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Blind extraction of dominant target sources
using ICA and time-frequency masking
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Abstract— This paper presents a method for enhancing target
sources of interest and suppressing other interference sources.
The target sources are assumed to be close to sensors, to have
dominant powers at these sensors, and to have non-Gaussianity.
The enhancement is performed blindly, i.e. without knowing the
position and active time of each source. We consider a general
case where the total number of sources is larger than the number
of sensors, and neither the number of target sources nor the
total number of sources is known. The method is based on a
two-stage process where independent component analysis (ICA)
is first employed in each frequency bin and then time-frequency
masking is used to improve the performance further. We propose
a new sophisticated method for deciding the number of target
sources and then selecting their frequency components. We also
propose a new criterion for specifying time-frequency masks.
Experimental results for simulated cocktail party situations in
a room, whose reverberation time was 130 ms, are presented
to show the effectiveness and characteristics of the proposed
method.

Index Terms— Blind source separation, blind source extraction,
independent component analysis, convolutive mixture, frequency
domain, permutation problem, time-frequency masking

I. INTRODUCTION

The technique for estimating individual source components
from their mixtures at sensors is known as blind source
separation (BSS) [1]–[4]. With some applications such as brain
imaging or wireless communications, it makes sense to extract
as many source components as possible, because many sources
are equally important. However, with audio applications such
as speech enhancement, the sources do not necessarily have
equal significance. We often want to extract only a few sources
that are close to sensors, have dominant powers, and/or have
interesting features.

This paper presents a method for extracting source signals
of interest and suppressing other interference sources blindly.
Let us formulate the task. Suppose that a few target sources
s1, . . . , sQ and other background sources sQ+1, . . . , sN are
convolutively mixed and observed at M ≥ 2 sensors

xj(t) =
N∑

k=1

xjk(t), j=1, . . . , M, (1)

where
xjk(t) =

∑
l

hjk(l) sk(t− l) (2)
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Fig. 1. Signal notations

is the component of sk measured at sensor j. The impulse
response from source k to sensor j is denoted as hjk(l). The
goal is to have output signals yi(t), i = 1, . . . , Q that are close
to the components

xJi(t) =
∑

l

hJi(l) si(t− l), i = 1, . . . , Q, (3)

of target sources measured at a selected sensor J . The task
should be performed only with the M mixtures x1, . . . , xM .
The number of target sources Q and the total number of
sources N are unknown. The number Q is assumed to be
no more than the number of sensors M , and N may be larger
than M . Figure 1 shows the signal notations.

The first problem is how to extract target sources s1, . . . , sQ

blindly. Even if the total number of sources N could be larger
than M , independent component analysis (ICA) [1]–[4] with
an N =M assumption produces M components that maximize
an ICA criterion such as non-Gaussianity. We assume that
the target sources are non-Gaussian, close to sensors, and
dominant in the mixtures. Therefore, we expect that some
of the M components produced by ICA correspond to target
sources s1, . . . , sQ whose ICA criteria are high.

We employ ICA in the time-frequency domain [5]–[11].
The reason is that it is efficient [11] and also fits time-
frequency masking, which is discussed below. An additional
operation that should be performed is the selection of each
target component in every frequency bin. This is considered
to be the permutation problem of frequency-domain BSS [12].
It has been reported that the selection of a component with
maximum kurtosis works well when the target is speech and
the interferences are babble sources [13]. However, this does
not always work well for a case where the interferences are
also speech.

In order to solve the permutation problem for mixtures with
many speeches, we exploit the information of basis vectors
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(10) produced by ICA. Our previously reported methods esti-
mate the directions [12], [14] and/or the distances [14] of the
sources from the basis vectors, and then cluster the estimated
directions and/or distances to solve the permutation problem.
However, the system needs to know the locations of sensors
to estimate such geometric information about the sources. In
Sec. IV, we propose a new method for solving the permutation
problem by clustering the basis vectors themselves after some
normalization. With this approach, we do not need to know
the sensor locations, simply the maximum distance between a
sensor and any other sensor. This relaxation makes it easy to
use a non-uniform arrangement of sensors, and also eliminates
the need for sensor calibration.

