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Abstract—This paper considers the problem of blind localiza-
tion and tracking of multiple frequency-hopped spread-spectrum
signals using a uniform linear antenna array without knowledge
of hopping patterns or directions of arrival. As a preprocessing
step, we propose to identify a hop-free subset of data by discarding
high-entropy spectral slices from the spectrogram. High-resolu-
tion localization is then achieved via either quadrilinear regression
of four-way data generated by capitalizing on both spatial
and temporal shift invariance or a new maximum likelihood
(ML)-based two-dimensional (2-D) harmonic retrieval algorithm.
The latter option achieves the best-known model identifiability
bound while remaining close to the Cramér–Rao bound even at
low signal-to-noise ratios (SNRs). Following beamforming using
the recovered directions, a dynamic programming approach is
developed for joint ML estimation of signal frequencies and hop
instants in single-user tracking. The efficacy of the proposed
algorithms is illustrated in pertinent simulations.

Index Terms—Array signal processing, direction-of-arrival
(DOA) estimation, frequency estimation, frequency hopping,
harmonic analysis.

I. INTRODUCTION

FREQUENCY-HOPPED code-division multiple access
(FH-CDMA) is an appealing spread spectrum technique in

wireless communication because frequency hopping provides
resistance to multiple-access interference without requiring
stringent power control to alleviate the near-far problem, as
required for direct-sequence CDMA [23]. Frequency-hopped
spread spectrum (FHSS) has recently been adopted in two
commercial standards: IEEE 802.11 (Wireless LAN) and Blue-
tooth (Wireless PAN). It is also the prevailing spread-spectrum
technique in military communications [22], largely due to its
robustness to jamming coupled with low probability of inter-
cept/detection (LPI/LPD) and good near–far properties. Blind
separation and localization of FHSS signals is a challenging
problem that feeds into multiple facets of military communica-
tions, from interception of noncooperative communications to
jammer localization and mitigation. On the technical side, the
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problem is challenging not only because hopping patterns and
directions of arrival are unknown, but other parameters, such as
bin-width, hop-rate, and timing, are at least partially unknown
in a realistic scenario. Carrier hopping means that one has to
deal with switching exponentials, rather than pure exponentials,
and it also induces hopping in the receive antenna array spatial
steering vectors, due to wavelength-dependent phase shifting
from one array element to another.

Although it is possible to write down a full-blown model for
the observed data, which accounts for the known signal struc-
ture plus all unknown parameters, and then aim for joint param-
eter estimation, this approach does not easily lead to conceptual
analysis or efficient computation. Mixtures of switching expo-
nentials are far more difficult to deal with than mixtures of pure
exponentials and much less studied. The presence of uncertain-
ties and nuisance parameters further aggravates this problem, as
the model effectively exhibits less structure. Finally, carrier hop-
ping implies a hybrid continuous-discrete joint estimation and
detection problem that is not amenable to a computationally ef-
ficient solution.

Blind FHSS methods proposed so far in the literature fall
under two broad categories. One general approach consists of
employing a coarsely channelized spectrogram-like receiver fil-
terbank, coupled with low-resolution tracking [1], [21]. Due to
adjacent-bin leakage, coarse channelization is problematic in
the presence of bin uncertainty, especially for co-channel users
employing different hopping schemes and/or in the presence of
Doppler shift. Furthermore,multiusertracking in the spectro-
gram domain is computationally very intensive (exponential in
the number of users) while only providing low-resolution fre-
quency and hop instant estimates [1].

Nonparametric spectrogram-based approaches to FHSS anal-
ysis are useful as a first step toward more refined solutions.
More sophisticated model-based approaches have also been de-
veloped [11], [26]. These employ a receive antenna array and
a parametric data model. Assuming that a (mostly) hop-free
snapshot of spatio-temporal data is available, these methods de-
couple the estimation problem from hop detection. For unstruc-
tured receive antenna arrays, the remaining problem is a mul-
tichannel version of the classical one-dimensional (1-D) har-
monic retrieval problem that is mathematically equivalent to
the popular uniform linear array (ULA) sensor array processing
model, except that Vandermonde structure is present in the tem-
poral, rather than the spatial dimension. For structured receive
antenna arrays, such as ULAs, further parameterization is pos-
sible. Under the usual narrowband far-field scenario, a ULA in-
duces Vandermonde structure in the spatial dimension as well,
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thereby yielding a 2-D harmonic retrieval (2-D HR) problem.
Either way, the solution is typically provided by some variation
of ESPRIT [11], [26].

Parametric approaches can provide high-resolution localiza-
tion and frequency estimates. Localization parameters (direc-
tions of arrival, or, more generally, steering vectors) are quasi-
stationary and can be used for spatial beamforming. Given suf-
ficient spatial degrees of freedom, beamforming can effectively
suppress interference, enabling computationally simpler single
user tracking. The parametric approaches proposed to date [11],
[26] have the following drawbacks.

