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Abstract—Deep learning (DL) has heavily impacted the data-
intensive field of remote sensing. Autoencoders are a type of DL
methods that have been found to be powerful for blind hyperspec-
tral unmixing (HU). HU is the process of resolving the measured
spectrum of a pixel into a combination of a set of spectral sig-
natures called endmembers and simultaneously determining their
fractional abundances in the pixel. This article details the vari-
ous autoencoder architectures used in HU and provides a critical
comparison of some of the existing published blind unmixing meth-
ods based on autoencoders. Eleven different autoencoder methods
and one traditional method will be compared in blind unmixing
experiments using four real datasets and four synthetic datasets
with different spectral variability. Additionally, extensive ablation
experiments with a simple spectral unmixing autoencoder will be
performed. The results are interpreted in terms of the various im-
plementation details, and the question of why autoencoder methods
are so powerful compared to traditional methods is unraveled. The
source codes for all methods implemented in this article can be
found at https://github.com/burknipalsson/hu_autoencoders.

Index Terms—Autoencoder, deep learning, hyperspectral data
unmixing, image processing, multitask learning (MTL), neural
network, spectral–spatial model.

I. INTRODUCTION

OVER the last decade, deep learning (DL) has opened new
possibilities in processing data in data-intensive fields,

such as hyperspectral imaging. Hyperspectral imaging belongs
to imaging spectrometry, where an entire spectrum is acquired at
every pixel. The technique has been defined by Goetz et al. [1] as
“the acquisition of images in hundreds of contiguous, registered,
spectral bands such that for each pixel a radiance spectrum can
be derived.”

Hyperspectral remote sensing is a passive remote sensing
technique that combines spectroscopy and digital photography.
As a remote sensing application, it involves extracting infor-
mation from scenes on the surface of the earth. Because of
the high spectral resolution, hyperspectral imaging data are
very high dimensional and large in size compared to data from
other imaging techniques. This high dimensionality, along with
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both linear and nonlinear spectral mixing, requires sophisticated
data analysis methods. These methods are often in the form of
nonconvex optimization and modeling [2].

The main topics within hyperspectral remote sensing are clas-
sification, data fusion, spectral unmixing, target detection, and
physical parameter retrieval [3]. Hyperspectral imaging is not
confined to remote sensing. It has applications in agriculture and
the food industry, biotechnology, medical sciences, the pharma-
ceutical industry, manufacturing, and forensic science [4]–[9].

Due to the high spectral resolution of hyperspectral images
(HSIs), it is possible to determine which pure materials (end-
members) are present in a scene. However, due to the low
spatial resolution of HSIs, a single pixel often contains mul-
tiple endmembers. Therefore, determining the spectra of the
endmembers in an HSI and their proportions in each pixel,
i.e., their abundances, is a challenging inverse problem, which
is the central problem of hyperspectral unmixing (HU). As a
result, HU methods often determine only the endmembers, and
their abundances are then subsequently determined by another
method using the extracted endmembers. Methods that deter-
mine both the endmembers and their abundances simultaneously
are known as blind unmixing methods.

The problem of blind HU can be formulated as a nonnegative
matrix factorization (NMF) problem, a type of blind source
separation problem. The idea of autoencoders has been around
since the 1990s [10], and they are neural networks [11] well
suited for solving aforementioned problems.

An autoencoder consists of an encoder that generates a com-
pressed representation of its input and a decoder that recon-
structs the input from the representation. By imposing a bot-
tleneck in the network, the network is forced to discover and
learn to leverage any structure present in the data, resulting in
compressed knowledge representations in the bottleneck itself.
Applications of autoencoders include dimensionality reduction,
feature extraction, image generation, data compression, and
many more [12], [13].

The first autoencoder-based method for HSI classification was
published in 2014 [14], where an autoencoder was used for
feature extraction. Autoencoders are commonly used for feature
extraction and dimensional reduction in hyperspectral classifi-
cation [15]. Works based on autoencoders for pan-sharpening
and image fusion start to appear in 2015 with the method
in [16] among the first to be published. Use of autoencoders for
change and anomaly detection appears much later or in 2018,
with [17] being among the first publications; similar for target
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detection, with [17] from 2018 being among the first papers
to utilize autoencoders. The first published method using an
autoencoder for HU dates back to 2015 [18], and now, six years
later, more than two dozen papers have been published on HU
using autoencoders.

In recent years, excellent reviews have been published on
traditional HU methods; examples include [19]–[26]. The
work [19] reviews nonlinear HU methods. In [20], efforts to
incorporate spatial information are reviewed. The paper [21]
gives a good review of HU in general. The work in [22] gives
a comprehensive exploration of all of the major unmixing ap-
proaches and their applications. The papers [23] and [24] focus
on endmember variability in HU and review how it can be ad-
dressed, and the work [25] gives a signal processing perspective
on HU. Finally, [26] gives a comprehensive review on spectral
variability.

There have also been reviews published on DL in remote
sensing in general and for hyperspectral imaging, such as [15]
and [27]. The only review paper focusing on DL for spectral
unmixing is [28]. The work [2] is a good review of interpretable
hyperspectral artificial intelligence. This article attempts to give
a comprehensive overview of autoencoder architectures and
provide a critical comparison of autoencoder-based methods
for HU, with a particular focus on blind methods. Recent
autoencoder-based methods will be catalogued, discussed, and
compared in experiments with both synthetic and real datasets.
Nonblind methods using DL techniques are discussed, but the
experiments will only involve blind methods.

Notation: The notation shown below will be used in this
article.
P Number of pixels in an HSI
B Number of bands in an HSI
R Number of endmembers to estimate
A The matrix of endmembers
S The matrix of abundances
ai Endmember i
sp Abundance vector of pixel p
xp Spectrum of pixel p
g Activation function
z
(l)
j Activation of unit j in layer l

W (l) Weights of layer l

II. HYPERSPECTRAL UNMIXING

A. Hyperspectral Imaging

Airborne or spaceborne hyperspectral sensors simultaneously
acquire images in up to several hundred contiguous spectral
bands. The sensors capture both the light emitted and the light
reflected by objects as a spectrum consisting of several hundreds
of channels. This results in a spectral response curve for each
pixel in the image. Because the measured signal from the surface
is affected by atmospheric effects, such as clouds, water vapor,
and aerosols, it is converted to reflectance. Reflectance is defined
as the ratio between the flux coming from the surface and
the incidental flux. This makes it an intrinsic property of the

materials being imaged. This conversion minimizes the effects
of the imaging conditions.

Since every pixel in an HSI corresponds to a spectral response
curve, the image itself is a 3-D cube of either radiance or
reflectance values. The reflectance spectra of pure materials are
known as endmembers. Because of the low spatial resolution
of hyperspectral sensors, a pixel usually contains multiple end-
members. This makes the spectrum of the pixel some combina-
tion of the endmembers, and the pixel is said to be mixed. The
proportional area of the pixel that each endmember covers is
known as the abundance fraction of the endmember.

B. Mixing Models

The problem HU aims to solve arises from the fact that limited
spatial resolution leads to mixed pixels. In what manner this
spectral mixing happens and what assumptions can be made
regarding it is central to unmixing and is captured through the so-
called mixing models. There are a linear mixing model (LMM)
and nonlinear mixing models, with the LMM being the most
widely used because of its simplicity and effectiveness.

