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Blind Hyperspectral Unmixing Based on Graph

Total Variation Regularization
Jing Qin, Member, IEEE, Harlin Lee, Student Member, IEEE, Jocelyn T. Chi, Lucas Drumetz, Member, IEEE,

Jocelyn Chanussot, Fellow, IEEE, Yifei Lou, Member, IEEE, and Andrea L. Bertozzi, Member, IEEE

Abstract—Remote sensing data from hyperspectral cameras
suffer from limited spatial resolution, in which a single pixel
of a hyperspectral image may contain information from several
materials in the field of view. Blind hyperspectral image unmixing
is the process of identifying the pure spectra of individual
materials (i.e., endmembers) and their proportions (i.e., abun-
dances) at each pixel. In this paper, we propose a novel blind
hyperspectral unmixing model based on the graph total variation
(gTV) regularization, which can be solved efficiently by the
alternating direction method of multipliers (ADMM). To further
alleviate the computational cost, we apply the Nyström method
to approximate a fully-connected graph by a small subset of
sampled points. Furthermore, we adopt the Merriman-Bence-
Osher (MBO) scheme to solve the gTV-involved subproblem
in ADMM by decomposing a grayscale image into a bit-wise
form. A variety of numerical experiments on synthetic and real
hyperspectral images are conducted, showcasing the potential
of the proposed method in terms of identification accuracy and
computational efficiency.

Index Terms—Blind hyperspectral unmixing, Nyström method,
graph Laplacian, graph total variation, alternating direction
method of multipliers.

I. INTRODUCTION

Hyperspectral imaging (HSI) is an important and useful

tool to acquire high resolution data in the electromagnetic

spectrum with many applications in remote sensing, includ-

ing surveillance, agriculture, environmental monitoring, and

astronomy. With hundreds to thousands of spectral bands,

a hyperspectral image provides a detailed description of a

scene. However, due to limited spatial resolution of imag-

ing sensors, the acquired hyperspectral data at each pixel

represents a collection of material signatures in the field of
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view of each pixel. The signature corresponding to one pure

material is called an endmember in hyperspectral data analysis

[1]. Given the endmembers of all materials present in the

scene, hyperspectral unmixing aims to estimate the proportions

of constituent endmembers at each single pixel, called the

abundance map. If the spectral information of endmembers is

unavailable, then the problem becomes a blind hyperspectral

unmixing problem that requires simultaneously identifying the

endmembers and estimating the abundance map. There are a

large number of hyperspectral mixing and unmixing methods

[2], [3], including linear and nonlinear models, depending

on assumptions about the interaction of the light with the

observed scene.

In this paper, we focus on the linear mixing model. Specif-

ically, by assuming that each light ray interacts with only one

endmember in the field of view before reaching the sensor,

we model the spectrum at each pixel as a linear combina-

tion of all endmembers. Due to the physical interpretation

of the hyperspectral mixing model, it is also reasonable to

assume that each element of endmembers and abundances

is nonnegative. Another commonly used constraint is that

abundances from all the endmembers at each pixel sum up

to one, which implies that all abundance vectors belong to the

probability simplex, determined by the standard unit vectors

in a Euclidean space. Note that one can remove the sum-to-

one constraint for physically motivated reasons, e.g., when

illumination conditions or the topography of the scene change

locally in the image [4]. We adopt the sum-to-one constraint

due to the interpretability of the abundances.

Nonnegative matrix factorization (NMF) [5], decomposing a

given matrix into a product of two matrices with nonnegative

entries, is widely used in blind hyperspectral unmixing [6],

[7], [8]. Suppose the given hyperspectral image X is of size

w× n, where w is the number of spectral bands and n is the

number of spatial pixels. One aims to write X as a product of

two nonnegative matrices S ∈ R
w×k and A ∈ R

k×n with k
being the total number of the endmembers. Note that the rank

of the matrix SA is at most k, and k is usually much smaller

than w and n. Then the hyperspectral unmixing problem can

be formulated as a nonnegative least squares problem,

min
S∈Ωw×k

A∈Ωk×n

1

2
‖X − SA‖2F, (1)

where Ωl×m denotes the set of all nonnegative real matrices
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of size l ×m, i.e.,

Ωl×m := {X ∈ R
l×m |Xij ≥ 0, i = 1, . . . , l, j = 1, . . . ,m}.

(2)

However, non-convexity of the objective function in (1) may

lead to multiple local minima for NMF. To address this

issue, various regularization techniques have been developed

to enforce some desirable properties on the endmembers

or abundance matrices. For example, methods based on the

spatial sparsity of abundances include the use of the ℓ0-norm

[9], the ℓ1-norm [10], the ℓ2-norm in fully constrained least

squares unmixing (FCLSU) [11], the ℓ1/2-norm [12], and the

mixed ℓp,q-norm for group sparsity [13].

Due to the success of the total variation (TV) [14] in the

image processing community, the TV regularization has been

applied to hyperspectral unmixing to preserve the piecewise

constant structure of the abundance map for each material.

For example, sparse unmixing via variable splitting augmented

Lagrangian and total variation (SUnSAL-TV) [15] involves a

two-dimensional TV regularization. Other TV-based variants

include TV with ℓ1 [16], TV with sparse NMF [17], TV

with nonnegative tensor factorization [18], and an improved

collaborative NMF with TV (ICoNMF-TV) [19] that combines

robust collaborative NMF (R-CoNMF) [20] and TV. Recently,

TV is considered as a quadratic regularization promoting

minimum volume in the NMF framework, referred to as

NMF-QMV [21]. An extension of TV to nonlocal spatial

operators [22], [23] has led to nonlocal TV being considered

for the blind hyperspectral unmixing problem [24], [25]. TV

has also been extended from vectors in Euclidean space to

signals defined on a graph. For example, the graph TV (gTV)

[26] is a special case of the p-Dirichlet form [27], [28] in

graph signal processing. Some graph regularization techniques

for hyperspectral imaging include graph NMF (GNMF) [29],

structured sparse regularized NMF (SS-NMF) [30], graph-

regularized ℓ1/2-NMF (GLNMF) [31], and graph-regularized

multilinear mixing model (G-MLM) based on superpixels

[32]. However, most of these graph-based approaches suffer

from intensive computation, especially when computing the

pairwise similarity between all pixels. To reduce the com-

putational cost, the Nyström method [33] generates a low-

rank approximation of the graph Laplacian, which can be

incorporated into unmixing.