• The hop detection step has not been given proper atten-
tion. Wong [26] proposed the use of rank detection criteria
to estimate hop intervals. However, rank detection is dif-
ficult, especially at low-to-moderate SNR, and computa-
tionally complex because it entails eigenvalue decomposi-
tion. The algorithm of [26] requires rough synchronization
with the desired signal’s hop interval. Lemmaet al. [11]
simply treats hopping as unmodeled dynamics.

• Identifiability is either limited [26] or not fully investi-
gated [11]. For example, the maximum number of source
signals that can be resolved by the algorithm proposed in
[26] is less than six.

• ESPRIT-based algebraic algorithms are suboptimal, per-
formance-wise.

• Single user tracking has not been addressed.
We propose herein a simple nonparametric hop-detection

method using spectrogram entropy analysis so that a hop-free
subset of data can be identified for direction-of-arrival (DOA)
estimation purposes. Assuming a ULA receiver and a far-field
scenario, a hop-free data snapshot can be modeled as a 2-D
harmonic mixture. Through appropriate spatial-temporal
smoothing, the 2-D harmonic mixture model can be trans-
formed into a quadrilinear model, and quadrilinear alternating
least squares (QALS) [14] can be employed to recover the
DOAs and frequencies. QALS will be shown to outperform
earlier ESPRIT-based methods (exemplified by JAFE [11])
while exhibiting robustness to unmodeled dynamics caused by
undetected hops.

After the DOAs have been recovered, single-user tracking
amounts to the joint estimation of hop instants, frequencies,
and phases of a source signal from a desired DOA over a time
interval of interest. Seeking a high-resolution solution, we de-
velop a dynamic programming method following MMSE beam-
forming of mixture data. In [6] and [16], dynamic programming
has been used to construct maximum likelihood sequence esti-
mators for tracking frequencies. However, [6] and [16] assume
known frequency grid, hop timing, and hop period. Hence, they
are not applicable in the asynchronous user tracking situation
considered herein, where hop timing and period are generally
unknown, and the frequencies are not necessarily located on a
grid, e.g., due to carrier frequency offset or Doppler shift.

In addition to QALS, maximum likelihood (ML)-based 2-D
HR is also considered in this paper. Motivated by a recent sto-
chastic identifiability result regarding 2-D HR [7], we develop
a novel 2-D HR algorithm, called the multidimensional embed-
ding—alternating least squares (MDE-ALS) algorithm, which
is shown to achieve the identifiability bound in [7] and remain

close to the Cramér-Rao bound (CRB) even at low SNR. While
a variety of techniques have been developed for 2-D HR, e.g.,
[2], [5], and [13], they do not achieve the identifiability bound
given in [7] (see also Section III-B) and can only approach the
CRB at relatively high SNR.

The main contributions of this paper can be summarized as
follows:

• a simple nonparametric hop-detection method based on
spectral entropy;

• a multilinear LS algorithm for localization, which is robust
to unmodeled dynamics;

• optimal ML single-user tracking using a dynamic pro-
gramming approach;

• improved ML-based 2-D HR algorithm with full identifia-
bility, staying close to the CRB for a wide range of SNRs.

We remark that our development is geared toward slow FH
(SFH) signals and FSK modulation, which is mostly the case
encountered in current systems. Carrier shifts due to hopping
or symbol modulation are treated as conceptually equivalent,
albeit of different magnitude. This means that certain types of
modulation (e.g., Gaussian FSK) that induce continuous (rather
than instantaneous) frequency shifts are not directly amenable
to our analysis, which requires that the signal between two hops
is a pure exponential. Note, however, that certain kinds of CPM
(e.g., MSK) can be handled by our approach.1

The rest of this paper is organized as follows. The FH signal
model is introduced in Section II. Section III contains a deriva-
tion of the proposed blind localization algorithm, including the
hop instant detection method. The issue of single-user tracking
is addressed in Section IV. The novel 2-D harmonic retrieval
algorithm is developed in Section V. Section VI presents simu-
lation results. Conclusions are drawn in Section VII.

Some notation conventions that will be used in this paper
follow.

Transpose of .
Conjugate transpose of.
Pseudo-inverse of .

th element of .
th column of .

Submatrix of formed by its first rows.
Diagonal matrix constructed from theth row of

.
Khatri-Rao (column-wise Kronecker) product of

and .
Frobenius norm.

II. DATA MODELING

A schematic of the FHSS communication scenario under con-
sideration is shown in Fig. 1. A total of far-field frequency-
hopped signals impinge on a ULA of antennas, each from a
nominal DOA with negligible angle spread.