1) Linear Models: Linear mixing is valid when the mixing
scale is macroscopic, and the incident light only interacts with
one pure material [19]. The spectral mixing occurs within the
sensor because the resolution is not fine enough to separate the
materials. Under the LMM, the spectrum of a pixel xp of an
HSI Y ∈ Rw×h×B having B bands is modeled as a convex
combination of R endmembers am ∈ RB×1 as

xp =

R∑
m=1

smpam + εp (1)

where the abundance fractions, smp, of pixel, xp, must satisfy
the following two physically inspired constraints: smp ≥ 0 or
abundance nonnegativity constraint (ANC) and

∑R
m=1 smp = 1

or abundance sum-to-one constraint (ASC). εp is noise. This can
also be written as a matrix–vector multiplication as

xp = Asp + εp (2)

where A ∈ RB×R is the endmember matrix having the end-
members in its columns and sp is the abundance vector. The
main drawback of the LMM is its inability to represent spectral
variability, such as variations due to varying illumination condi-
tions. There are other extended and augmented LMMs that can
model spectral variability, such as the perturbed LMM in [29],
the extended linear model in [30], the augmented model in [31],
and the data-dependent multiscale model in [32].

2) Nonlinear Models: When the mixing scale is not macro-
scopic as for intimate mixtures of materials, or the incident light
scatters off multiple materials, nonlinear models are needed [19],
[33]. Usually, only bilinear interactions are modeled, i.e., when
light reflected off one material reflects off another, a case of
secondary illumination. Models that model bilinear interactions
are called bilinear models [34]–[36].

Another case is intimate mixtures of grains or particles in close
contact with each other, e.g., mineral particles in sand and soil.
Light in such mixtures will typically interact multiple times with
the particles making up the mixture before reaching the observer.
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The modeling of the optical characteristics of intimate mixtures
is highly nontrivial. The Hapke model [37] is one example.

An example of a general nonlinear model is

xp = Θ(A, sp) + εp (3)

where nonlinear interactions between the endmembers in A
are given implicitly by the function Θ and parameterized by
the abundance vector sp. This article is only concerned with a
restriction of (3) to the post-nonlinear structure given by

xp = Ψ(Asp) + εp (4)

where Ψ is a nonlinear function acting on the linear trans-
form Asp. The Hapke model can be considered a special case
of (4) [38]. Later, it will be seen that (4) allows for easier
extraction of the endmember matrix A and the abundances sp
than the general model (3).

C. Spectral Unmixing Methods

Often the first step in HU is to determine how many endmem-
bers are in a given HSI. The most common methods for this are
the method of virtual dimensionality [39], hyperspectral signal
identification with minimum error method [40], the eigenvalue
likelihood maximization method [41], and hyperspectral sub-
space identification using SURE [42].

Traditional methods for spectral unmixing are often grouped
into three main categories, with the categories defined by how
the problem is interpreted [21]. Among the earliest methods are
the sparse regression methods that seek to express the observed
spectra as linear combinations of known spectral signatures
from spectral libraries [43]–[46]. Methods based on compressed
sensing, such as [47]–[49], also belong to this category of sparse
regression methods.

Another category of methods is geometrical methods. These
methods are centered around the observation that the spectral
vectors generated according to the LMM lie in anR− 1 simplex
in RB×1 with the endmembers at the vertices. Geometrical
methods can be further categorized into pure pixel methods or
minimum volume simplex methods based on whether they rely
on the presence of pure pixels, i.e., the spectra of pure materials
in the data or not. A well-known and widely used pure pixel
method is the vertex component analysis (VCA) [50], while
minimum volume simplex analysis [51] is an excellent example
of a minimum volume technique.

Further examples are �1/2 and �q sparsity constrained mini-
mum volume methods in [52] and [53], respectively. The last
category of traditional methods is statistical methods, which
reformulate the unmixing problem as an inference problem
[54]–[56]. Because of the nonnegativity constraint in mixing
models, NMF has been widely used by blind unmixing meth-
ods [52], [53], [57]. Most statistical approaches to unmixing are
either variants or some extensions of NMF.

III. AUTOENCODERS

Fig. 1 shows a schematic of an autoencoder. An autoencoder
consists of two parts: an encoder and a decoder. The encoder,GE ,

Fig. 1. Schematic of a simple autoencoder with a single hidden layer bottle-
neck.

encodes the input, xp, into a latent code or a hidden represen-
tation, hp = GE(xp), in a latent space of typically much lower
dimension. The decoder, GD, must then reconstruct the original
input from the latent code, x̂p = GD(hp), to minimize the loss

L(xp,GD(GE(xp))) (5)

where L(xp, x̂p) is some measure of the discrepancy between
the original input xp and the reconstruction by the autoen-
coder, x̂p. If WE denotes the weight matrix of the encoder
and WD denotes the weight matrix of the decoder, the forward
pass of the simple autoencoder in Fig. 1 can be written as

x̂p = gD(WD(gE(WExp))) (6)

where gE and gD are the activation functions of the hidden layer
and the output layer, respectively. The reconstruction loss is
indifferent to latent space characteristics; therefore, generally,
we need additional constraints to ensure that the autoencoder
learns meaningful representations, i.e., that it learns the data
manifold.

Thus, using appropriate regularization can force the autoen-
coder to learn the necessary variations to reconstruct training
examples. We want a balance between accurate reconstruction
and staying on the data manifold. The regularized loss has the
form

Lregularized(xp, x̂p) = L(xp, x̂p) + λJ(hp,WE ,WD) (7)

where J(hp,WE ,WD) is some penalty that can be a function
of the activities of the units in the bottleneck layer, the weights
of the decoder, or the encoder, and λ is the tuning parameter,
which controls how strong the regularization is.

Now, if we wish to perform spectral unmixing using an
autoencoder, such as in Fig. 1, it is easy to derive the basic
architecture of the autoencoder by comparing the forward pass
given by (6) to the LMM given by (2). The activation function
of the decoder, gE , is required to be linear; therefore, A = WD

and sp = gE(WExp).
The encoder encodes the input spectrum to a latent code that

can be interpreted as the abundance fractions. The linear decoder
layer then reconstructs the input as a convex combination of
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the columns of its weights matrix (the endmembers) with the
abundance fractions as the coefficients. The simple autoencoder,
however, fails to satisfy the ANC and ASC constraints. Hence,
a more sophisticated architecture is needed to fully implement
the LMM.

The next few sections will give a brief overview of different
types of autoencoder that have been used for HU.

A. Sparse Nonnegative Autoencoders

It is possible to make autoencoders discover and utilize struc-
tures in the data without having a bottleneck layer with fewer
units than the input layer. This is done by forcing the activations
in the hidden layers to be sparse. Fig 2 shows a schematic of such
an autoencoder. This again results in an information bottleneck
that prevents the autoencoder from just learning the identity
function.

However, since the number of bands in an HSI is much greater
than the number of endmembers to estimate, sparse autoencoders
for unmixing use a sparse bottleneck layer, i.e., a layer that has
much fewer units than the input layer, and which is required to
be sparse via a regularizing term in the loss function such as
�1-norm penalty on the activities of the units in the bottleneck
layer.

In order to satisfy the ANC constraint, the abundance frac-
tions, i.e., the output of the encoder part, must be nonnegative.
This can be done in more than one way. One way is to select an
activation function for the last encoder layer that outputs only
nonnegative numbers such as the rectified linear unit (ReLU)
activation [58] given by

ReLU(zi) = max(0, zi) (8)

or the sigmoid activation function given by

sigmoid(zi) =
ezi

1 + ezi
. (9)

Another way is to let the implementation of the ASC constraint
also take care of the ANC constraint. Using, e.g., the softmax
activation function

σ(z)i =
ezi∑
j e

zj
(10)

to implement the ASC constraint ensures that the abundance
fractions sum-to-one and that they are nonnegative. Later in this
article, different ways to implement the ASC constraint will be
discussed.