In this work, we propose an efficient framework for blind

hyperspectral unmixing based on an approximation of gTV

to exploit the similarity of spectral information at different

pixels and preserve sharp edges of the abundance map. By

treating the spectral vector at each pixel as a vertex, the given

hyperspectral data can be modeled as a graph, whose adja-

cency matrix is determined by the pairwise similarity between

any two vertices. Instead of using the incidence matrix to

define the discrete graph derivative operator and thereby graph

TV [27], [28], [34], [26], we approximate gTV by the graph

Laplacian. This approach is inspired by a theoretical result

in [35]: the TV semi-norm of a binary function defined on

a graph is well-approximated by the graph Ginzburg-Landau

(GL) functional involving the graph Laplacian and a double-

well potential. In order to relax the restriction on binary data,

we adopt a bitwise decomposition [36] to deal with grayscale

images. Specifically, we decompose the input data into eight

bits, solve the optimization problem at each bit channel, and

aggregate all bits into grayscale values.

Our framework incorporates several techniques to increase

the computational efficiency. To avoid a direct calculation of

the graph Laplacian, we adopt the Nyström method [33] in

graph clustering to approximate the eigenvalues and eigenvec-

tors of the graph Laplacian. The Nyström method is a low-

rank approximation of the weight-matrix that does not require

the computation of all pairwise comparisons between feature

vectors. Rather, it uses random sampling to construct a low

rank approximation that is roughly O(N) for the number of

feature vectors rather than computing the full matrix which

is O(N2). This is a reasonable assumption in cases where

the image is thought to be representable by a relatively

small number of features as would be the case with a mod-

est number of endmembers. This approximation significantly

reduces the computational costs in both time and storage,

which makes our approach scalable to high-dimensional data.

Moreover, we design an efficient numerical algorithm to solve

the proposed model via the alternating direction method of

multipliers (ADMM) [37], [38]. In particular, the gTV-related

subproblem can be solved efficiently by the Merriman-Bence-

Osher (MBO) scheme [39], [40] at each bit channel. We can

readily incorporate an accelerated version [41] of the MBO

scheme and the Nyström method into the proposed framework.

To demonstrate the effectiveness of these approximations,

we conduct extensive experiments on various synthetic and

real hyperspectral datasets, showing the great potential of

the proposed method in terms of accuracy and computational

efficiency.

The main contributions of this paper are three-fold:

1) We propose a novel data-driven type of graph regular-

ization, i.e., graph TV based on the similarity of spectral

information, imposed on the abundance map. To the best

of our knowledge, this is the first time that the graph

total variation regularization has been applied to solve a

hyperspectral unmixing problem.

2) We apply the Nyström method to efficiently approximate

eigenvalues and eigenvectors of a normalized graph

Laplacian, which significantly improves the scalability

of our approach.

3) We present an effective graph-based framework that

integrates the Nyström method and the MBO scheme

into blind hyperspectral unmixing. We also provide a

thorough discussion of computational complexity and

parameter selection of the proposed algorithm.

The remainder of the paper is organized as follows. In

Section II, we provide a brief introduction of concepts and

methods used in our workflow, including the Nyström method,

the GL functional, and the MBO scheme. Section III presents

the proposed hyperspectral unmixing model, followed by

a detailed description of the proposed algorithm based on

ADMM and its complexity analysis. Extensive experiments are

provided in Section IV, followed by a discussion on parameter

selection in Section V. Finally, conclusions and future works
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are given in Section VI.

II. PRELIMINARIES

In this section, we provide preliminary knowledge for a set

of building blocks that are used in this work, including the

graph construction, the Nyström method for efficiently approx-

imating the similarity weight matrix, and the GL functional

with a fast solver to find its minimizer via MBO.

A. Graph Construction

Similarity graphs are an important mathematical tool to

describe directed/undirected pairwise connections between

objects. Typically, a graph consists of vertices (or nodes)

connected by edges with the associated weights. Consider a

collection of data points {xi}ni=1 ⊆ R
w, one simple way

to construct a graph G is to treat each point as a vertex of

the graph. Then the weight matrix (also known as the affinity

matrix) W ∈ R
n×n of G is defined by

Wij = e−d(xi,xj)
2/σ, i, j = 1, . . . , n, (3)

where d(xi,xj) is the distance between the two vertices xi

and xj , and σ > 0 controls how similar they are. There are

two distance metrics widely used in graph-based applications:

1) Euclidean distance: d(xi,xj) = ‖xi − xj‖2;

2) cosine similarity: d(xi,xj) = 1− 〈xi,xj〉
‖xi‖2‖xj‖2

.

In this paper, we adopt the cosine similarity as the distance

function for hyperspectral data, which is physically motivated

by the fact that illumination effects change the scaling of

spectra but not their overall shape in the spectral domain [40],

[42], [41].

Based on the weight matrix W , we define the degree matrix,

denoted by D, as a diagonal matrix whose entries are the row

(or column) sums of W . There are several ways to define

graph Laplacian. For example, the standard graph Laplacian

is defined as L = D −W , while the (symmetric) normalized

graph Laplacian is given by

Ls = I −D−1/2WD−1/2. (4)

In this work, we adopt the symmetric normalized graph Lapla-

cian due to its outstanding performance in the graph-based

data classification [40], [43]. By denoting X = [x1, . . . ,xn] ∈
R

w×n, we have

〈X⊤, LsX
⊤〉 =

n∑

i,j=1

‖x̂i − x̂j‖22Wij , (5)

where x̂i = xi/
√
dii with dij being the (i, j)-th entry of the

matrix D. Here, we use the standard inner product on matrices,

i.e., 〈X⊤, LsX
⊤〉 = tr(XLsX

⊤), where tr(·) is the matrix

trace operator that returns the sum of all the diagonal elements.