The baseline separation of the ULA is. The array steering
vector in response to a signal from DOAcan be written as

1With suitable frequency spacing, FSK modulation can yield continuous
phase transitions at the symbol boundaries.
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Fig. 1. Multiple far field FH signals impinge on a ULA array.

where , and is the wavelength of the incoming signal.
The signal vector collected from the ULA output at time

can be expressed as

where

and where is the complex path loss for theth source that col-
lects the overall attenuation and propagation phase shift and may
be frequency dependent. The sources are not necessarily syn-
chronized and may have different symbol rates.is the center
frequency, which is assumed common for all sources. Theth
signal’s instantaneous frequency and phase are af-
fected by two factors: frequency hopping and modulation. After
down conversion and sampling at a rate of, we collect sam-
ples at each antenna output. For simplicity of exposition, sup-
pose the th signal hops from frequency to between
sampling instant and , whereas the other signal frequen-
cies remain constant within the sample block. Then, the dis-
crete time baseband-equivalent model can be written as

(1)

where

diag

diag

...
...

with . For compactness, absorb
and into , i.e., let so that (1) becomes

(2)

For multiple hops per block, the model generalizes in the ob-
vious fashion; our analysis is applicable to the case of multiple
hops per data block. The purpose of blind localization and sepa-
ration is to recover the DOAs, hop instants, and frequencies for
each source, relying on model structure alone, withouta priori
knowledge of the hopping sequences.

III. B LIND LOCALIZATION ALGORITHM

A. Hop Instant Detection

Consider the spectrogram [15] of the data from the refer-
ence antenna output,2 computed as the squared modulus of the
short-term Fourier transform

(3)

for and , where
. Equivalently, (3) means that one splits the

signal into overlapping segments, windows
each with a suitably chosen window sequence defined in
the region , and then calculates the DFT for
each segment, and the number of frequency samples of the DFT
is . Thus, each column of contains an estimate of
the short-term, time-localized frequency content of the signal.
Time increases linearly across the columns of , from left
to right, whereas frequency increases linearly down the rows,
starting at 0.

The basic idea for hop instant detection is that a vertical slice
(i.e., a column) of the spectrogram corresponding to a given
time segment can be viewed as a probability mass function after
proper normalization, and slices containing hops exhibit high
entropy due to instantaneous frequency spread.

The entropy of a discrete ensemble can be regarded as a mea-
sure of uncertainty, and any transfer of probability from one
member of the ensemble to another that makes their proba-
bilities more nearly equal will increase the entropy of the en-
semble [4]. In a time window that a frequency hops from one
bin to another, the signal energy from the frequency-hopped
source will be distributed across several frequency bins: Hop-
ping causes spectral spread that manifest itself as higher entropy,
and a hop-free subset of data can be obtained by discarding the
data corresponding to high-entropy spectral slices. This is il-
lustrated in Fig. 2, where the received signals come from three
sources, and only the third one hops during the data block. In
the spectrogram plot, the horizontal axis is time, and the vertical
axis is the frequency bin. At SNR dB,3 a length
data sequence is split into seven overlapping segments, each
windowed by a Hamming window of length . The
number of frequency samples is . From the entropy
plot, one can easily infer that the fifth window contains a fre-
quency hop. Hence, the data corresponding to spectrogram win-
dows one to four form a hop-free data subset, i.e., from the first
sample to the 80th sample.

Notice that if there are many asynchronous FH signals and
the dwell times are relatively short, detecting a hop-free subset
may be difficult, and relative long hop-free subsets may not
even exist. For long dwell times (for example, slow FH signals),
this will not be a problem. In general, the entropy threshold
should ideally be determined via decision-theoretic criteria. The

2Spectrograms could be averaged across receive antennas.
3The nominal model isY = X + �, where�(m;n) is the additive noise

at themth sensor at thenth sampling instant. Additive noise is assumed
to be spatially and temporally white, with variance� . SNR is defined as
10 log (kXk =(MK� )); cf. (2).
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(a)

(b)

Fig. 2. Hop instant detection via spectrogram entropy analysis. (a)
Spectrogram of received signal. (b) Corresponding entropy plot. Parameters
of three sources: DOA= [5 ; 10 ; 15 ]; frequency= [3:5; 1:0;1:5] MHz;
the third source hops from 1.5 MHz to 2.25 MHz at normalized hoping time
instant 0.64, and SNR is 15 dB.

Neyman-Pearson approach seems best suited to the task. How-
ever, this requires conditional distributions or estimates thereof,
which is quite unrealistic in a blind context. Unsupervised clus-
tering is another possibility, but it requires long observation pe-
riods because in most cases, hop events are rare (relative to the
null hypothesis). In view of these difficulties, we advocate a
simple, pragmatic approach that works reasonably well: Use
the average of minimum entropy and maximum entropy as a
threshold. The overall strategy for detecting a suitable hop-free
subset is to mark spectrogram slices with entropy above the
threshold and then select the longest run of unmarked slices.
Fig. 3 is an example that illustrates the process of hop detec-
tion under a scenario involving ten asynchronous FH sources,
each hopping once during the data block. SNR is 15 dB. Using
the average of minimum and maximum entropy as a threshold,
Fig. 3(c) shows that nine hops are correctly detected. Monte
Carlo simulation also shows that for the above experimental
setup, using the average of minimum and maximum entropy as
threshold yields 0.8 probability of detection at a low false alarm
rate of 0.02. Coupled with the fact that, as we will see, localiza-
tion algorithms are relatively robust to residual isolated hops,
this yields a satisfactory overall solution.