It is also necessary to make sure that the weights of the decoder
are all nonnegative as they correspond to the endmembers, which
represent reflectance values and must, therefore, be nonnegative.
This can be done in two ways: employing a nonnegativity kernel
constraint or weights clamping in the DL framework used to
implement the method and using a regularization that penalizes
negative weights. The sparse autoencoder that satisfies all of
these nonnegativity constraints is known as a sparse nonnegative
autoencoder.

Such an autoencoder is effectively implementing NMF. It
factors the observed HSI into the product of two nonnegative
matrices, namely, the nonnegative matrix of abundance fractions

Fig. 2. Schematic of a sparse autoencoder with a single hidden layer.
Dark hidden units have higher activation strength than the lighter ones.

Fig. 3. Probabilistic graphical model of a VAE.

and the mixing matrix having the endmembers as its columns.
Such autoencoders are widely used in problems that can be
solved through NMF, such as various blind separation prob-
lems [59], [60].

B. Variational Autoencoders

The latent space of traditional autoencoders is irregular, mak-
ing them unsuitable as generative models [61]. Here, irregular
means that two points close in latent space are not guaranteed
to be similar once decoded. This means that two similar inputs
are not necessarily encoded to points close together in the latent
space. Variational autoencoders (VAEs) [62] solve this problem
by utilizing regularized training that ensures that the latent space
has good properties.

Fig. 3 shows the probabilistic graphical model for VAEs. The
VAE contains a probability model of data x and latent vari-
ables h. The joint probability distribution of x and h, p(x,h),
factorizes over the graph as p(x,h) = p(x|h)p(h). Only x is
observed as indicated by the shaded circle, and we wish to
infer the characteristics of h, i.e., the conditional probability
distribution p(h|x)

p(h|x) = p(x|h)p(h)
p(x)

(11)

where the evidence p(x) =
∫
p(x|h)p(h)dh is an intractable

distribution. However, p(h|x) can be approximated with a
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Fig. 4. Schematic of an adversarial autoencoder.

tractable distributions q(h|x) by minimizing the Kullback–
Leibler (KL) divergence between p(h|x) and q(h|x) as

minKL(q(h|x)‖p(h|x)). (12)

It is easy to show that minimizing the KL divergence above
is equal to maximizing the following expression known as the
variational lower bound:

Eq(h|x)[log p(x|h)]− KL(q(z|x)‖p(h)). (13)

We can use neural networks to parameterize q(h|x) as qφ(h|x)
(encoder) and p(x|h) as pθ(x|h) (decoder). The reconstruction
of x is then x̂ ∼ pθ(x|h). The first term in (13) is the recon-
struction loss L(x, x̂), and the second term can be viewed as a
regularization term that ensures that q(h|x) is similar to p(h).
The loss of the networks is then given by the negative of (13) as
minimizing its negative is equivalent to maximizing it or

Ltotal(x, x̂) = L(x, x̂) +
∑
j

KL(qφj
(h|x)‖p(h)) (14)

where the sum is over the dimensions of the latent space and
p(h) is usually chosen as an unit Gaussian distribution as it
gives a closed form of the KL term and the reconstruction loss
becomes the mean squared error (MSE) loss.

C. Adversarial Autoencoders

An adversarial autoencoder is an approach that borrows ideas
from generative adversarial networks (GANs) to turn a standard
autoencoder into a useful generative model [63]. A schematic
of an adversarial autoencoder is shown in Fig. 4. Here, p(h) is
some prior distribution that we want to impose on the codes h.
The upper part of the figure is a standard autoencoder that tries
to reconstruct its input x. It has an encoder model, qφ(h|x),
which produces a latent code h, and a decoder model, pθ(x|h),
which reconstructs the input from the latent code. The encoder
model defines an aggregated posterior q(x) as

q(x) =

∫
x

qφ(h|x)pd(x)dx (15)

where pd(h) is the probability density function of the data.

An adversarial autoencoder is obtained by regularizing the
autoencoder described above by matching the aggregated poste-
rior q(x) to some arbitrary prior distribution p(h) [63]. This is
done by borrowing the concept of an adversarial network from
GANs. The network labeled D in Fig. 4 is trained to tell if the
latent code comes from the aggregate posterior q(x) or from the
prior p(h). The autoencoder’s encoder acts as a generator of an
adversarial network, while the networkD acts as a discriminator.

During training, the adversarial network and the autoencoder
are trained alternately. First, the autoencoder updates both the
encoder and the decoder to minimize the reconstruction error.
Then, the adversarial network updates its discriminator network
D to tell apart the true samples (h′ sampled from the prior p(h))
from the ones generated by the encoder part and updates its
generator (the encoder) to confuse the discriminator D. The
general loss function of an adversarial autoencoder has the form

L(x, x̂) = Lreconstruction(x, x̂) + Ladversarial(D(h), D(h′))
(16)

where the adversarial loss can be binary cross entropy [64] loss
or some other loss such as a feature loss as in [65].

D. Denoising Autoencoders

Autoencoders having only a single hidden layer and which
take a partially corrupted input and are trained to recover the
original uncorrupted input are known as denoising autoencoders
(DAs) [66]. At training time, the input x is partially corrupted
using a stochastic mapping, resulting in x̃. The partially cor-
rupted input is then reconstructed in the standard way, x̂ =
GD(GE(x̃)), but the loss is calculated between the reconstructed
input x̂ and the original uncorrupted input,x [66]. It is important
to notice that the input is only degraded during training. To
perform the denoising well, the model needs to extract features
that capture useful structure in the input distribution.

1) Marginalized DAs: Many simple DAs are stacked to form
a deep network by feeding the latent code of the previous DA
as input to the current DA in the stack [66]. The DAs are
pretrained one layer at a time, with each layer trained as a DA
by minimizing the error in reconstructing its input, which is the
output latent code of the previous layer. When stacked DAs are
used for feature learning, linear autoencoders are sufficient, i.e.,
the activation function can be set to be linear, and the effect
of each autoencoder can be given by a single linear transfor-
mation W . When considering a deep enough stack of such
single-layer linear denoisers, the corruption can be marginalized
out, and a closed-form solution can be obtained for the effec-
tive reconstructing matrix W [67]. The resulting single-layer
autoencoder, which applies the reconstructing matrix, is known
as a marginalized denoising autoencoder (mDAE) and has found
use in spectral unmixing [67], [68].

E. Convolutional Autoencoders

Convolutional autoencoders [69] are based on convolutional
neural networks (CNNs). These networks use convolutional
layers instead of fully connected layers. Convolutional layers
convolve learnable filters with input patches to produce feature
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Fig. 5. Schematic of a general unmixing autoencoder. The figure shows an example having two hidden layers, but the actual number could vary from one to
several. The decoder has a nonnegative weight constraint and linear activation. The ASC constraint is enforced with a normalizing utility layer or softmax activation.

maps. In the context of spectral unmixing, they differ from con-
ventional autoencoders in one crucial aspect, which is that they
are inherently spatial and make use of the spatial correlations
existing in HSIs. In contrast, conventional autoencoders look
at one spectrum at a time and need special regularization to
consider spatial information.

Architecturally, they are similar to conventional autoencoders
used in spectral unmixing. For example, the abundance maps
arise naturally as the feature maps of a “spectral bottleneck”
layer, i.e., a convolutional layer having R feature maps, one for
each endmember. Similarly, the weights of the linear decoder
convolutional layer can be interpreted in terms of endmem-
bers, but to do so for the nontrivial case of filter size larger
than 1× 1 requires a new spectral–spatial LMM as the re-
construction of a pixel’s spectrum involves the abundances of
neighboring pixels [70].