B. Nyström Method

Computing and storing pairwise similarities of a fully-

connected graph is usually a bottleneck of many graph-based

algorithms. In order to reduce the time/space complexity, we

apply the Nyström method [33] to approximate the eigenvalues

and eigenvectors of W ∈ R
n×n by using only p sampled data

points with p ≪ n. Up to permutations, the similarity matrix

W can be expressed in a block-matrix form,

W =

[
W11 W12

W21 W22

]
,

where W11 ∈ R
p×p is the similarity matrix of the sampled data

points, W12 = W⊤
21 is the one of the sampled points and the

unsampled points, and W22 is the one of the unsampled points.

Assume that the symmetric matrix W11 has the eigendecompo-

sition W11 = U Λ̃U⊤, where U has orthonormal eigenvectors

as columns and Λ̃ is a diagonal matrix whose diagonal entries

are eigenvalues of W11. The Nyström extension gives an

approximation of W by using U and Λ̃ as follows,

W ≈ Ũ Λ̃Ũ⊤, where Ũ =

[
U

W21U Λ̃−1

]
. (6)

Note that the columns of Ũ require further orthogonalization.

See [33], [41] for more details.

In this work, we apply the Nyström method to calculate the

weight matrix for the sampled data and then use the approxi-

mated eigendecomposition (6) to approximate the normalized

graph Laplacian, i.e.,

Ls ≈ D−1/2Ũ(I − Λ̃)Ũ⊤D−1/2 := V ΛV ⊤, (7)

where V = D−1/2Ũ ∈ R
n×p and Λ = I − Λ̃ ∈ R

p×p. In

this way, computation of pairwise similarities is significantly

reduced from the whole dataset to a small portion.

C. Ginzburg-Langdau Functional and MBO Scheme

The classic Ginzburg-Landau (GL) energy [43], [44] for

diffuse interface models is

ǫ

2

∫

Ω

|∇u|2dx+
1

ǫ

∫

Ω

Φ(u)dx,

where Φ(u) := 1
4u

2(u − 1)2 is a double-well potential to

enforce u to take binary values of {0, 1} on a domain Ω. The

term “diffuse interface” refers to a smooth transition between

two phases of u, where the smoothness is modeled by the H1-

semi norm and the scale of the transition is controlled by the

parameter ǫ > 0. It is proven in [45] that the GL functional

Γ-converges to the TV semi-norm, i.e., as ǫ → 0,

ǫ

2

∫

Ω

|∇u|2dx+
1

ǫ

∫

Ω

Φ(u)dx → C

∫

Ω

‖∇u‖dx,

for some constant C > 0.

In a series of works including [40], [42], [46], [47], [48],

the GL functional has been extended to graphs, defined as

GL(u) = ǫ〈u, Lu〉+ 1

ǫ
Φ(u), (8)

where u = [u1, . . . , un]
⊤ ∈ R

n is a signal defined on a graph

G with ui being the state of vertex i and L is the graph

Laplacian of G or its variant. Here Φ(u) =
∑n

i=1 Φ(ui), which

can be extended to the matrix case, i.e., Φ(U) =
∑

i,j Φ(uij)
for any matrix U = (uij). Thanks to the double-well potential,

the GL functional has been successfully applied to binary data

classification [40] and multiclass classification [41], [46]. We
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employ the binary model here. By adding a fidelity term to the

GL energy, one obtains the following minimization problem

E(u) = GL(u) + λF (u), (9)

where F (u) is a differentiable functional that fits the unknown

variable u to the given data y, e.g., F (u,y) = 1
2‖u − y‖22.

The parameter λ > 0 balances the contributions between the

GL regularization term and the data fidelity term. When u is

binary, the energy E can be efficiently minimized via the MBO

scheme [39], [40]. In particular, the MBO scheme alternates

a gradient descent step that minimizes 〈u, Lu〉 + λF (u) and

a hard thresholding that minimizes the double-well potential

term. More precisely, the updated solution ut+1 from the t-th
iteration is given by

{
ut+1/2 = ut − dt

(
Lut + λ∇F (ut)

)

ut+1 = H1/2(u
t+1/2),

(10)

where ∇F is the gradient of F , dt > 0 is a time stepsize, and

H1/2(·) is a hard thresholding operator defined as

(H1/2(u))i =

{
1, if ui ≥ 1/2

0, if ui < 1/2,
(11)

for i = 1, . . . , n. To circumvent the restriction on binary

solutions in the MBO scheme, we use a bitwise scheme to

deal with grayscale images in Section III.

III. PROPOSED METHOD

Let X ∈ R
w×n be a hyperspectral image, where w is the

number of spectral bands and n is the number of pixels in

the image. We denote the spectral signature of pure materials,

called endmembers, as {sj}kj=1 with k being the number of

endmembers. Assume that the spectral signature at each pixel,

namely each column of X , follows the standard linear mixing

model, i.e.,

xi =
k∑

j=1

ajisj , i = 1, . . . , n, (12)

where aji is the proportion of the j-th material at the i-th
pixel. By concatenating all spectral signatures sj’s, we obtain

a matrix S ∈ R
w×k, which is called the mixing matrix.

Similarly, by assembling all weights aji’s, we obtain a matrix

A ∈ R
k×n, which is called the abundance map. Thus we can

rewrite (12) as X = SA. Different from [49], our method does

not require the presence of pure pixels, rather just to assume

the linear unmixing model (12).