From the data model in (2), a hop-free data subset obtained
by spectrogram entropy analysis may be written as the
matrix

(4)

where and are submatrices of and in (2) such that
contains the first columns of , and

...

(a)

(b)

(c)

Fig. 3. Hop instant detection via spectrogram entropy analysis. Ten
asynchronous FH sources; SNR= 15 dB. (a) Spectrogram of received
signal. (b) Corresponding entropy plot. (c) Hop detection using the average
of minimum and maximum entropy as threshold (nine out of ten hops are
correctly detected).

where is an integer that depends on where the last sample ends
in the hop-free set. Since is a Vandermonde matrix, and is
the product of a Vandermonde matrix and a diagonal matrix, the
factorization problem in (4) is a 2-D HR problem.

In multipath scenarios with negligible angle spread (far field),
within a hop-free subset, the different paths for a given source
will all give rise to the same 2-D harmonic but with different
complex path loss coefficients (for a complex exponential, time
shift is equivalent to phase shift plus scaling due to path atten-
uation). These can all be combined into a single 2-D harmonic,
hence reverting back to the coherent case. However,identifying
a hop-free subset of sufficient length will be more challenging
due to additional hops introduced by multipath.

B. Identifiability

In general terms, the 2-D HR problem (including damping
factors) can be stated as follows: Given a sum of2-D expo-
nentials

(5)

for and , where
denotes the number of samples taken along one dimension and

likewise for the other dimension, find the parameter triples
for . Identifiability of 2-D HR is thor-

oughly addressed in [7].
Theorem 1—Almost Sure Identifiability of 2-D HR

[7]: Given a sum of 2-D exponentials as in (5) for
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and , the parameter
triples are almost surely
unique, where is the distribution used to draw the
complex exponential parameters that
are assumed continuous with respect to the Lebesgue measure
in , provided that4

(6)

We stress that collinear sources (same spatial frequencies) or
colliding users (same temporal frequencies) need not cause loss
of identifiability. For example, the following explicit result is
proven in [7].

Proposition 1: Given a sum of 2-D exponentials

for , and , with
, the parameter triples are

a.s. unique, where is the distribution
used to draw the complex exponential parameters

, which are assumed continuous
with respect to the Lebesgue measure in , provided that

A variety of good algorithms have been developed for 2-D HR,
e.g., [2], [5], [13], but much remains to be done.

• Existing algorithms do not come close to supporting as
many sources as predicted by Theorem 1. In other words,
algorithm identifiability is far from what is theoretically
possible (that is, model identifiability).

• Existing algorithms can only approach the CRB at rela-
tively high SNR.

A novel 2-D HR algorithm (the MDE-ALS algorithm) that
achieves the identifiability bound predicted by Theorem 1 and
stays close to the CRB even at low SNR will be developed in
Section V. This algorithm consists of algebraic initialization
followed by ML refinement and takes full advantage of 2-D
harmonic signal structure. This also suggests that the algo-
rithm might be sensitive to unmodeled dynamics, which are
introduced in our present context by imperfect hop detection.
We begin with another alternative based on spatial-temporal
smoothing and quadrilinear regression. Instead of exploiting
the full 2-D harmonic signal structure, this latter algorithm cap-
italizes on the shift-invariance property of exponentials, much
like ESPRIT. The difference is that the end problem is solved
by means of QALS regression. This affords a performance
advantage relative to earlier ESPRIT-like approaches [11], [26]
with improved robustness to unmodeled dynamics and noise
color5 as a side-benefit of LS. These benefits will be illustrated
in Section VI. The choice between QALS and MDE-ALS of
Section V depends on a number of factors, including number
of sources, SNR, hop-detection performance, and complexity
considerations. The reason for deferring the presentation of
MDE-ALS until Section V is that certain required modules

4The Theorem holds true ifI andJ are switched.
5Introduced by 2-D smoothing.

(alternating least squares and Tretter’s frequency estimator)
are more naturally introduced in the context of QALS and
single-user tracking, respectively.

Remark 1: DOA estimation via 1-D HR (ignoring the tem-
poral signal structure but collecting many more snapshots) is
inherently bounded in terms of identifiability by the number of
elements of the array [25]. The 2-D HR approach, on the
other hand, is bounded by the total spatio-temporal sample size
(divided by four) , where is the number of hop-free tem-
poral samples. Hence, the 2-D HR approach can resolve many
more sources or paths and yield better performance due to better
exploitation of model structure, as will be shown by simulation.

C. Low-Rank Decomposition of Quadrilinear Arrays

Consider an four-way array with typical
element

(7)

for ,
with . Equation (7) expresses the
four-way (quadrilinear) array as a sum of rank-one
four-way factors. Analogous to the definition of matrix rank,
the rank of a four-way array can be defined as the minimum
number of rank-one components needed to decompose.
Quadrilinear decomposition falls under the umbrella of PAR-
Allel FACtor (PARAFAC) analysis [10], [14], [18].