IV. SPECTRAL UNMIXING AUTOENCODERS

The majority of autoencoder-based methods for blind unmix-
ing are based on the fully connected nonnegative autoencoder.
Here, we will look at various implementation details and choices
taken by methods in blind unmixing that can influence the
performance of spectral unmixing, e.g., choice of loss functions,
choice of activation functions, and so forth. Fig. 5 shows a
generic autoencoder that performs spectral unmixing.

It has a deep encoder with two hidden layers, but the hidden
layers can vary from one to several. The decoder has a non-
negative constraint for its weights and a linear activation. It is
also possible to make the decoder’s weights nonnegative using a
regularization that penalizes negative weights. The activation

function of the encoder is the ReLU or Leaky ReLU
(LReLU) [71]. The ASC constraint is enforced using a normaliz-
ing utility layer or softmax activation. In practice, it is convenient
to create a custom layer that enforces the ASC because it makes
it easier to implement abundance regularizations. The forward
pass of this general autoencoder can be written out, using the
notation introduced in Section I-A, as

x̂p = WD(σ(BN g(W (2)BN g(W (1)z(0))))) (17)

where BN denotes batch normalization using operator notation,
σ is the ASC enforcing layer, i.e.,σ(z) sums-to-one,z(0) = xp,
i.e., the input layer activations, and WD is the weight matrix of
the linear decoder.

A. Deep Versus Shallow Encoder

The power of depth in feedforward neural networks is still
not fully understood in the field of DL theory [72]. Deep neural
networks can extract better features than shallow networks for
the same amount of computation. In [72], it is proven that deep
networks can approximate the class of compositional functions
with the same accuracy as shallow networks but with an expo-
nentially lower number of training parameters. However, deep
networks are more prone to overfitting and can be harder to
train than shallow networks and require more regularizations.
Whether a deep encoder will extract better abundance fractions
than a shallow encoder most likely will depend on the mixing
model being assumed. It could be argued that a deep encoder
can extract better abundances under a nonlinear mixing model.
We will come back to this question when discussing the experi-
mental results. The methods in [38], [70], and [73]–[77] employ
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deep encoders. The method in [78] employs a deep 1-D CNN
encoder.

B. Choice of Activation Function for Hidden Layers

The choice of activation function for the hidden layers and
especially the last hidden layer of a deep encoder can signif-
icantly influence the behavior and performance of unmixing
autoencoders. Like in DL in general, the trend has been away
from using saturating activation functions, which squeeze their
input, e.g., like the sigmoid function, to using nonsaturating
activation functions such as the LReLU variant given by

LReLU(zi) = max(βzi, zi) (18)

where β is a real number between 0 and 1. The problem with
saturating activation functions is that the value of hidden units
often becomes stuck at their asymptotic values, e.g., 0 or 1 for
the sigmoid activation, indicating that the preactivation sum of
products is relatively large. This leads to vanishing gradients
during training. The methods in [18] and [79] use a parameter-
ized sigmoid activation function. The ReLU activation largely
mitigates the problem of vanishing gradients, but the function is
still saturated to the left, and hidden units can become stuck
at zero. In unmixing, this can cause the abundance maps of
certain endmembers to become zero-valued. The works [68],
[76], [77], [80], and [81] all use the ReLU activation. The
LReLU activation is a good choice of an activation function
as it is nonsaturating in both directions. Other nonsaturating
activation function include exponential linear unit (ELU) [82],
scaled ELU [83], and Swish [84]. The methods in [38], [70], and
[74] all use LReLU as the activation function of hidden units.

C. Implementation of the ASC Constraint

The last step the encoder needs is making sure the latent code
resulting from previous layers sums-to-one in accordance with
the ASC constraint of the LMM, or

s = σ(h)

where σ is the action of the layer used for the ASC constraint
enforcement. One way to do this is to normalize the latent code
vector, h, resulting from the last layer of the encoder as

si =
hi∑R
j=1 hj

(19)

where s is the abundance vector. If this method is to be used,
it must be ensured that all the values hi, i = 1, . . . , R, are
nonnegative. In practice, this means that the choice of activation
function for the last layer of the encoder is restricted to strictly
nonnegative functions such as ReLU or sigmoid activation func-
tions. It might be argued that thresholding the values using ReLU
or dynamic ReLU

ŝ = max(0, s−α) (20)

where α is a nonnegative R× 1-vector learned by the network,
as some works do, might deactivate many units in the network
and not utilize its full capacity. The methods in [18] and [73] use
this implementation of the ASC, while [73] additionally uses it

with a dynamically thresholding ReLU activation. Another ASC
implementation that does not require nonnegative activation of
the last hidden layer is

si =
|hi|∑R
j=1 |hj |

. (21)

This implementation also takes care of the ANC constraint. The
method in [38] uses this implementation. The method described
in [80] uses a variation of (21), where taking the absolute value in
the nominator is omitted. Yet another implementation of the ASC
that many works use is to apply the softmax function directly to
h or scale it first as in

s = softmax(γh) (22)

where γ is a constant larger than 1. This implementation also
takes care of the ANC constraint and, by choosing large γ,
achieves something similar to �1-norm regularization on the
abundance maps. The papers [76], [77], and [80] use the soft-
max function without scaling to implement the ASC, while the
methods in [70] and [74] use it with a scaling.

The ASC constraint can also be implemented through reg-
ularization by adding a penalty term to the loss function that
penalizes if the abundances do not sum-to-one. This can, how-
ever, increase the instability of the training process and the time
needed for convergence. The techniques described in [76] and
[77] enforce the ASC through such regularization. A related
implementation is to augment the data matrix and the decoder
weight’s matrix with constant vectors. The methods in [68], [75],
[81], and [85] use this to weakly enforce the ASC constraint.

D. Batch Normalization

Batch normalization is used to speed up the training of neural
networks and make them more stable through normalization of
the inputs to a layer by recentering and rescaling [86]. Initially,
it was believed that batch normalization did work by mitigating
internal covariance shift, which reduces the learning rate of the
network [86], but recent research shows that it works by smooth-
ing the objective function [87]. Batch normalization layers are
usually used after or before a nonlinear activation function such
as ReLU, and they are only active during training.

Regarding the choice of batch size, it is the authors’ experi-
ence that small batch sizes yield better unmixing performance
than large batch sizes. In [88], it is argued that large batch
sizes can lead to degradation of the quality of DL models as
measured by their generalization abilities as large-batch methods
tend to converge to sharp minimizers of the training and testing
functions, and sharp minima lead to inferior generalization.

If we let zi, i = 1, . . . ,m, be the values of the inputs from
the previous layer for a batch B, we can write the effect of the
batch normalization layer as

zBNi
= BNγ,β(zi) = γẑi + β (23)

where

ẑi =
zi − μB√
σ2
B + ε
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μB =
1

m

m∑
i=1

zi

σ2
B =

1

m

m∑
i=1

(zi − μB)2

γ and β are learnable parameters, and ε is a very small number.

E. Dropout

Dropout is a powerful regularization technique that helps with
preventing overfitting and improving the generalization of deep
networks. It works by randomly omitting or dropping units of a
layer during the training of a neural network [89]. This prevents
complex coadaptations of units on the training data. It can be
thought of as a way of performing model averaging with neural
networks. In convolutional networks, feature maps, instead of
units, are set randomly to zero or dropped, a case of dropout
known as spatial dropout [90]. When properly used, dropout
can give a better unmixing performance, primarily when used
with deep encoders as they need more regularization. Dropout
is not commonly used in blind unmixing methods. The methods
in [73], [74], and [80] use dropout, while the method in [70],
being a convolutional network, uses spatial dropout.

F. Choices of Loss Fidelity Function and Spectral Variability

The choice of the similarity measure used for the fidelity term
of the loss function is crucial and can significantly influence the
performance of the unmixing autoencoder. The main reason for
this is that some similarity measures are scale invariant, while
others are not. Furthermore, due to variations in illumination
or topography, real hyperspectral data often have considerable
spectral variability, and the LMM cannot model them. This
means that the same material or mixture of materials can have
spectra that differ in scale even though they have the same
abundances.