By taking the noise into consideration, the blind unmixing

problem is to estimate both S and A simultaneously from the

noisy hyperspectral data X , i.e.,

X = SA+ η,

where η ∈ R
w×n is an additive noise term, which is typically

assumed to be Gaussian noise. This is a highly ill-posed

problem, and hence additional assumptions and regularizations

are required. First, due to the physical interpretation of (12),

both S and A are assumed to be nonnegative matrices, i.e.,

S ∈ Ωw×k and A ∈ Ωk×n with Ω defined in (2). In addition,

since each element of A is the proportion of one of the pure

materials in a single pixel, it is natural to impose the sum-

to-one assumption, i.e., 1⊤
k A = 1⊤

n , where 1m denotes the

all-one (column) vector of length m. We use the above two

assumptions as constraints to refine the solution space.

In the previous work [50], we considered a graph Laplacian

regularization for hyperspectral unmixing, i.e.,

JH1
(A) =

1

2

n∑

i,j=1

‖âi − âj‖22Wij , (13)

where ai is the i-th column of A and âi = ai/
√
dii.

However, the graph Laplacian regularization usually causes

oversmoothing due to the presence of ℓ2-norm in (13). To

mitigate the oversmoothing artifacts, we propose a graph total

variation (gTV) regularization on the abundance map, i.e.,

JTV (A) =
1

2

n∑

i,j=1

‖âi − âj‖1Wij . (14)

Minimizing JTV can preserve edges of the abundance map

for each material in a nonlocal fashion. The proposed gTV-

regularized model for blind hyperspectral unmixing can be

formulated as

min
S∈Ωw×k

A∈Ωk×n,1⊤
k

A=1⊤
n

1

2
‖X − SA‖2F + λJTV (A), (15)

where λ is a positive tuning parameter. Note that we use

the given hyperspectral data X to generate a weighted graph

by assuming that spectral signatures and abundance maps

share the same spatial smoothness. Note that the sum-to-

one constraint on the abundance map is commonly used in

hyperspectral unmixing [2]; it implicitly enforces sparsity

because it is related to the ℓ1-norm. By considering only

the sparsity of spatial gradients, the spatial TV regularization

has a tendency to oversmooth the abundance map [51]. On

the contrary, the proposed gTV regularization considers the

similarity of spectral information at different pixels and hence

it can preserve fine spatial features in the abundance map.

In order to apply the ADMM framework, we rewrite the

constraints in (15) using indicator functions. In general, the

indicator function χ∆ of a set ∆ is defined as

χ∆(Z) =

{
0, Z ∈ ∆;

∞, otherwise.

By denoting Π := {Z ∈ R
k×n : Z ∈ Ωk×n,1

⊤
k Z = 1⊤

n }, we

can rewrite the model (15) as an unconstrained problem,

min
S,A

1

2
‖X − SA‖2F + λJTV (A) + χΩw×k

(S) + χΠ(A). (16)

We introduce two auxiliary variables B ∈ R
k×n, C ∈ R

w×k

and rewrite the objective function (16) as its equivalent form,

min
S,A,B,C

1

2
‖X − CA‖2F + λJTV (B) + χΩw×k

(S) + χΠ(A)

s.t. A = B, S = C.
(17)
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The corresponding augmented Lagrangian is

L =
1

2
‖X − CA‖2F + λJTV (B) + χΩw×k

(S) + χΠ(A)

+
ρ

2
‖A−B + B̃‖2F +

γ

2
‖S − C + C̃‖2F,

where B̃, C̃ are dual variables and ρ, γ are two positive

parameters. Then the ADMM algorithm requires solving four

subproblems at each iteration, i.e., minimizing L with respect

to C, S,A and B individually while fixing the others. Specif-

ically, the C-subproblem reads as

argmin
C

1

2
‖X − CA‖2F +

γ

2
‖S − C + C̃‖2F,

which has a closed-form solution. The S-subproblem seeks the

projection of C − C̃ onto the set of all nonnegative matrices,

which can be solved by hard thresholding. As for the A-

subproblem, the solution can be obtained by projecting a least

squares solution onto the convex set Π, i.e.,

A = PΠ

(
(S⊤S + ρI)−1

(
S⊤X + ρ(B − B̃)

))
, (18)

where PΠ is the projection operator on the set Π that can be

implemented by a fast algorithm [52].

For the B-subproblem, we approximate the nondifferen-

tiable gTV by the graph GL functional. To remove the binary

restriction of MBO, we approximate any real number in

[0, 1] by its best M -bit binary representation [36]. We apply

the MBO scheme on each channel separately, which can be

implemented in parallel. Finally, we combine all the channels

to get an approximated solution with elements in [0, 1] for the

B-subproblem. In all our experiments, we set M = 8. More

specifically, we approximate the matrix B by a set of M binary

matrices Bm ∈ R
k×n with m = 1, · · · ,M such that

Bij ≈
M∑

m=1

2−m(Bm)ij , (19)

where M is the total number of bits being considered and Bm

is the m-th bit channel of the matrix B, i.e., (Bm)ij ∈ {0, 1}.

Likewise, we approximate A and B̃ in the same manner and

get two sets of binary matrices {Am}Mm=1 and {B̃m}Mm=1.

Then for each channel, we approximate the gTV regularization

JTV by the graph GL functional (8). Note that 〈A⊤, LsA
⊤〉 =

tr(ALsA
⊤) due to (5) and hence we obtain the following

minimization problem for each Bm,

min
Bm

ε tr(BmLsB
⊤
m) +

1

ε
Φ(Bm) +

ρ

2λ
‖Bm −Am − B̃m‖2F,

(20)

where Ls and Φ are defined in Section II. Note that we assume

that the graph structure at each channel is consistent with the

one that is defined by the given hyperspectral data X .