The next issue is that some interference still remains in the
extracted frequency components when N > M . Post filtering
[13], [15] can be used to reduce such residual interference.
However, it needs additional adaptation where the step size
should be controlled based on the short-term power of the
target. Another approach is time-frequency masking [16]–[22],
which is efficient for sources with sparseness in the time-
frequency domain, such as speech. Time-frequency masking
has been well studied in the research area of computational
auditory scene analysis [22]–[26]. The performance of time-
frequency masking depends on how well we can specify
the time-frequency slots where the target source is active. A
simple way to specify such slots is to calculate the phase
and/or amplitude difference between the observations of dif-
ferent sensors [16]–[18]. Another recently proposed approach
involves calculating the power ratio between an input and
outputs of a spatial filter (beamformer [20], [21] or ICA [21]).
However, such a power-based criterion depends on the scaling
ambiguity of ICA or beamformer outputs. In Sec. V, we
propose a new criterion for specifying masks. It is based on
the cosine distance between a sample vector and the basis
vector corresponding to a target. The distance is calculated
in a spatially whitened space where the target basis vector is
expected to be almost orthogonal to those of interferences.
Therefore, the new criterion does not suffer from the problem
of scaling ambiguity.

This paper is organized as follows. The next section pro-
vides an overview of our proposed method. Section III dis-
cusses how ICA can be applied to our situation and what
should be done for the ICA results. Section IV describes
how basis vector clustering works to solve the permutation
problem and to decide the number of target sources to be
extracted. Section V discusses how to specify time-frequency
masks. Section VI presents experimental results, and Sec. VII

concludes this paper.

II. OVERVIEW OF PROPOSED METHOD

Figure 2 shows the flow of the proposed method. First, time-
domain observed signals xj(t) sampled at frequency fs are
converted into frequency-domain time-series signals x j(f, τ)
with an L-point short-time Fourier transform (STFT):

xj(f, τ)←
L/2−1∑

r=−L/2

xj(τ + r)win(r) e−j2πfr, (4)

where f ∈ {0, 1
Lfs, . . . , L−1

L fs} is a frequency, win(r) is a
window that tapers smoothly to zero at each end, such as
a Hanning window 1

2 (1 + cos 2πr
L ), and τ is a new index

representing time.
The following operations are performed in the frequency

domain. There are two advantages to this. First, the convolutive
mixtures (1) can be approximated as instantaneous mixtures
at each frequency:

xj(f, τ) ≈
N∑

k=1

hjk(f)sk(f, τ), (5)

where hjk(f) is the frequency response from source k to
sensor j, and sk(f, τ) is a frequency-domain time-series signal
of sk(t) obtained by the same operation as (4). The frequency-
domain counterpart of (3) is

xJi(f, τ) ≈ hJi(f)si(f, τ), i = 1, . . . , Q, (6)

where J should be the same for all frequency bins f . The
second advantage is that the sparseness of a source signal
becomes prominent in the time-frequency domain if the source
is colored and non-stationary such as speech. The possibility
of sk(f, τ) being close to zero is much higher than that of
sk(t).

Then, we apply ICA (Sec. III) to the STFT results

x(f, τ) = [x1(f, τ), . . . , xM (f, τ)]T , (7)

which we call a sample vector, and obtain basis vectors
a1(f), . . . ,aM (f) defined by (10) and independent compo-
nents

y(f, τ) = [y1(f, τ), . . . , yM (f, τ)]T . (8)

Some of these independent components correspond to the
components of dominant sources. However, the correspon-
dence is not clear at this stage because of the permutation
ambiguity of ICA. Thus, basis vector clustering (Sec. IV)
is performed to decide the number Q of target sources and
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produce basis vectors a1(f), . . . ,aQ(f) and independent com-
ponents y1(f, τ), . . . , yQ(f, τ), whose correspondences to the
target sources are specified.