A similarity measure that is not scale invariant will penalize
the LMM reconstructions that differ in scale from the original
spectra and, thus, cannot handle spectral (scale) variability. In
contrast, a scale-invariant similarity measure will only penalize
based on the difference in shape. Thus, a scale-sensitive simi-
larity measure should not be used for an HSI having substantial
spectral variability. The most common scale-invariant similarity
measures used in unmixing are the spectral angle distance (SAD)
given by

JSAD(xp, x̂p) = arccos

(
xT
p x̂p

‖xp‖2 ‖x̂p‖2

)
(24)

and the spectral information divergence (SID) measure given by

JSID(xp, x̂p) =

B∑
n=1

pn log

(
pn
qn

)
+

B∑
n=1

qn log

(
qn
pn

)
(25)

where

pn =
xp,n∑B
n=1 xp,n

, qn =
x̂p,n∑B
n=1 x̂p,n

are estimates of the probability mass functions of the target and
estimated spectra, respectively. The methods in [38], [70], [73],
and [74] all use the SAD similarity measure as the fidelity term
of the objective function, while the method in [91] uses the
SID measure. The most common non-scale-invariant similarity
measure is the MSE given by

JMSE(xp, x̂p) = ‖xp − x̂p‖22. (26)

All the methods in [18], [68], [75], [79], [81], [85], [92], and [93]
use the MSE measure as the fidelity term of the network’s loss
function. It is also possible to use a combination of both scale-
invariant and non-scale-invariant loss terms. The work in [80]
uses such a combination as the fidelity term. In [76], it is argued
that the histogram of the reconstruction error of an unmixing
autoencoder follows a hyper-Laplacian distribution, and hence,
an optimal fidelity term should have the form

JHL(xp, x̂p) = ‖xp − x̂p‖qq (27)

where q is a positive real number, the optimal value determined
as 0.7 in [76].

G. Abundance Regularizations

In order to further constrain the unmixing problem, reasonable
assumptions or priors regarding the abundance fractions are used
to construct regularization terms. These additional terms to the
loss force the latent codes or the learned representations to live in
certain latent space subspaces, reducing its effective dimension-
ality. The most common assumption made is that the abundance
maps are sparse. Increased sparsity can be achieved by �1-norm
regularization or, more generally, by �q-norm regularization, i.e.,
by an objective function of the form

L�q regularized(xp, x̂p) = L(xp, x̂p) + λ‖sp‖qq (28)

where 0 ≤ q ≤ 1, and sp is the abundance vector for spectrum
xp. The methods in [76], [77], [80], and [93] all use �1-norm
regularization to promote sparsity of the abundances.

In [76], it is argued that different abundance maps are close
to orthogonal since no more than two endmembers are usually
mixed within one pixel. This work introduces a new prior based
on this, named orthogonal sparse prior (OSP), given by

LOSP(B) =
∑
i<j

B·i · B·j
‖B·i‖2‖B·j‖2 (29)

where B ∈ Rb×R is a batch of size b of generated abundance
maps. An ablation study shows that the OSP regularization leads
to more sparse abundance maps than the conventional norm
based prior. The work in [94] uses inhomogeneous Gaussian
Markov random field (IGMRF) as a prior for spatial abundances
regularization. In [92], a VAE is used as an abundance regular-
ization to enforce the ASC constraint.

H. Weights and Endmember Regularizations

Weight decay, �2-norm regularization on the weights of the
encoder and decoder, is commonly employed to reduce overfit-
ting and for better generalization. It can be applied by adding a
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term in the loss function as

L�2 regularized(xp, x̂p) = L(xp, x̂p) + λ‖W ‖F (30)

where

‖W ‖F =

⎛
⎝ m∑

i=1

n∑
j=1

W 2
ij

⎞
⎠

1/2

and W is the weight matrix of the layer we wish to regularize.
�2 regularization penalizes the sum of squares of the weights
and, thus, encourages smaller weights. Unlike �1 regularization,
it does not lead to sparse solutions. In [80] and [93], �2 is used
both for the weights of the encoder and the decoder. The method
in [81] applies �21 regularization to the encoder’s weights with
�21-norm being a rotational invariant �1-norm (R1-norm) de-
fined as [95]

‖W ‖21 =
m∑
i=1

⎛
⎝ n∑

j=1

W 2
ij

⎞
⎠

1/2

for an m× n matrix W .
Another well-known regularization of the endmembers, i.e.,

the weights of the decoder, is minimum volume regularization.
This regularization aims to minimize the volume of the simplex
defined by the origin and the endmembers, i.e., the columns of
WD. All reconstructed spectra are guaranteed to lie inside this
simplex, being convex combinations of the endmembers. The
volume of this simplex is often denoted by

MinVol(WD) = | detWD|.
Therefore, the loss function with minimum volume regulariza-
tion has the form

LMV regularized(xp, x̂p) = L(xp, x̂p) + λMinVol(WD). (31)

The methods in [85] and [92] employ this regularization. In [94],
an IGMRF prior is used for spectral regularization of the end-
members. The reconstructed HSI is also regularized using a
spectral–spatial IGMRF prior.

I. Multitask Learning

Recently, there have been two techniques for HU [74], [75]
that have utilized multitask learning (MTL). In the context of
neural networks, MTL means that the network learns multiple
related tasks in parallel, and parameters are shared between the
tasks, usually via shared layers [96]. Thus, the different tasks
are implemented as different branches of one network, which
can have multiple inputs and outputs, depending on the problem
being solved [97]. The benefits of MTL in spectral unmixing
autoencoders include the following.

1) Faster learning: When tasks are correlated, they will con-
tribute to the aggregate gradient during backpropagation
and increase the effective learning rate on the input to
hidden layer weights [96]. This means that useful features
will form faster in the shared hidden layer of the network.

2) Reduced risk of overfitting: It has been shown that when
layers are shared between tasks, the risk of overfitting the

shared parameters can be up to an order N smaller, where
N is the number of tasks [98].

3) Improved stability: It has been shown that MTL tasks
prefer similar hidden layer representations [96]. For MTL
autoencoders, where each task is unmixing a different
pixel of a patch, this can increase the method’s stability
and consistency.

4) Incorporation of spatial information: MTL allows for the
construction of autoencoders that can unmix a whole patch
at a time by having one task for unmixing each pixel from
the patch. This allows for fully connected networks that
can directly exploit the spatial correlation in the HSI with
all the above-listed benefits of MTL.

In [74], MTL is utilized for spectral–spatial unmixing, and
in [75], MTL is utilized to perform bilinear mixing model
spectral unmixing. One task performs the linear unmixing, and
another task updates the bilinear components.

J. Approaches Utilizing Adversarial and VAEs

Recently, several HU methods have utilized VAEs. In [92],
a VAE is used to ensure the nonnegativity and sum-to-one
constraints of the abundances. The paper [99] employs a VAE
to learn a spectral variability model and generate endmembers.
The generated endmembers are then used to solve a spectral
unmixing problem, cast as an alternating nonlinear least-squares
problem that is solved iteratively, alternately adjusting the abun-
dances and the low-dimensional representations of the endmem-
bers in the generative model.

Recently, several papers where adversarial autoencoders and
generative models are used for unmixing have been published.
A joint metric neural network in the form of an adversarial
autoencoder is suggested in [65]. There, the Wasserstein dis-
tance [100] between features in the discriminator is used to
regularize the autoencoder, which is using the SAD as the loss
function. The Wasserstein distance between features of real
and reconstructed spectra provides useful gradient information
that promotes the autoencoder to reach a solution with better
unmixing performance.