We apply the MBO scheme (10) to minimize (20), which

is a two-step iterative algorithm. In particular, the first step

requires solving for B⊤
m from

LsB
⊤
m +

ρ

λ
(B⊤

m −A⊤
m − B̃⊤

m) = 0. (21)

Motivated by [41], we further accelerate the MBO by taking

advantage of the approximated eigendecomposition of Ls

given in (7). Multiplying both sides of (21) with V ⊤ from the

left, we get ΛV ⊤B⊤
m + ρ

λ

(
V ⊤B⊤

m − V ⊤(A⊤
m + B̃⊤

m)
)
= 0,

or equivalently

BmV Λ +
ρ

λ

(
BmV − (Am + B̃m)V

)
= 0, (22)

since V ⊤V = I . As a result, we only need to solve for BmV ∈
R

k×p with a reduced problem size. Denote Zm = BmV and

Dm = ρ
λ

(
BmV − (Am + B̃m)V

)
. At the (τ +1)-th iteration,

we have the following algorithm to update Bm:




Zτ+1
m = Zτ

m(I − dτΛ)− dτ ·Dτ
m

Bτ+1/2
m = V Zτ+1

m

Dτ+1
m =

ρ

λ

(
Bτ+1/2

m − (Am + B̃m)
)
V

Bτ+1
m = H1/2(B

τ+1/2
m ).

(23)

Here the first three equations in (23) are obtained by applying

fixed-point iteration to solve (22), and the last equation in (23)

is from the MBO scheme in (10). Our numerical experiments

show that five iterations of (23) for each Bm-subproblem are

sufficient to produce reasonable results. If the B-subproblem

can be solved within certain accuracy, then the convergence

of ADMM can be guaranteed [53].

In summary, each subproblem in the ADMM algorithm can

be solved efficiently either through a closed-form solution

or within a few iterations. The entire algorithm is presented

in Algorithm 1, which terminates when either the relative

error between two subsequent mixing matrices, i.e., ‖St −
St+1‖F/‖St‖F, or the relative error between two subsequent

abundance maps, i.e., ‖At − At+1‖F/‖At‖F, is smaller than

a given tolerance.

Algorithm 1 Blind Hyperspectral Image Unmixing Based on

the Graph TV and MBO

Input: data X; parameters ρ, λ, maximum numbers of

outer/inner loops Tout/Tin, and tolerance tol.
Output: S and A.

Initialize: S0, A0, and use the Nyström method to get the

reduced eigendecomposition form of the graph Laplacian

L = V ΛV ⊤.

for t = 0, . . . , Tout − 1 do

Ct+1 = (X(At)T + γ(St + C̃t))(At(At)T + γI)−1.

St+1 = max(Ct+1 − C̃t, 0).

At+1 = PΠ

(
((St)TSt+ρI)−1((St)TX+ρ(Bt−B̃t))

)
.

Bitwise update Bt+1 via (23) with τ = 1, . . . , Tin.

Set B̃t+1 = B̃t + (At+1 −Bt+1).
Set C̃t+1 = C̃t + (St+1 − Ct+1).
Stop if the stopping criteria are met.

end for

Here we discuss the complexity of the proposed algo-

rithm and compare it with the other two related methods.

The computational complexity of the Nyström method is

O(wpn+p2n), mainly for computing W12 and singular value

decomposition in (6). This is much smaller than calculating the

graph Laplacian matrix directly as described in Section II-A,

which is O(wn2). As for the space complexity, using the
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approximated graph Laplacian requires storing only O(pn)
numbers, while using the full graph Laplacian would need

to store O(n2) numbers.

The time complexity of each step in Algorithm 1 is sum-

marized as follows:

• C update: O(wkn);
• S update: O(wk);
• A update: O(wkn+ nk log k) = O(wkn);
• B update per bit channel: O(kpn);
• B̃, C̃ update: O(kn).

Therefore, the time complexity for our algorithm per iteration

is O(kn(w + p)) in total. Given p ≪ n and k < w, this is

faster than the other two related methods: SUnSAL-TV [15]

and GLNMF [31], which are in the order of O(wn(w+log n))
and O(kn(w + kn)), respectively.

IV. NUMERICAL EXPERIMENTS

In this section, we conduct extensive experiments on syn-

thetic and real data to demonstrate the performance of the

proposed approach, referred to as “gtvMBO”, in compari-

son with the state-of-the-art methods in blind and nonblind

hyperspectral unmixing. Methods that we compare include

FCLSU [11], SUnSAL-TV [15] (denoted by STV), GLNMF

[31], fractional norm ℓq regularized unmixing method with

q = 0.1 (denoted by FRAC) [13], NMF-QMV [21] (denoted

by QMV), and our earlier unmixing work based on the graph

Laplacian [50] (denoted by GraphL).

To quantitatively measure the performance, we adopt the

following metrics to calculate the error between an estimation

Ŷ ∈ R
r×c and the reference Y ∈ R

r×c.

1) Root-mean-square error (RMSE)

RMSE(Y, Ŷ ) =
1

c

√√√√1

r

r∑

i=1

‖yi − ŷi‖22,

where yi ∈ R
c is the i-th row of Y .

2) Normalized mean-square error (nMSE)

nMSE(Y, Ŷ ) =
‖Y − Ŷ ‖F

‖Y ‖F
.

3) Spectral angle mapper (SAM) in degrees

SAM(Y, Ŷ ) =
1

c

c∑

j=1

arccos

(
y⊤
j ŷj

‖yj‖2‖ŷj‖2

)
,

where yj ∈ R
r is the j-th column of Y . The index j is

skipped in the sum when ‖yj‖2‖ŷj‖2 = 0.