If the number of total sources N is larger than the number
of sensors M , independent components y1(f, τ), . . . , yQ(f, τ)
produced by ICA have some residuals caused by the limi-
tation of spatial filtering. Time-frequency masking (Sec. V)
is used to reduce such residuals and to obtain outputs
ỹ1(f, τ), . . . , ỹQ(f, τ), which should be close to (6) in each
frequency bin. At the end of the flow, time-domain output
signals yi(t) are obtained by an inverse STFT (ISTFT) :

yi(τ + r)← 1
L·win(r)

∑
f∈{0, 1

L fs, ..., L−1
L fs}

ỹi(f, τ) ej 2πfr

for i = 1, . . . , Q.

III. INDEPENDENT COMPONENT ANALYSIS (ICA)

To extract the components of dominant sources, we apply
ICA to sample vectors x(f, τ). Even though the total number
of sources N may be larger than the number of sensors M ,
we employ ICA by assuming that the number of independent
components is equal to M :

y(f, τ) = W(f)x(f, τ), (9)

where W = [w1, . . . ,wM ]H is an M ×M separation matrix.
In the experiments shown in Sec. VI, we calculated W by
using a complex-valued version of FastICA [3], [27], and
improved it further by using InfoMax [28] combined with the
natural gradient [29] whose nonlinear function is based on the
polar coordinate [30].

Then, we calculate the inverse of W to obtain basis vectors

[a1, · · · ,aM ] = W−1, ai = [a1i, . . . , aMi]T . (10)

It is not difficult to make W invertible by using an appro-
priate ICA procedure, such as whitening followed by unitary
transformation (e.g. FastICA [3]). By multiplying both sides
of (9) by W−1, the sample vector x(f, τ) is represented by a
linear combination of basis vectors a1, . . . ,aM :

x(f, τ) =
M∑
i=1

ai(f)yi(f, τ). (11)

By comparing (11) and the vector notation of the mixing
model (5) :

x(f, τ) ≈
N∑

k=1

hk(f)sk(f, τ), (12)

where hk = [h1k, . . . , hMk]T , we observe the following fact.
Since s1, . . . , sQ are assumed to be dominant non-Gaussian
sources, it is strongly expected that some of y1, . . . , yM corre-
spond to s1, . . . , sQ and thus some of a1, . . . ,aM correspond
to h1, . . . ,hQ. The correspondence between aiyi and hksk as
well as the number Q of target sources are unknown at this
time, because of the permutation ambiguity of ICA. They will
be specified by basis vector clustering as described in Sec. IV.
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Fig. 3. ICA example for real instantaneous mixtures (N =3, M =2, Q=1)

Once the correspondence between basis vectors and target
sources are identified, i.e. the permutation problem is solved,
we solve the scaling ambiguity in (11) :

ai(f)yi(f, τ) = (αiai(f)) (yi(f, τ)/αi), (13)

for any non-zero complex scalar α i. This is easily solved by

yi(f, τ)← aJi(f)yi(f, τ), (14)

where J is the index of the sensor specified in (6). The reason
is as follows. The goal in each frequency bin is to make
yi(f, τ) as close to xJi(f, τ) defined in (6) as possible. And
we can derive relations

xJi(f, τ) ≈ hJi(f)si(f, τ) ≈ aJi(f)yi(f, τ) (15)

from (6), the hi term in (12) and the ai term in (11).
Here, we have a simple example to see how well standard

ICA works for such a case where the number of total sources
N is larger than the number of sensors M but the number
of dominant sources Q is no more than M . Figure 3 shows
some plots for real instantaneous mixtures. The left hand plot
shows the mixtures. The square shows the mixing vector of the
dominant target source and the two triangles show those of the
other less dominant sources. The center plot shows whitened
mixtures, where separation is not achieved. The right hand
plot shows the ICA result, where the mixing vector of the
dominant target source is identified.

IV. BASIS VECTOR CLUSTERING

The purpose of basis vector clustering is to solve the
permutation problem and also to decide the number Q of
dominant target sources. As shown in [12], integrating the
basis vector ai(f) and signal envelope |yi(f, τ)| information
solves the permutation problem robustly and precisely, and
we also employ this approach in the experiments shown in
Sec. VI. In the rest of this section, we discuss a new method
for exploiting the basis vector information.