In [101], an abundance estimation method is suggested using
1-D convolution kernels and spectral uncertainty. High-level
representations are computed and are further modeled with the
multinomial mixture model to estimate abundance fractions
under high spectral uncertainty. A new trainable uncertainty term
based on a nonlinear neural network is used in the reconstruction
step. The uncertainty models are optimized by the Wasserstein
GAN [102] to improve stability and capture uncertainty.

In [103], an adversarial loss is used to guide an autoencoder
network by encouraging the encoder to match an abundance
prior derived from superpixels using VCA and fully constrained
least squares. A conceptually similar paper is [104]. Here, two
autoencoders share decoder weights. One network reconstructs
endmember bundles obtained by VCA from superpixels of an
HSI, while the other is a standard spectral unmixing network
reconstructing the pixels of the HSI. This is an example of a two
stream network, where one stream guides the other.
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The method in [105] borrows the concept of cycle consistency,
similar to the concept behind CycleGan [106]. Here, two 2-D
CNN unmixing autoencoders are learned in cascade. The first
autoencoder performs blind unmixing of the original HSI, and
the second performs blind unmixing of the reconstruction by
the first one. The network loss is the self-perception loss defined
as the sum of the reconstruction terms w.r.t. the original HSI
and a term that penalizes the network if the abundance maps
of the autoencoders are dissimilar. A conceptually similar cas-
cade approach, which additionally utilizes self-supervised learn-
ing, is [107]. Here, a two-stage network is utilized; one stage
performs unmixing (inverse model), while the other (forward
model) learns the physics of the hyperspectral data acquisition
to handle noise and perturbations better.

K. Utilization of Spatial Information

Like other natural images, HSIs have highly correlated pixels,
and it is desirable to use this spatial information. However, most
unmixing methods are strictly spectral and do not directly exploit
the spatial structure of HSIs. This means that the methods work
with one pixel at a time, even though it may use regularizations
based on assumptions about the spatial structure, which will not
be considered here to count as directly exploiting the spatial
structure. At the time of writing this, there are three blind un-
mixing methods based on autoencoders that directly exploit the
spatial structure of HSIs. The method in [74] directly unmixes
a patch at a time using a multiple branch architecture that is
inspired by MTL [96], [97].

The other techniques directly exploiting the spatial structure
of HSIs are proposed in [70] and [105] and are fully con-
volutional autoencoders that are inherently spatial in nature.
They exploit the spatial and spectral structure of HSIs both for
endmember and abundance map estimation. Working directly
with patches of HSIs and not using pooling or upsampling
layers preserves the spatial structure throughout the network.
The abundance maps arise then naturally as feature maps of a
hidden convolutional layer. This makes it very easy to apply
complex spatial regularization on the abundances such as total
variation.

L. Working in Transformed Domains

Working in transformed domains, e.g., the wavelet or curvelet
domains, has been shown to be beneficial for blind NMF-based
HU [108], [109]. It is reasonable that this should also apply to
autoencoder-based methods. A literature search shows that there
are many applications of autoencoders working in transformed
domains but only one in HU, the work in [93].

M. Nonlinear Approaches

In the last two years, a number of autoencoder-based methods
for nonlinear unmixing have been published. Here, some of the
latest approaches will be briefly discussed. Many of the methods
are based on the post-nonlinear structure (3), but some extend it
and are more general.

The method in [110] is the first blind HU method to utilize a
long short-term memory [111] network. It additionally utilizes
an attention mechanism to selectively focus on parts of the input
during learning.

A method that addresses a general model that consists of
a linear component and a nonlinear component was proposed
in [112]. The encoder is in the form of a 3-D CNN network to
better capture the spectral–spatial priors from the data. The de-
coder has a model-based structure so that nonlinear interactions
are imposed on the endmembers weighted by the abundances.

In [113], a method for nonlinear unmixing is given that is a
combination of a kernelization layer using radial basis functions
and autoencoder structures. The method proposed in [114] is
a model-based autoencoder method that considers the mixing
model to be a nonlinear fluctuation over a linear mixture.

N. Hyperparameter Selection

Tuning hyperparameters is important in DL-based meth-
ods, and much effort has been devoted to the problem. In
DL, algebraic models are usually unavailable, and the model
usually has to be treated as a blackbox when tuning hyperpa-
rameters. To evaluate the performance of a model for a given
set of parameters, k-fold cross-validation [115] is often used.
Generally, any gradient-free optimization method can be applied
to hyperparameter tuning of DL models. Two standard but
primitive methods are grid search and random search.

In grid search, a finite set of values of each hyperparameter is
specified, and the model is evaluated on the Cartesian product of
these sets. Grid search suffers from the curse of dimensionality
as the required number of evaluations grows exponentially with
the dimension of the configuration space [116]. Random search,
which samples configurations randomly, usually works better
than grid search when some hyperparameters are much more
important than others and allows for better parallelization [117].

In recent years, Bayesian optimization [118] has emerged as a
state-of-the-art optimization framework for the optimization of
blackbox functions, especially expensive ones. Bayesian opti-
mization is an iterative method to optimize such blackbox objec-
tive functions. The objective function is treated as a random func-
tion, and a prior is placed over it. Then, the posterior distribution,
known as a surrogate model of the objective function, is used
to determine what set parameters should be queried in the next
iteration. After each iteration, the posterior gets updated, and the
objective function is mapped out better. The Bayesian approach
uses a Gaussian process to model the objective function and
defines an acquisition or selection function used to determine the
next point in the parameter space to evaluate. The most common
choice of the acquisition function is the expected improvement,
which estimates how much the objective function is expected to
improve.

Applying loss-based optimization methods to spectral unmix-
ing autoencoders is very difficult. The main reason for this is
that the network’s actual loss is not a measure of its unmixing
performance. Instead, the network’s loss is a similarity measure
between the input and the reconstructed input. The unmixing
performance measures the quality of the weights of the linear
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decoder (the endmembers) and the abundances that are the
encoder part’s latent codes.

Thus, it cannot be said that autoencoder methods converge to
a solution regarding the endmembers or abundances, in contrast
with many traditional methods. Only if ground truth is available
is it possible to construct a function to measure the unmixing
performance and score it. In [119], Bayesian optimization is
used with such an objective function that scores the extracted
endmembers with the average SAD from given reference end-
members. In addition, in [53], the Bayesian information criterion
is used to select optimal regularization parameters.

It is, therefore, challenging to use traditional hyperparameter
tuning methods such as Bayesian hyperparameter optimization
or maximum a posteriori [120] to select hyperparameters for au-
toencoder unmixing methods. This is partly because the number
of epochs used for training is one of the hyperparameters, and we
do not have strict convergence concerning the quality of the end-
members. In addition, because of random weight initialization,
many runs are required per hyperparameter configuration to get
a reliable measure for any automatic or manual hyperparameter
selection. This makes hyperparameter tuning for spectral unmix-
ing autoencoders very costly. To make matters worse, different
hyperparameters are usually needed for different HSIs.

One approach that has been published on automatic regu-
larization parameter tuning on HSIs without any ground truth is
described in [121]. There, a technique for the automatic tuning of
a minimum volume regularization parameter for a geometrical
HU method is suggested. The parameter controls the tradeoff
between the reconstruction error and the simplex volume of the
endmember matrix. The technique is based on the geometrical
insight that a good parameter value should result in an estimated
endmember simplex whose boundary is close to the boundary
data points. A similar approach could be adopted to autoencoder-
based methods regarding the tuning of regularization parameters
in the absence of ground truth.

For the experiments in this article, the hyperparameter values
used for the methods were the ones recommended by their
authors.