In order to make a fair comparison, we use the initial-

ization steps in [13] for all the methods considered in this

paper. In particular, VCA [54], which returns 10k endmember

candidates that are clustered into k groups. This is directly

used as S for FCLSU and FRAC, while we use the mean

spectrum within each group and the sum of the abundances

estimated by FCLSU within each group as an initial guess

of S0 and A0, respectively, for all compared methods. We

set σ = 5 in the weight computation (3) and randomly select

0.1% samples from the entire pixel list in the Nyström method

to approximate the graph Laplacian. As for γ, ρ and λ, we

choose the optimal parameters that minimize nMSE(A, Â). We

first perform a coarse grid search with parameter candidates

evenly spaced over the interval on a log scale, then do a

finer grid search around the best parameters, e.g., search for

an optimal λ in {102.5, 102.75, . . . , 103.5} given λ = 103

from the coarse grid search. For GraphL and gtvMBO,

the coarse grid search is over λ ∈ {10−5, 10−4, . . . , 105},

ρ/λ ∈ {10−3, 10−2, . . . , 103}, and γ ∈ {102, 103, . . . , 105}.

For FRAC, we fix ρ = 10 as suggested in [13] and search for

λ among {10−5, 10−4, . . . , 105}. For QMV, we search for λ
(denoted by β in [21]) ∈ {10−5, 10−4, . . . , 105}. For GLNMF

and STV, we search for λ, µ ∈ {10−5, 10−4, . . . , 105}. See

Section V for a detailed discussion on parameter selection

and sensitivity of our method. Our Matlab source codes are

available at https://github.com/HarlinLee/gtvMBO-public. All

experiments are performed in Matlab 2018b on a MacBook

Pro 2017 with an 2.9 GHz Intel Core i7 and 16GB RAM in

double precision.

A. Synthetic Data

To evaluate the performance of all methods, we construct

a set of synthetic data X with ground truth mixing matrix

S and endmember matrix A. Fig. 1 shows the ground truth

abundance maps. We adopt the same simulation procedure as

in [15], where an endmember library is generated by randomly

selecting 240 materials from the USGS 1995 library with

224 spectral bands. The noise-free hyperspectral image with

75×75 pixels is generated by a random selection of 5 spectral

signatures from the library. The respective ground truth abun-

dances are randomly fixed as 0.1149, 0.0741, 0.2003, 0.2055,

and 0.4051. The noisy hyperspectral data is then obtained by

adding zero-mean Gaussian noise with a signal-to-noise ratio

(SNR) of 10db and 20db, respectively.

Table. I compares all methods on the noisy data quanti-

tatively. To get a visual comparison, we present the case of

SNR= 10dB in Fig. 2. In particular, we show all the recon-

structed abundance maps corresponding to the fifth ground-

truth abundance in Fig. 1. We exclude the results of FCLSU

and FRAC in Fig. 2, as both fail to recover the abundance

maps under such a low SNR scenario. One can see that STV

and GLNMF have a different color range on the background

comparing to other methods, while the QMV background is

still noisy. The proposed gtvMBO achieves a balance between

recognizable objects and background noise, while the result

of GraphL is slightly oversmoothed. Note that the proposed

gtvMBO only considers the regularization on A, while QMV

uses the minimum-volume based regularization on S, but

our method still gives comparable results in recovering S
compared to QMV, and has an advantage on reconstructing A,

especially when the underlying abundance map has spectral

geometries. In addition, gtvMBO can reconstruct A well

within a few iterations but it takes more iterations to get

a good reconstruction of S. In the preprocessing step, both

GraphL and gtvMBO take less than a second to estimate the

eigenvalues and eigenvectors of the low-rank approximation to

the graph Laplacian by the Nyström method, while GLNMF

https://github.com/HarlinLee/gtvMBO-public
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FCLSU FRAC STV GLNMF QMV GraphL gtvMBO

SNR = 10

RMSE(A, Â) 0.242 0.157 0.248 0.24 0.093 0.0513 0.051

nMSE(A, Â) 1.05 0.696 1.07 1.03 0.435 0.364 0.327

RMSE(S, Ŝ) 0.14 − − 0.211 0.612 0.16 0.16

nMSE(S, Ŝ) 0.205 − − 0.321 0.881 0.244 0.241

SAM(S, Ŝ) 10.2 − − 14.8 40.5 8.65 8.57

SNR= 20

RMSE(A, Â) 0.106 0.106 0.065 0.107 0.048 0.043 0.065

nMSE(A, Â) 0.523 0.523 0.314 0.521 0.227 0.242 0.314

RMSE(S, Ŝ) 0.055 − − 0.067 0.037 0.095 0.054

nMSE(S, Ŝ) 0.092 − − 0.104 0.053 0.13 0.091

SAM(S, Ŝ) 2.67 − − 3.18 2.69 6.88 2.65

TABLE I: Unmixing results on the synthetic dataset.

typically takes a minute to calculate the graph Laplacian. In

terms of running time, gtvMBO is slower than FRAC and

GraphL, but much faster than the other competing methods.

B. Real Data

We use the real hyperspectral data X with the references S
and A from [55], including Samson, Jasper Ridge and Urban

data sets. In particular, the endmembers are manually selected

from the image data by assuming k distinct materials with one

signature per material and neglecting possible spectral variabil-

ity issues. The reference abundances are obtained via FCLSU.

This way of generating references for endmembers/abundances

has been widely used for assessing the performance of various

unmixing algorithms. As no ground-truth is available for the

real data, it is common to compare the unmixing results to the

reference endmembers/abundances.

1) Samson: In the first experiment, we use the Samson data

with 95×95 pixels and 156 spectral bands after preprocessing,

whose reference has three endmembers. The unmixing results

are given in Figs. 3-4 and Table II for endmembers, abundance

maps, and quantitative metrics, respectively. In Fig. 3, all

endmember plots can capture the rough shape and discon-

tinuities in the ground truth but with different heights. The

gtvMBO result has many endmember elements that are close

to zero since we enforce the nonnegative constraint on the

endmember S by using the hard thresholding operator in the

S-subproblem. For the abundance maps, the STV results look

blurry when trying to preserve spatial smoothness and the

GLNMF results are noisy in the homogeneous areas, as its

graph Laplacian is based on the entire data that may contain

certain amount of noise. Both blurring and noisy artifacts

can be mitigated by the low-rank approximation of graph

Laplacian in the Nyström method as in GraphL and gtvMBO.