A. Frequency normalization

The new method involves normalizing all basis vec-
tors ai(f), i = 1, . . . , M , for all frequency bins f =
0, 1

Lfs, . . . , L−1
L fs such that they form clusters, each of

which corresponds to an individual source. The normalization
is performed by selecting a reference sensor J and calculating

āji(f)← |aji(f)| exp

⎛
⎝j

arg
(

aji(f)
aJi(f)

)
4fc−1dmax

⎞
⎠ (16)
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where c is the propagation velocity and dmax is the maximum
distance between the reference sensor J and any sensor ∀j ∈
{1, . . . , M}. Then, we apply unit-norm normalization

āi(f)← āi(f)
||āi(f)|| (17)

for āi(f) = [ā1i(f), . . . , āMi(f)]T .
Here we explain why normalized basis vectors āi(f) form a

cluster for a source. Let us approximate the multi-path mixing
model used in (1) and (5) by using a direct-path (nearfield)
model (Fig. 4)

hjk(f) ≈ q(f)
djk

exp
[−j 2πfc−1(djk − dJk)

]
, (18)

where djk > 0 is the distance between source k and sensor j.
We assume that the phase −2πfc−1(djk−dJk) depends on the
distance normalized with the distance to the reference sensor
J . This assumption makes the phase zero at the reference
sensor J . We also assume that the attenuation q(f)/djk de-
pends on both the distance and a frequency-dependent constant
q(f) > 0.

By considering the permutation and scaling ambiguity of
ICA, a basis vector and its elements are represented as

ai ≈ αihk, aji ≈ αihjk, (19)

where αi is a non-zero complex scalar representing the scaling
ambiguity, and index k, which may be different from index
i, represents the permutation ambiguity. Substituting (18) and
(19) into (16) and (17) yields

āji(f) ≈ 1
djkD

exp
[
−j

π

2
(djk − dJk)

dmax

]
, D =

√√√√ M∑
j=1

1
djk

2 ,

which is independent of frequency, and dependent only on the
positions of the sources and sensors. Therefore, normalized
basis vectors āi(f) form a cluster for a source that is placed
at a specific position.

Let us discuss the intention of using 4fc−1dmax for the
denominator of (16). From the fact that maxj,k |djk − dJk| ≤
dmax, an inequality

−π/2 ≤ arg[āji(f)] ≤ π/2 (20)

holds. This property is important for the distance measure
(22), which will be used for the clustering algorithm. In the
range specified by (20), the distance between two elements
|ā− ā′| increases monotonically as the difference between two
arguments | arg(ā) − arg(ā′)| increases. If argument arg(ā)

falls out of the range (20), the distance |ā− ā ′| would decrease
as the difference | arg(ā) − arg(ā′)| increases, which would
adversely affect the distance measure (22).

B. Clustering basis vectors and solving permutation ambiguity

After normalizing all basis vectors ai(f), i=1, . . . , M and
f =0, 1

Lfs, . . . ,
L−1

L fs, we perform a clustering algorithm to
find clusters C1, . . . , CM formed by normalized vectors āi(f).
The centroid ck of a cluster Ck is calculated by

ck ←
∑
ā∈Ck

ā
|Ck| , ck ← ck

||ck|| , (21)

where |Ck| is the number of vectors in Ck. The clustering
criterion is to minimize the total sum J of the squared
distances between cluster members and their centroid

J =
M∑

k=1

Jk, Jk =
∑
ā∈Ck

||ā− ck||2. (22)

This minimization can be performed efficiently with the k-
means clustering algorithm [31]. Some examples of clustering
results are shown in Figs. 10 and 11.

Once we have found M clusters C1, . . . , CM , we need to
identify clusters that correspond to dominant target sources
s1, . . . , sQ. We decide that a cluster Ck with a small variance
Jk/|Ck| belongs to the set of target sources. The rationale
behind this criterion is that the mixing model (18) is more
valid for s1, . . . , sQ than for the other sources. For target
sources k = 1, . . . , Q, the direct-path components of impulse
responses hjk are distinct since sk is assumed to be close to
the sensors.