Define with with
with , and

with . Furthermore, define
, and with

corresponding typical elements

Then, the model in (7) can be written in four different ways in
terms of systems of simultaneous matrix equations

(8)

(9)

(10)

(11)

By stacking the matrices in (8), we can construct a matrix rep-
resentation of the four-way array:

...
(12)

where the superscript means that the matrix is of
size and that the-index ( goes first in the product

) runs fastest along the columns, whereas the-index
runs slowest. Unlike low-rank matrix decomposition, which



894 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 50, NO. 4, APRIL 2002

is inherently nonunique unless one imposes orthogonality or
other strong constraints, low-rank decomposition of multidi-
mensional arrays is essentially unique under a relatively mild
rank-like condition [10], [17].

D. Temporal and Spatial Smoothing

Smoothing is a commonly used technique to take advantage
of the shift-invariance property of complex exponentials in al-
gebraic frequency estimation methods. We will use smoothing
to generate a quadrilinear model from the two-way model of (4).
Define matrices, each of size :

where stands for columns to of
matrix , and . is known as the temporal
smoothing factor. Due to the Vandermonde structure of, it
holds that

By vertically stacking these submatrices extracted from,
we obtain

...
(13)

Next, to take advantage of the shift-invariance structure of,
we define

...

for , where is the spatial smoothing factor,
and . Recall that is the first columns of ,
and is a matrix consisting of the first columns of , which
does not involve attenuation and phase shift factors; cf. (1) and
(2). Similar to (13), stacking the s together and adopting the
same notation as in (12), we obtain

(14)

This shows that a two-way model (4) with shift-invariance
structure along two modes (i.e., a 2-D harmonic mixture ,
with and both Vandermonde) can be transformed to a
quadrilinear model (14) with “residual” Vandermonde structure
in all four dimensions.6 In a nutshell, QALS ignores this residual
Vandermonde structure and fits the resulting quadrilinear model
in a LS sense. This is explained next.

E. QALS

The principle of alternating least squares (ALS) can be used
to fit the quadrilinear model in (14) on the basis of noisy obser-
vations [14]. The basic idea behind ALS is to update each time

6The smoothing parametersm ;m can be chosen to optimize identifiability
[19] or QALS performance. The latter is difficult analytically, but Monte-Carlo
simulation is straightforward.

a subset of parameters, using least squares conditioned on in-
terim estimates of the remaining parameters. Because the fit is
bounded below and can never increase (each step optimizes the
fit conditioned on the remaining parameters), ALS is monoton-
ically convergent in LS fit. In the case of QALS, the parameters
are split in four subsets, each corresponding to one of the four
parameter matrices.

Least squares model fitting for (14) amounts to minimizing

over and , where is
the noisy counterpart of . The conditional least
squares update for is

where , and denote previously obtained es-
timates of , and . One may now resort to the
complete symmetry of the quadrilinear model [cf. (7)] and data
reshaping [cf. (9)–(11)] to figure out corresponding conditional
LS updates for and as follows:

Upon convergence of QALS, , and
will be estimated up to scaling and common permutation of
columns [14]. The frequencies and DOAs can then be estimated
via simple division or other single 1-D harmonic retrieval tech-
niques (e.g., [24] or periodogram). Since the permutation of
columns is common to all four matrices, will be paired
up automatically.

IV. SINGLE-USERTRACKING

After the DOAs have been recovered, single-user tracking
amounts to the joint estimation of hop instants, frequencies, and
phases of a source signal from a particular DOA over a time in-
terval of interest. In this section, an approach combining linear
MMSE beamforming and dynamic programming is developed
for this purpose. Using the recovered steering vectors, a linear
MMSE beamformer can be applied to obtain signals from a de-
sired DOA while suppressing interference from other directions.
Subsequently, dynamic programming (DP) is used for the joint
optimal ML estimation of frequencies, phases and hop instants.
Fig. 4 outlines the overall procedure.

A. Linear MMSE Beamforming

Suppose we have obtained the antenna steering matrixby
applying QALS to a hop-free data block. Then, a linear MMSE
beamformer can be used to separate the source signals, as long
as the DOAs do not change or change only slightly. Although

is indeed affected by frequency hopping, the effect can be
ignored when the signal’s hopping bandwidth is within a few
percent of the carrier frequency, which is the case of practical
interest. For example, both the IEEE 802.11 frequency-hopping
spread spectrum standard and the Bluetooth use 79 distinct fre-
quency channels (23 in Japan) over the 2.4-GHz ISM radio fre-
quency band with 1 MHz channel spacing. The hopping band
is approximately 3.3% of the carrier frequency. The situation is
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Fig. 4. Procedure of blind localization and tracking.

similar in military communications, where the hopping band-
width is under 1% of center frequency. Therefore, it is reason-
able to assume that is approximately constant over the time
interval of interest. The linear MMSE beamformer is given by