O. Recommended Implementation Choices

Here, some pros and cons of the main architectures and
implementation details will be discussed, and recommendations
based on the authors’ experiences will be given. For a method
that will use spatial regularizations of the abundance maps,
the best architecture is a fully convolutional autoencoder. This
architecture makes it very easy to work with complex spatial
regularizations of the abundances as they arise as feature maps
of hidden layers in the network and can be easily worked with. In
addition, the CNN approach is inherently spectral–spatial. For
mostly spectral methods, a fully connected autoencoder is the
best choice.

For most purposes, a shallow encoder with at most one hidden
layer besides the bottleneck abundance layer is the best choice.
Deeper encoders do not give better performance for simple
mixing models such as the LMM. Extra hidden layers also result
in extra hyperparameters, i.e., the number of hidden units. If the

decoder is nonlinear with many layers, a deeper encoder could be
beneficial. The recommended activation function for the hidden
layers of the encoder is the LReLU function. It is nonsaturating
in both directions and prevents units from getting stuck with
zero activations.

The decoder should be made nonnegative using a weights
constraint or a regularization that penalizes nonnegative weights.
In the authors’ experience, regularizations on the endmembers
or the weights of the network, such as weight decay, are not
as important as appropriate regularizations on the abundances.
Initializing the weights of the decoder, e.g., using VCA, does
not give better performance when using scale-invariant loss
functions and randomly initialized encoder.

For enforcing the ASC, the softmax function with a scaling
factor as in (10) is a good choice and also the normalization with
absolute values in (21). Using Batch normalization is essential
when training spectral unmixing autoencoders, and the batch
size should be kept low for best performance.

The most important implementation choice is the choice of
the fidelity term. For datasets with a lot of spectral variability,
scale-invariant losses, such as SAD, will give better performance
for mixing models such as the LMM. Not unless the method is
specifically designed to work with spectral variability should a
non-scale-invariant loss such as MSE be used.

Adversarial regularization, multistream architectures, and
VAEs are becoming popular, and such architectures are the way
forward in the authors’ opinion. What has been said here regard-
ing implementation choices also applies to these architectures.

V. NONBLIND METHODS BASED ON AUTOENCODERS

Until now, only blind unmixing methods based on autoen-
coders have been discussed. Nonblind approaches are methods
that estimate the abundances of endmembers but not the end-
members themselves. Many methods use neural networks for
abundance estimation, and in most cases, such networks are es-
sentially autoencoders or utilize autoencoders. This section will
discuss various nonblind approaches based on autoencoders, but
it is not meant to be a comprehensive review of such methods.

We have seen a direct correspondence between the weights of
a linear decoder in a spectral unmixing autoencoder and the end-
members matrix, according to the LMM. If a set of endmembers
is given, they can be used as the weights of a nontrainable linear
decoder. It is then prevented from changing during training,
which then only trains the encoder part. Such a network is still
an autoencoder but works like a nonlinear regression method
that determines the abundances maps corresponding to the given
endmembers.

This approach is used in [122], where the encoder part of a
spectral unmixing network is improved to utilize convolution
layers to enable deeper architectures of the encoder, and custom
spectral normalization layers are used instead of batch normal-
ization. The decoder has fixed weights with endmembers coming
from another method. The work [123] also uses a deep convolu-
tional encoder and a fully connected decoder with fixed weights
to perform supervised or nonblind unmixing. Another method
based on this concept is in [124], where the encoder is a deep
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convolutional network using a deep prior. The fixed decoder ap-
proach can be generalized to use a whole spectral library of end-
members, resulting in a combination of autoencoder unmixing
and sparse-regression-based methods using a spectral library.

The technique in [125] is an example of such a method.
The encoder has a deep convolutional architecture, but the last
two layers are fully connected and use the softmax activation,
essentially a classifier that picks the most suitable endmembers
out of many. The input to the decoder layer has a much higher
number of units than the number of endmembers to be estimated,
but most of these activations will be zero since the output of the
encoder is required to be sparse.

Another approach for abundance estimation utilizes MTL
(multistream networks) and involves two different networks or
tasks that share layers. A reconstructing autoencoder network
is guided by another network that shares layers with the au-
toencoder in this approach. This guiding network is typically
trained to learn the relationship between endmember candidates
obtained by another endmember extraction method and their
abundances as determined by the LMM. This network will guide
the reconstructing autoencoder and make its encoder part encode
spectra to abundances. The papers [126] and [127] are examples
of this type of approach.

A variation of this is the method described in [128], where
the guiding network is itself a spectral unmixing autoencoder
that shares decoder weights with another spectral unmixing
autoencoder. The guiding network is trained on endmember
bundles obtained by VCA from superpixel segmentation of an
HSI. Both networks are encouraged to produce latent codes that
follow the Dirichlet distribution, i.e., sum-to-one.

This short overview of nonblind methods illustrates further
how powerful and widespread the autoencoder architecture is
becoming in HU.

VI. EXPERIMENTAL RESULTS

This section provides an experimental foundation for the
previous section and determines experimentally what makes
unmixing autoencoders perform well. The performance of 11
blind unmixing methods will be evaluated and compared using
four real datasets with accompanying reference endmembers and
reference abundance maps.

Furthermore, all methods will be evaluated on four synthetic
datasets having the same absolute ground truths but with dif-
ferent spectral variability. In addition, ablation experiments will
be performed on a very general and simple spectral unmixing
autoencoder. First, the ablation experiments aim to demonstrate
what makes autoencoder-based methods powerful compared to
traditional methods. Second, the effects of three different ways
to enforce the ASC will be studied for two different activation
functions for the encoder. Finally, the effects of nonlinear versus
linear decoders will be investigated. The endmember extracted
by methods will be evaluated using the mean spectral angle
distance (mSAD), given by

mSAD =
1

R

R∑
j=1

arccos

( 〈âj ,aj〉
‖âj‖2 ‖aj‖2

)
(32)

where âi are the endmembers extracted by the method and
ai are the reference endmembers. The lower the mSAD, the
higher the similarity. In the result tables, the SAD for individual
endmembers will also be given. Abundance maps generated by
the methods will be compared to reference abundance maps
using the RMSE measure given by

RMSE =

√√√√ 1

R

R∑
j=1

‖Sj − Ŝj‖2 (33)

where Ŝi are the abundance fractions of all pixels for endmember
i and Si are the reference abundance fractions.

The results of both endmember extraction and abundance
maps generation for all the methods will be discussed, especially
how they can be interpreted in light of the discussions in previous
sections. Finally, the computation costs of the methods will be
compared and discussed.

A. Datasets

All experiments were performed using four real HSIs de-
scribed below and four synthetic datasets with increasing spec-
tral variability. The methodology for determining the reference
endmembers and abundance maps is described in [129]. The
datasets are as follows.

1) Samson: The SAMSON sensor obtained this widely used
dataset, and it is a cropped image from a larger image.
The size is 95 × 95 pixels, and the number of bands is 145
covering the 401–889 nm wavelength range. The dataset
has the following endmembers: Water, Soil, and Tree.

2) Urban: Obtained by the Hyperspectral Digital Image Col-
lection Experiment [131] sensor, this image is 307 ×
307 pixels and has 210 bands covering the 400–2500 nm
wavelength range. After removing corrupted and noisy
bands, 162 bands remain. Here, four, five, and six refer-
ence endmembers are used in experiments. Grass, Tree,
Asphalt, and Roof were selected as the references for four
endmembers. The five endmembers’ reference addition-
ally includes the Soil endmember, and the six endmem-
bers’ reference additionally includes the Soil and Metal
endmembers.