On the other hand, gtvMBO yields sharper edges than GraphL,

thanks to the graph TV regularization. Table II reports that

GLNMF gives the best estimations in S at the cost of high

computational costs, whereas the proposed method is the best

in reconstructing the abundance maps. Note that “graph time”

in Table II is referred to as the time needed to compute

FCLSU FRAC STV GLNMF QMV GraphL gtvMBO

RMSE(S, Ŝ) 0.044 − − 0.036 0.073 0.052 0.070

nMSE(S, Ŝ) 0.169 − − 0.153 0.302 0.203 0.296

SAM(S, Ŝ) 3.64 − − 4.49 12.8 7.86 9.84

RMSE(A, Â) 0.18 0.165 0.165 0.187 0.148 0.139 0.096

nMSE(A, Â) 0.455 0.429 0.375 0.502 0.428 0.302 0.243

Graph time (sec) − − − 66.4 − 0.082 0.082

Alg. time (sec) 2.34 0.052 4.08 8.73 1.6 0.094 0.609

λ − 1 0.01 1 102.75 10−5.25 10−3.75

ρ − 10 − − − 10−1.75 10−2.25

γ − − − − − 105 104

µ − − − 1 − − −

Iterations − 2 1000 1000 101 30 30

TABLE II: Unmixing results on the Samson dataset.

the adjacency matrix (for GLNMF) and the graph Laplacian

matrix (for GraphL and gtvMBO), while “algorithm time,”

or “alg. time” in short, refers to the time needed to run the

unmixing algorithm after initialization and graph construction.

The overall computation time of gtvMBO is the sum of “graph

time” and “time,” which is comparable to QMV and much

faster than GLNMF.

2) Jasper Ridge: In the second experiment, we test the

Jasper Ridge data which has 100×100 pixels and 198 spectral

bands. The unmixing results for endmembers and abundance

maps are shown in Figs. 5-6. In Fig. 6, the FRAC abun-

dance maps have the highest image contrast, while mistakenly

identifying trees and roads in some areas, especially the top

right part. The STV abundance maps are over-smoothed,

especially in the Dirt abundance map. Since only the five

nearest neighbors are considered when calculating the pairwise

weight of a fully-connected graph, GLNMF may miss some

global features while preserving fine details. For example,

some variations in the water are captured but some roads

are not identified in the GLNMF abundance maps. One can

see that both GraphL and gtvMBO perform very well at

identifying Water and Road abundance maps because of the

learned graph structure in the Nyström method. Specifically

for the road abundance, these two methods can recover the

road on the rightmost part of the image. This phenomenon

could be explained by the fact that it is a very narrow structure

and the nonlocal similarity with road pixels across all bands

plays an important role, illustrating an advantage of using

graph TV over spatial TV. The gtvMBO results are even

better than GraphL in preserving the sharpness especially in

the Dirt abundance map. The endmember spectral plot in

Fig. 5 also confirms that the methods failing for the road

extract a very poor signatures compared to the reference.

Table III compares all the methods quantitatively. It is true

that QMV gives the best results on this dataset, which is

probably because that the assumptions made by QMV hold on

Jasper, but not on the other data sets. The proposed gtvMBO

can recover endmembers and abundance maps in a balanced

manner. The comparison results imply that a good RMSE on

the reconstructed data can not guarantee a good unmixing
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Fig. 1: Ground truth abundance maps of the synthetic data (five endmembers).

STV GLNMF QMV GraphL gtvMBO

Fig. 2: Reconstructed abundance maps of the fifth element from the noisy data with SNR 10dB. All images are visualized over the range
[0, 1].

Reference VCA GLNMF QMV GraphL gtvMBO

Fig. 3: Endmember profiles (S) of the Samson dataset.

FCLSU FRAC STV GLNMF QMV GraphL gtvMBO

RMSE(S, Ŝ) 0.144 − − 0.133 0.031 0.18 0.083

nMSE(S, Ŝ) 0.608 − − 0.598 0.107 0.629 0.288

SAM(S, Ŝ) 16.8 − − 14.9 3.54 14.6 12.8

RMSE(A, Â) 0.148 0.109 0.142 0.111 0.073 0.145 0.136

nMSE(A, Â) 0.472 0.46 0.47 0.437 0.221 0.38 0.353

Graph time (sec) − − − 126 − 0.225 0.225

Alg. time (sec) 4.27 9.52 4.56 10.4 3.89 0.34 3.32

λ − 1 10−1.25 10−0.5 102.25 10−4.5 10−4.25

ρ − 10 − − − 0.1 10−2.75

γ − − − − − 104 103.75

µ − − − 10−2.5
− − −

Iterations − 300 1000 1000 101 100 100

TABLE III: Unmixing results on the Jasper Ridge dataset.

performance.

3) Urban: Lastly, we test a relatively large dataset - the

Urban dataset with 307× 307 pixels and 162 spectral bands,

whose reference has four endmembers. The results for all

methods are presented in Figs. 7-8. In Fig. 8, most methods,

including FCLSU, FRAC, STV, GLNMF, and QMV, yield

abundance maps in low image contrast due to the initial

guess, especially in the abundance maps for the asphalt and

roof. As a by-product, the proposed gtvMBO can greatly

improve the image contrast of the abundance map due to

the graph TV regularization. In addition, all the methods

have a hard time extracting a good roof endmember, but

the graph-based approaches are able to compensate this with

more features preserved. Also note that because QMV does

not enforce non-negativity on S, the resulting spectrum for

Asphalt in QMV goes below zero. In the Roof abundance

maps, only GraphL and gtvMBO can capture those sporadic

roof tops since the approximated graph Laplacian considers

the pairwise similarity across spectral bands in the original

data with dimension w much greater than the dimension k for

the column space of the abundance map A. In Table IV, we

list all quantitative metric comparisons where gtvMBO reaches

the smallest residual error and get comparable reconstruction

errors for the abundance map and endmember with GraphL.