(15)

where is the covariance matrix of the source signal, and
is the variance of the additive white Gaussian noise. For
(which is usually the case in practice), (15) simplifies to

(16)

MMSE beamforming suffers less from noise gain than does
zero-forcing beamforming. Any type of spatial beamforming,
including MMSE, combines rows of the observation matrix on
a column-by-column basis; this assures that postbeamforming
noise is temporally white if the input noise is temporally white.
Applying the beamformer to the received signal matrix

, a typical recovered source signal from a desired DOA will
be of the form

(17)

for , where
correspond to the unknown switching instants, and
denotes zero-mean complex white Gaussian noise.7 The actual
number of frequency switches isa priori unknown; however, a
crude upper bound is usually available or can be esti-
mated from the periodogram. If the actual number of hops is
less than , then two or more contiguous segments in the
dynamic programming result will have approximately the same
frequency, and thus, one can identify false hops.

B. Dynamic Programming

From (17), the joint maximum likelihood estimation
of the frequency vector , phase vector

, amplitude vector , and
switching instants amounts to minimizing

(18)

over .
For a given time segment defined by hop instants and
, the estimation of , and is equivalent to frequency,

phase, and amplitude estimation of a complex exponential from

7Residual interference after MMSE beamforming can be approximated by
AWGN since signals from different directions are assumed to be independent.

a sequence of uniformly spaced samples corrupted by additive
white Gaussian noise, and a variety of techniques are available.
The optimal maximum likelihood estimator is provided by the
peak of the periodogram. Tretter’s algorithm [24] offers a partic-
ularly attractive solution for our purpose, as it has been shown to
essentially attain the CRB for moderate sample sizes and SNR,
and has linear complexity [8]. Hence, we adopt [24] for single
frequency estimation over a given time segment with the under-
standing that if SNR is low, then periodogram-based estimation
should be used to maintain optimality.

Suppose are the phase angles obtained
by applying a phase unwrapping algorithm (see, e.g., [3] and
[20]) to the principal value of the observed signal phase. Then,
the estimates of and are given by [24]

(19)

where is the segment sequence length, and

Given estimates of and , an estimate of the amplitude
can be easily obtained via conditional LS regression.
Writing (17) in vector form as

separating and stacking real and imaginary parts
Re
Im

Re
Im

Re
Im

from which the conditional LS estimate of the amplitude is
easily obtained as

(20)

Similar to [9], we define the cost function for the time segment
delimited by as

The minimization of (18) is equivalent to the minimization of

over , where , and are estimates corresponding toob-
tained by using (19) and (20) or periodogram-based estimation
if SNR is below the threshold of (19); see [8]. In order to solve
this latter minimization problem by dynamic programming, we
define

(21)

where . Equation (21) can be
viewed as the minimization problem of finding the best fit for
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the length subsequence when a total number of hops
is allowed. Hence, is the minimum of .

From (21), a recursion for the minimum can be developed as

which simply says that for a signal sequence , the min-
imum error for segments (i.e., hop instants) is the min-
imum error for the first segments that end at
and the error contributed by the last segment from to

. The solution of the minimization in (18) is obtained for
and .

Assuming that the minimum length of a segment is two sam-
ples (since it is impossible to obtain valid frequency and phase
estimates from one sample), the procedure to compute the solu-
tion by dynamic programming is as follows.

1) Initialization: For , compute for
as

where , and are estimates obtained by applying (19)
and (20) to the signal sequence .

2) Recursion: For , compute for
as

For each , denote the value of that minimizes as
, and denote the corresponding as

, and , respectively. This informa-
tion will be used for backtracking.

3) Termination: For , compute for
as

Denote the value of that minimizes as
, and denote the corresponding and

as , and ,
respectively. The minimum of in (18) is given by

.
4) Backtracking: Finally, the maximum likelihood es-

timates of hop instants are obtained by using the backward
recursion, i.e., , for ini-
tialized by . Similarly, the corresponding
frequency, phase, and amplitude estimates of each segment can
be obtained by their respective backward recursions.

The complexity of the above dynamic programming algo-
rithm is . In practical FH systems, frequencies hop at a

regular rate; therefore, it is enough to estimate two parameters:
hop timing and hop period. These can be obtained by applying
dynamic programming to a relatively short portion of a long data
record, whereas frequency estimation for the remaining data can
be accomplished by applying (19) and (20) to each segment of
fixed length (hop interval). This will reduce the complexity sig-
nificantly.

V. TWO-DIMENSIONAL HARMONIC RETRIEVAL

We now return to 2-D HR. The novel MDE-ALS algorithm
consists of two steps: algebraic initialization (MDE) and least
squares refinement (ALS).