To identify target source clusters, we sort the clusters
c1, . . . , cM so that their variances are sorted in ascending
order:

J1

|C1| ≤ . . . ≤ JQ

|CQ| ≤ thvar ≤ . . . ≤ JM

|CM | , (23)

where thvar is a predefined threshold for specifying the set
of target sources. Then, to align the permutation ambiguity of
ICA, we renumber the indexes of the basis vectors by

ak(f)← aΠf (k)(f), (24)

where Πf : {1, . . . , Q} → {1, . . . , M} is a one-to-one
mapping decided for each frequency f by

Πf = argminΠ

Q∑
k=1

||āΠ(k)(f)− ck||2. (25)

We also renumber independent components y1(f, τ), . . . ,
yM (f, τ) accordingly.

V. TIME-FREQUENCY MASKING

A. Motivation

Let us discuss the motivation for using time-frequency
masking. Suppose that the permutation ambiguities of ICA
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Fig. 5. Angle θ1 calculated in whitened space

Fig. 6. Masking functions (30) with three sets of parameters (θT , g)

solutions are solved at this stage. Then, the extraction of a
dominant source si by ICA (9) is represented by

yi(τ) = wH
i x(τ) (26)

= wH
i hisi(τ) +

∑
k �=i

wH
i hksk(τ). (27)

If N ≤ M , wi satisfies wH
i hk = 0, ∀k �= i and makes

the second term zero. However, we assume that the total
number N of sources is generally larger than M . In this case,
there exists a set K ⊆ {1, . . . , i−1, i+1, . . . , N} such that
wH

i hk �= 0, ∀k ∈ K. Thus, yi(τ) contains unwanted residuals∑
k∈K wH

i hksk(τ). The purpose of time-frequency masking
is to obtain another version of output ỹ i(τ) that contains less
power of the residuals

∑
k∈K wH

i hksk(τ) than yi(τ).

B. Proposed procedure

Time-frequency masking is performed by

ỹi(f, τ) =Mi(f, τ) yi(f, τ), i = 1, . . . , Q (28)

where 0 ≤ Mi(f, τ) ≤ 1 is a mask specified for each
time-frequency slot (f, τ). We specify masks based on the
angle θi(f, τ) between ai(f) and x(f, τ) calculated in the
space transformed by a whitening matrix V(f) = R−1/2,
R = 〈x(τ)x(τ)H 〉τ . Let z(f, τ) = V(f)x(f, τ) be whitened
samples and bi(f) = V(f)ai(f) be the basis vector in the
whitened space. The angle is calculated by

θi(f, τ) = arccos
|bH

i (f) z(f, τ)|
||bi(f)|| · ||z(f, τ)|| (29)

for each time-frequency slot (Fig. 5). Then, we calculate a
mask by using a logistic function [26] (Fig. 6)

Mi(θi(f, τ)) =
1

1 + eg(θi−θT )
, (30)

where θT and g are parameters specifying the transition point
and its steepness, respectively. As θT becomes smaller, the
residual power that appears in ỹi decreases but the musical
noise in yi increases.

The effectiveness of the above operation depends on the
sparseness of sources. If we assume that the possibility of
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sk(f, τ) being close to zero is very high, (12) can be approx-
imated as

x(f, τ) ≈ hk(f)sk(f, τ), k ∈ {1, . . . , N}, (31)

where k depends on each time-frequency slot (f, τ). Let
us consider the whitened-space counterpart of (31), while
distinguishing between cases where si is the only active source
(32) and other cases (33):

z(f, τ) ≈ V(f)hi(f)si(f, τ) ≈ V(f)ai(f)yi(f, τ) (32)

z(f, τ) ≈
∑
k �=i

V(f)hk(f)sk(f, τ). (33)

If the number of sources N is equal to or less than the number
of sensors M , vectors Vh1, . . . ,VhN in the whitened space
are orthogonal to each other. Even if N > M , the vector
bi = Vai of a dominant source si, which points in almost the
same direction as Vhi, tends to have large angles with the
other vectors Vh1, . . . ,Vhi−1,Vhi+1, . . . ,VhN . Figure 5
(and also Fig. 3) shows such a case. Therefore, calculating
the angle (29) provides information about whether or not s i

is the only active source at a time-frequency slot (f, τ), and
specifies the corresponding mask Mi(f, τ) accordingly.

