 1

4N

(

1 + ρ
2

π
tr
(

HH ·
(
rrH − I)

)
·H
))

.

(58)

This completes the proof for (26). We notice also that since

tr(diag(B)D) = tr(Bdiag(D)) for any two matrices D and

B, we can express the approximation (58) also in a different

way

P (r|H) ≈ 1

4N

(

1 + ρ
2

π
rH · nondiag(HHH) · r

)

. (59)
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