A. Initialization

From (5), we can define with
with with ,

and a diagonal matrix with . Then,
(5) can be written in matrix form as

(22)

Define a five-way array with typical element

(23)

where , for
, and . To maximize the number of iden-

tifiable harmonics, and are chosen such that (the
maximum number of identifiable harmonics is ;
see [7] for details)

(24)

Then, nest the five-way array into a three-way array by
collapsing two pairs of dimensions as follows (hence, it is called
multidimensional embedding):

for . Furthermore, define

(25)

and let and . Then, it can be
verified that

where diag . It is shown in [7] that and
are full column rank almost surely8 , and the singular value

decomposition of the stacked data yields

(26)

where has columns that together span the column space
of . Since the same space is spanned by the columns
of , there exists an nonsingular
matrix such that

8See [7] for further results on the structure and rank of Khatri–Rao products
of Vandermonde matrices.
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TABLE I
MDE-ALS ALGORITHM

It then follows that

which is an eigenvalue decomposition problem. Thedistinct
eigenvalues are the generators of the Vandermonde matrix.

contains the eigenvectors of (scaled to unit norm).
The remaining parameters can be obtained by

Notice that the first row of the product is the diagonal of
, i.e., . Now, the s and s can be readily recov-

ered from and/or , for example, the second and th
rows of are and , respectively. Due
to the rich structure of the Khatri-Rao product of Vandermonde
matrices, better estimates can be obtained via averaging. Note
that no pairing issue exists, i.e., are paired up auto-
matically.

B. LS Refinement

More accurate estimates can be obtained by using pseudo
ALS and ALS to refine algebraic estimates. Our discussion
below focuses on undamped complex exponentials
and , but ALS can be modified to handle damped
complex exponentials. The procedure is summarized in Table I.

In Table I, estimates of and obtained via (19) are not true
least squares solutions; hence, the namepseudoALS. However,
pseudo ALS can get close to the optimum quickly due to the
low complexity of (19). Final refinement by periodogram-based
ALS uses true conditional least squares estimates, which also
guarantees eventual monotone convergence9 of the overall al-
gorithm.

9Due to the fact that (19) is not strictly LS, the pseudo ALS step does not
provide convergence guarantees. For a convergence proof of ALS schemes, see,
e.g., [12].

VI. SIMULATION RESULTS

In the following simulations, we consider an FHSS commu-
nication system operating at GHz center frequency. The
receiving ULA consists of equally spaced antennas,
whose baseline separation is half a wavelength of. A hop-
ping frequency band with a bandwidth of 8 MHz is occupied by
32 distinct frequency channels with 0.25 MHz channel spacing
from 1 to 1.0075 GHz. The minimum hop size10 between con-
tiguous hops is 0.75 MHz.

A. Blind Localization

In the first experiment, we test the performance of the pro-
posed blind localization algorithm. Three sources, with interme-
diate frequencies MHz modulated at GHz,
impinge on the ULA from , and .
After downconversion, the antenna outputs are sampled at a rate
of 8 MHz, and samples are collected at each antenna.
Since we are dealing with slow FH, suppose that during this data
block, the third source hops from 1.5 to 2.25 MHz at normalized
time instant 0.64, whereas the other two signal frequencies re-
main constant.

SNR is defined as ; cf. (2). For
each SNR value, we first identify a hop-free subset by spectro-
gram entropy analysis, which we refer to as preprocessing. A
data sequence from one antenna is split into seven overlapping
segments, each of length 32; hence, the frequency resolution of
the spectrogram is 0.25 MHz. The fifth window contains the
hop and, hence, should have maximum entropy. The result for
SNR dB is shown in Fig. 2, from which we can clearly
identify a hop-free data subset corresponding to the first four
segments.

Then, QALS is applied to this hop-free data subset for DOA
and frequency estimation. Both temporal and spatial smoothing
factors are 3; this choice assures that QALS can identify the
model parameters, but it does not reflect any attempt to opti-
mize the smoothing factors performance-wise. QALS is ran-
domly initialized, and it typically converges after about 40 it-
erations. For comparison, we also apply the JAFE algorithm
[11] to the same hop-free data subset. JAFE smoothes data along
the temporal dimension and then capitalizes on the shift invari-
ance properties of the data to cast the angle and frequency esti-
mation problem into the framework of joint diagonalization of
a set of matrices. In our simulations, JAFE was implemented
using Jacobi iterations. Estimation error is measured by root
mean square error (RMSE) of DOA and frequency estimation.
Fig. 5 shows Monte Carlo simulation results comparing QALS
to JAFE for DOA and frequency estimation of the three sources.
The results demonstrate that QALS offers a 5-dB SNR advan-
tage over JAFE due to the fact that it better exploits (quadri-
linear) model structure.