VI. EXPERIMENTS

A. Experimental conditions and evaluation measures

We performed experiments to enhance dominant speeches
that were close to microphones. We measured impulse re-
sponses hjk(l) under the conditions shown in Fig. 7. The
speaker positions simulated a cocktail party situation. Mixtures
at the microphones were made by convolving the impulse
responses and 6-second English and Japanese speeches sam-
pled at 8 kHz. We used four microphones (M = 4), whose
arrangement was 3-dimensional and non-uniform. The system
knew only the maximum distance (4 cm) between the ref-
erence microphone (Mic. 1) and the others. For each setup,



6

TABLE I

AVERAGE SIR IMPROVEMENT FOR SINGLE-TARGET CASES (dB)

Target position a120 b120 c120 c170

InputSIRi 1.3 1.5 1.9 −0.0

Only ICA 11.7 11.8 9.0 13.0

ICA and T-F masking (0.375π, 40) 15.4 14.6 12.5 16.9

ICA and T-F masking (0.333π, 20) 16.8 15.8 14.1 18.3

ICA and T-F masking (0.25π, 20) 19.5 18.2 16.9 21.0

we selected some of the four speakers (a120, b120, c120,
c170) as dominant target sources, and the others were kept
silent. The six speakers away from the microphones were used
to provide interference sources for every setup. The frame size
L of STFT (4) was 1024 (128 ms). We used th var = 0.015
to specify the set of target sources by (23).

The performance was evaluated in terms of the signal-
to-interference ratio (SIR) improvement for each output i.
The improvement was calculated by OutputSIRi− InputSIRi.
These two types of SIRs are defined by

InputSIRi = 10 log10

〈|xJi(t)|2〉t
〈|∑k �=i xJk(t)|2〉t (dB),

OutputSIRi = 10 log10

〈|yii(t)|2〉t
〈|∑k �=i yik(t)|2〉t (dB),

where xJi(t) is defined in (3) and yik(t) is the component of
sk that appears at output yi(t): yi(t) =

∑N
k=1 yik(t).

The performance was also evaluated by signal-to-distortion
ratio (SDR) to allow us to observe the unwanted effects
of time-frequency masking, such as musical noises. SDR is
defined by

SDRi = 10 log10

〈|αi xJi(t−Di)|2〉t
〈|yii(t)− αi xJi(t−Di)|2〉t (dB),

where Di and αi are scalars for aligning delay and amplitude.
They are specified so that the power of the denominator
〈|yii(t)− αixJi(t−Di)|2〉t is minimized.

B. Single-target cases

First we show the results for single-target cases (Q = 1).
Experiments were conducted with 16 combinations of 7
speeches (1 target + 6 background interferences) for each
target position. The computational time was around 12 seconds
for 6-second speech mixtures. The program was coded in
Matlab and run on Athlon 64 FX-53 (2.4 GHz CPU clock).

Table I shows the average SIR improvements obtained only
with ICA, and by the combination of ICA and time-frequency
(T-F) masking. The SIR improvements clearly depend on the
position of the target source. Positions a120 and b120 were
fairly good for enhancement. This is because the interferences
came from different directions. If we consider the speaker
arrangement 2-dimensionally, positions c120 and c170 seems
to be a hard position as many interferences came from similar
directions. However, the result for position c170 was very
good. This is because the height of c170 was different from
those of interferences, and the 3-dimensionally arranged mi-
crophones enable the system to exploit this height difference.

TABLE II

AVERAGE SDR FOR SINGLE-TARGET CASES (dB)

Target position a120 b120 c120 c170

Only ICA 9.3 10.1 10.7 10.8

ICA and T-F masking (0.375π, 40) 8.1 8.9 9.3 9.4

ICA and T-F masking (0.333π, 20) 7.4 8.1 8.3 8.5

ICA and T-F masking (0.25π, 20) 5.4 5.9 5.8 6.2

We used three sets of parameters for function (30) specify-
ing a mask for each time-frequency slot. The shapes of these
functions are shown in Fig. 6. Table I shows that a smaller
θT resulted in greater SIR improvements by T-F masking.
However, some sounds with a small θT were unnatural. Table
II shows that a smaller θT provided worse SDRs. Therefore,
there is clearly a trade-off between SIR improvement and
SDR. We observed by informal listening tests that in many
cases parameter (θT , g) = (0.333π, 20) produced natural
sounds with sufficient interference suppression. Some sound
examples can be found on our web site [32].