Overall, the proposed method can reconstruct abundance maps

and endmember matrices with high accuracy in a short time.

V. DISCUSSION

In this section, we discuss parameter selection in our

algorithm. Due to heavy computations involved in these tasks,

all the results presented in this section are performed on a
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Fig. 4: Abundance maps (A) of the Samson dataset.

workstation of DELL R7425 Dual Processor AMD Epyc 32

core 2.2 GHz machines with 512GB RAM each.

There are several tuning parameters in our approach: the

filtering parameter σ in computing pairwise weights of the

graph, the regularization parameter λ associated with the graph

TV in the proposed unmixing model, the penalty parameters

ρ and γ in the proposed algorithm based on ADMM, and

time step size dt for the diffusion step in the modified MBO

scheme. The value of σ could be changed proportionally

according to the number of spectral bands w. Since all the

test datasets have 100∼200 spectral bands, we find that σ = 5

FCLSU FRAC STV GLNMF QMV GraphL gtvMBO

RMSE(S, Ŝ) 0.109 − − 0.188 0.211 0.099 0.099

nMSE(S, Ŝ) 0.635 − − 1.35 1.2 0.636 0.639

SAM(S, Ŝ) 19.5 − − 17.9 46.4 14.8 14.9

RMSE(A, Â) 0.145 0.153 0.289 0.175 0.245 0.134 0.136

nMSE(A, Â) 0.438 0.45 0.756 0.554 0.655 0.384 0.393

Graph time (sec) − − − 10800 − 9.09 9.09

Alg. time (sec) 34.7 0.85 142 86.1 29 0.353 22.4

λ − 10−0.5 10−2.25 10−1.5 101.75 10−3.25 10−6

ρ − 10 − − − 10−1.25 10−5.5

γ − − − − − 104.75 104.75

µ − − − 10−5.5
− − −

Iterations − 2 1000 1000 101 10 10

TABLE IV: Unmixing results on the Urban dataset.

typically gives good results, so we fix it throughout the

experimental section. To solve the B-subproblem, we fix the

step size dt = 0.01 and run 5 iterations of (23) in the modified

MBO scheme.

To find optimal or sub-optimal values of λ, ρ, and γ,

we consider a skillful strategy which alleviates the time-

consuming parameter tuning. If the value of λ increases,

the recovered abundance map A has a graph structure more

similar to that of the given data X but with larger residual

error and vice versa. The penalty parameters ρ and γ both

control the convergence of the proposed algorithm according

to the ADMM framework. In other words, λ is a model

parameter that affects the performance and ρ, γ are algorithmic

parameters that affect the convergence. Therefore, we suggest

a set of default parameters by fixing the ratios as ρ/λ = 1,

γ/λ = 107 and only tuning the regularization parameter λ.

In fact, the B-subproblem is determined by the ratio ρ/λ.

Table V shows that using these default algorithmic parameters

still ensures comparable unmixing performance on the datasets

to when we tune all the three parameters together. Note that

the optimal parameters indeed yield better results than the

default parameters in terms of SAM(S, Ŝ), which is due to

the fact that our regularization is formulated on A and the

optimal parameters are determined according to nMSE(A, Â),
resulting in more deviations in S. In future work, we might

consider choosing optimal parameters based on a combination

of evaluation metrics on S and A.

In addition, learning a graph Laplacian or its low-rank ap-

proximation is an important preprocessing step in our proposed

method. In the Nyström method, the sampling rate is fixed

as 0.1% in all our experiments. Our empirical results show

that this is sufficient for preserving the graph structure of

the original hyperspectral data. In fact, there is a trade-off

between the number of samples corresponding to the rank of

the approximated Laplacian and the orthogonality of columns

in the approximated eigenvectors: more samples can improve

accuracy in approximating the graph Laplacian but may result

in loss of orthogonality of the resulting eigenvectors, which is

also desired in our modified MBO scheme (23). Other adaptive

sampling schemes for the Nyström extension [56] will be
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Reference VCA GLNMF QMV GraphL gtvMBO

Fig. 5: Endmember profiles (S) of the Jasper Ridge dataset.
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Fig. 6: Abundance maps (A) of the Jasper Ridge dataset.

Samson Jasper Urban

RMSE(S, Ŝ) 0.07 / 0.062 0.083 / 0.13 0.099 / 0.10

nMSE(S, Ŝ) 0.3 / 0.23 0.29 / 0.44 0.64 / 0.67

SAM(S, Ŝ) 9.84 / 16.1 12.8 / 17.8 14.9 / 15.8

RMSE(A, Â) 0.096 / 0.12 0.14 / 0.13 0.14 / 0.2

nMSE(A, Â) 0.24 / 0.27 0.35 / 0.35 0.39 / 0.41

λ 10−3.5 10−8 10−2.5

TABLE V: Unmixing results of gtvMBO in A/B format, where A is
the previous result using optimally tuned λ, ρ, γ, and B is the result
of using default ratios ρ/λ, γ/λ and only tuning the λ value (given
in the last row.)

explored in our future work. For high performance computing

applications, the Nyström loop can be optimized for specific

architectures as in [57].

VI. CONCLUSIONS

We propose a graph TV regularized approach for blind hy-

perspectral unmixing to estimate both the abundance map and

the mixing matrix under the assumption that the underlying

abundance map and the given hyperspectral data share the

same graph structure. In particular, we applied the Nyström

method to approximate the eigenvalues and eigenvectors of a

normalized graph Laplacian. To solve the proposed gTV regu-

larized unmixing problem with probability simplex constraints,

we derived an efficient algorithm based on ADMM. One of the

subproblems is decomposed into bits and then solved by the

fast MBO scheme at each bit channel. Extensive experiments

were conducted to demonstrate that the proposed framework is

effective and efficient, especially when the hyperspectral data

have similarities across spectral bands. In the future, one could

integrate robust graph learning methods and minimum-volume

based regularizations into hyperspectral unmixing.
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