In the second experiment, we test the robustness of QALS.
The parameter settings are the same as in the first experiment.
This time, however, we apply QALS and JAFE directly to the the
raw data, i.e., without first detecting a hop-free data set; hence,
the parameters before and after hopping will be estimated at the

10This is similar to IEEE Standard 802.11, which uses 79 frequency channels
with 1 MHz channel spacing, and a minimum of 6 MHz hop size is required
between contiguous hops.
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(a)

(b)

Fig. 5. QALS versus JAFE with preprocessing. (a) DOA estimation. (b)
Frequency estimation.

same time. The motivation is that in a heavily loaded asyn-
chronous system, it could be difficult to find a large block of
data that is hop free. Reliable detection is also difficult at low
SNR. In this case, there are shift invariance-violating
columns for both QALS and JAFE, since spatial smoothing does
not introduce additional shift invariance-violating columns.
Fig. 6 depicts DOA and frequency estimation results for the
hopped source signal both before and after frequency hopping.
The figure shows that QALS works reasonably well in the
presence of a single undetected hop, and again, it offers a 3–5
dB SNR advantage over JAFE. As expected, the parameter
estimation is more accurate before hopping than after hopping
since a longer data sample size is available before hopping.
In addition, notice that the performance in Fig. 6 is worse
and more uneven than that in Fig. 5 which is due to the fact
that Fig. 6 involves shift invariance-violating data (unmodeled
dynamics).

B. Single-User Tracking

In the third experiment, we test the performance of the pro-
posed single-user tracking method. Suppose we want to track

(a)

(b)

Fig. 6. QALS versus JAFE without preprocessing. (a) DOA estimation. (b)
Frequency estimation.

the source signal from DOA among the three sources
from [5 , 10 , 15 ], 11 and we have collected 6384 data sam-
ples (i.e., 3 blocks of data, during each of which every source
hops once). Applying the blind localization algorithm (with pre-
processing), we obtain an estimate of the steering matrix.
Then, a linear MMSE beamformer is constructed as in (16) since
the hopping bandwidth is less than 1% of the carrier frequency,
and thus, the steering vectors can be assumed approximately
constant. The signal from is separated from the mix-
ture data by applying this beamformer to the whole 6384 data
block. Finally, hop instants and frequencies are jointly estimated
by dynamic programming.

An example of single-user tracking is shown in Fig. 7, which
is a typical result at SNR dB. The frequency sequence
of the original transmitted signal of the desired source is [1.5,
2.25, 6.0, 5.0] MHz, hopped at sampling instants [82, 214, 346].
The figure shows that estimated hop instants and frequencies
are very close to the original. If a longer data record needs to be

11Recall that with aM = 6 element ULA, 5 separation is well under the
classical DOA resolution; therefore, the three signals are essentially in the same
look direction of the antenna.
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(a)

(b)

Fig. 7. Example of single-user tracking (SNR= 15 dB). (a) Real part
of transmitted signal [top] and beamforming result [bottom]. (b) Dynamic
programming joint estimation result.

tracked, we can use (19) and (20) for the remaining data since
hop timing and period12 have been recovered.

In order to evaluate the performance of our single-user
tracking algorithm quantitatively, we definetrack loss as a
situation wherein an estimated hop instant of the desired source
is five samples away from its true value, or an estimated
frequency deviates 50 KHz away from its true value.

The track loss probability is estimated by applying the
single-user tracking algorithm to 5000 independent realizations
of the operating environment; in each realization, the signal
from contains three hops (four frequencies), with
132 samples between two hops and frequency channel spacing
of 0.25 MHz. The track loss probability is depicted in
Fig. 8, where (a) is the plot of versus SNR (measured at the
antenna array output for mixture data), and (b) is the plot of
versus SINR (signal to interference and noise ratio, measured
at the beamformer output). The figure shows that the proposed
localization and tracking scheme performs quite well.

12For example, hop period can be obtained by taking the mean of five to ten
dwell lengths.

(a)

(b)

Fig. 8. Track loss probabilityP of single-user tracking. (a)P versus SNR.
(b) P versus SINR.

C. Two-Dimensional Harmonic Retrieval

In this experiment, we test the performance of the proposed
MDE-ALS algorithm. In [5], Hua derives the CRB for 2-D fre-
quency estimation. We use this CRB to benchmark the perfor-
mance of our MDE-ALS algorithm. We consider the recovery
of three pairs of 2-D harmonics
for , where

Sample size along both dimensions is 20. Fig. 9 plots the RMSE
achieved by the MDE-ALS and QALS, compared with the cor-
responding CRB on standard deviation (STD), for the estima-
tion of and , respectively. It is seen that the MDE-ALS out-



900 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 50, NO. 4, APRIL 2002

(a)

(b)

Fig. 9. MDE-ALS, QALS, and CRB. (a) Estimation off . (b) Estimation of
f .

performs QALS (which only takes partial advantage of model
structure) and stays close to the CRB for the range of SNR con-
sidered.

VII. CONCLUSION

We have proposed a novel approach for blind localization of
frequency hopping signals, without knowledge of their hopping
patterns. As a preprocessing step, a hop-free subset may be
identified via spectrogram entropy analysis. Following linear
MMSE beamforming, a dynamic programming approach was
developed for joint optimal ML estimation of hop instants,
signal frequencies, and phases in a single-user tracking mode.
Simulation results corroborate the high-resolution performance
of the localization and tracking algorithms. We also developed
a more general 2-D HR algorithm, which was shown to achieve
the identifiability bound in [7], while remaining close to the
CRB for a wide range of SNRs.
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