Figure 8 shows example spectrograms. We can see that the
target speech was enhanced to a certain degree only with ICA.
With the combination of ICA and T-F masking, some residuals
were eliminated and the harmonic structure appeared more
clearly in the spectrogram (e.g. at time frames from 80 to 90).
Moreover the active and inactive time of the target speech
became clearer with T-F masking.

Figure 9 shows examples of envelopes and masks at 969 Hz.
Although the ICA output was close to the target component
at many time frames, some interference components were
contained in the ICA output at some time frames (e.g. from
15 to 20). This shows the limitation of ICA as a spatial filter,
namely that the number of interferences that can be eliminated
is less than the number of sensors. The lower plot shows masks
specified for each time frame. These masks show the activity
of the target source at this frequency. By using these masks,
the system eliminated the interference components at the time
frames from 15 to 20, and improved the SIR at the output.

Figure 10 shows an example clustering result for normalized
basis vectors. Of the M = 4 clusters, there was only one (the
leftmost one) that had a smaller variance than th var = 0.015
in this case. From this fact, the system decided that there was
one dominant target source. This clustering results were also
used to solve the permutation ambiguity of ICA based on (25).

C. Multi-target cases

Next we show the results for multi-target cases (Q > 1).
Although we have performed experiments under various con-
ditions, here we simply show the results for cases where three
sources positioned at a120, b120 and c170 were dominant
(Q = 3). Experiments were conducted with 10 combinations
of 9 speeches (3 targets + 6 background interferences). The
computational time was around 15 seconds for 6-second
speech mixtures.

Table III shows the average SIR improvements obtained
solely with ICA, and by a combination of ICA and T-F mask-
ing. Even with such hard input SIRs, the system succeeded in
enhancing the target sources to a certain degree.
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to Jk/|Ck| as shown in (23).

TABLE III

AVERAGE SIR IMPROVEMENT FOR MULTI-TARGET CASES (dB)

Target position a120 b120 c170

InputSIRi −3.9 −3.6 −5.9

Only ICA 12.5 13.6 14.5

ICA and T-F masking (0.333π, 20) 15.1 16.5 17.6

Figure 11 shows an example clustering result for normalized
basis vectors. In this multi-target case, there were three clusters
that had smaller variances than th var = 0.015, and the system
decided that there were three dominant target sources. Again,
these clustering results were also used to solve the permutation
ambiguity of ICA.

VII. CONCLUSION

We have proposed a new method for extracting dominant
target sources and suppressing other interference sources
blindly. The method is based on a two-stage process where
ICA is first applied to mixtures and then time-frequency
masking is used to reduce residuals, which are caused by the
limitation of ICA when N > M . The main contribution of
this paper is to propose the following two new techniques:

1) Basis vector normalization and clustering, which decides
the number Q of target sources and aligns the permuta-
tion ambiguity of ICA. The new method does not need to
know the array geometry and therefore makes it easy to
use a 3-dimensional non-uniform arrangement of sensors
without exact measurement or calibration.

2) Specifying time-frequency masks from the angle θ i(f, τ)
between the basis vector of a target source and a sample
vector in a spatially whitened space. The angle indicates
whether or not the corresponding target source is active
at a time-frequency slot (f, τ).

Both techniques manipulate basis vectors ai(f) produced by
ICA, which is a statistical tool for blind processing.

We obtained good experimental results for extracting dom-
inant sources out from many interference sources mixed in a
real reverberant room. The experiments shown in this paper
used impulse responses to evaluate extraction performances in
terms of SIR and SDR. We also have tested the system in a
live situation where loudspeakers and/or human speakers made
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speech sounds in a real room. The results were as good as the
simulated ones where the impulse responses were used.
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