3) Houston: This dataset is a cropped image from a larger one
acquired over the University of Houston campus, Houston,
TX, USA, in June 2012, and has 144 bands covering the
wavelengths of 380–1050 nm with a spatial resolution of
2.5 m. The cropped image is 170 × 170 and is centered
on the Robertson Stadium on the Houston campus and
surrounding area. For this dataset, four endmembers are
estimated, and the reference endmembers are selected
from the averages of the 15 classification ground truth
categories that come with the dataset.

4) Apex: This hyperspectral dataset is a cropped image from
a much larger one acquired by the APEX [132] sensor
during a clear day in June 2011 at an altitude of 4600 m
above sea level with a heading of 56◦ in the vicinity
of Baden, Switzerland. Two hundred eighty-five bands
cover the wavelength range between 413 and 2412 nm, all



1352 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

Fig. 6. RGB images of the datasets used in the experiments. The Samson and Urban images were colored using the technique in [130]. The Apex and Houston
images are actual RGB images. (a) Samson—simulated. (b) Urban—simulated. (c) Houston—actual. (d) Apex—actual.

usable. The cropped image is 300 × 300 pixels subimage
cropped from the larger 1500×1000 image at location
(70,650). Here, four endmembers are estimated, and the
reference endmembers are Asphalt, Vegetation, Water, and
Roof.

5) Synthetic datasets: These datasets use a 100 × 100 pixel
cropped image from the reference abundance maps for
the Urban dataset as ground truth for the abundance
maps. A VAE is used for every pixel to generate samples
of the reference endmembers with controllable spectral
variability. Here, four endmembers are estimated, and the
reference endmembers are Asphalt, Vegetation, Water, and
Roof.

Simulated and actual RGB images of the real datasets used
are shown in Fig. 6.

B. Methods Compared in Experiments

The methods compared in the experiments are listed in Table I.
The source code for methods number 4, 6, and 7 could not
be obtained, so the authors implemented them. Method 12,
sparsity-regularized NMF, is a benchmark traditional method.
The Endnet method was not published as a usable blind method
as the generated abundance maps were of low quality due to
particular implementation of a batch normalization layer and
high �1-norm sparsity regularization. In our implementation,
the batch normalization does not ruin the abundance maps, and
neither does the chosen optimal strength of the �1 regularization.
Therefore, the method produces usable abundance maps in our
implementation. The method mDAE was initially implemented
in MATLAB, but we used the Tensorflow DL framework for
our implementation. Methods 1–4 are randomly initialized. All
other methods are initialized using VCA.

C. Ablation Experiments

These experiments use a simple spectral unmixing autoen-
coder. Its architecture is shown in Fig. 7.

The encoder only has a single layer, and the activation can be
either the ReLU or the LReLU activation with slope parameter
0.1 for the negative preactivations. A batch normalization layer
is used after the activation to speed up learning. The ASC
is enforced using one of the following: the softmax function,

Fig. 7. Architecture of the simple autoencoder used in the ablation experi-
ments.

simple normalization according to (19), or normalization of
absolute values according to (21). The loss function is either
the SAD or MSE function.

1) Comparison With NMF-�1/2: In this experiment, the sim-
ple autoencoder is compared with the NMF-�1/2, a widely used
NMF method that is sparsity regularized. The ASC will be
enforced using the softmax function, and the ReLU activation
function is used for the encoder. The loss function is either MSE
or SAD. Fig. 8 shows the results of the experiment for the Urban
and the Samson datasets.

Fig. 8 shows that a simple spectral unmixing autoencoder
using the MSE function for the fidelity term and LReLU acti-
vation is only slightly better than the NMF-�1/2 method for the
Urban dataset and slightly worse for the Samson dataset. When
the autoencoder uses the SAD loss function and the LReLU
activation, the performance becomes significantly better than the
performance of the NMF method. However, when the activation
function is the ReLU, we see a much worse performance with
the autoencoder.

This is because ReLU units can get stuck when using the
ReLU activation and batch normalization. The ReLU activation
has a zero gradient for negative preactivations, while the LReLU
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TABLE I
METHODS USED IN THE EXPERIMENTS

always has a nonzero gradient. This shows that care should be
taken when using the ReLU activation.

This experiment largely answers why autoencoder methods
using the SAD loss can achieve much better unmixing perfor-
mance than autoencoder methods using the MSE loss function.
The scale invariance of the SAD loss function makes the autoen-
coder able to handle the spectral variability inherent in most real
HSIs.

2) Comparison Between Different ASC and Activation Com-
binations: In this experiment, the effect of different ways to
enforce the ASC will be compared for both MSE and SAD losses
and using the ReLU and LReLU activations. Three different
ways of enforcing the ASC will be tested:

a) using the softmax function;
b) normalizing the activations according to (19);
c) normalizing the absolute value of the activations (ab-

snorm) according to (21).
The results of this experiment are shown in Fig. 9 . The results

are interesting but not surprising. For LReLU and the Urban

dataset, the difference between the different ways of enforcing
the ASC is negligible. However, for the Samson dataset with
LReLU, softmax is the best option for both losses.

This difference is because LReLU allows negative activations,
and for the Samson dataset, there seems to be a much more
preference for negative activations than for the Urban dataset.
Negative activations in the layer just before the ASC is enforced
will negatively affect the simple normalization as it will break
the ANC constraint. It might be argued that LReLU activation
will lead to less sparse abundance maps than if ReLU activation
combined with batch normalization is used.

A ReLU activation for the last layer might work well in deep
encoders and possibly give more sparse maps. The absnorm
method is not as affected, but softmax does not care about the
signs of the activations and will always return a vector that sums-
to-one. It seems that the neural network can best adapt to the
softmax method of enforcing the ASC.

The ReLU part of this experiment is plagued by the ReLU
units getting stuck, certain endmembers stopping converging,
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Fig. 8. Comparison between a simple autoencoder, using either the MSE or SAD function for the fidelity term, and the NMF-�1/2 method. The autoencoder
uses either the LReLU or ReLU activation. The black bars show the standard deviation. All experiments consisted of 25 runs. (a) and (c) Samson dataset. (b) and
(d) Urban dataset.

and is hard to interpret. This experiment shows that for some
datasets, it can matter how the ASC is enforced. Using the
softmax method gives good performance in both datasets and
can be considered the safest option to enforce the ASC. By using
a scaling factor for the activations entering the softmax function,
the function can be soft thresholding and act very similarly to
�1-sparsity regularization.

3) Linear and Nonlinear Decoders: Until now, we have
mainly discussed autoencoders having linear decoders, where
the endmembers are the weights of the decoder at the end of train-
ing. It is possible to have multilayered and nonlinear decoders
in spectral unmixing autoencoders. If the decoder has multiple
layers, the endmembers cannot be extracted as the weights of
any layers. However, the endmembers can be obtained from the
decoder by decoding one-hot vectors, i.e., the abundances of
pure pixels.

In this final ablation experiment, we will compare two au-
toencoders with identical encoders, but one has a linear decoder
and the other a nonlinear decoder. In the case of the nonlinear
decoder, the endmembers are obtained by a prediction by the
decoder part on the identity matrix (abundances of pure pixels).
The nonlinear decoder has three layers: one with 4×R units and
two layers having B units.

Three datasets are used, the Urban, Samson, and Houston
datasets, and the LReLU activation was used for the encoder.
Four different batch sizes are used: 6, 10, 15, and 25. Fig. 10
shows the results of the experiment. The figures in the top row
are the mSAD of extracted endmembers, and the figures in the
bottom row show the RMSE for the abundance maps.

What first stands out when looking at Fig. 10 is that the
batch size is a hyperparameter that can affect the performance,
especially for the endmembers. The best SAD performance on
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Fig. 9. Comparison between three ways of enforcing the ASC constraint for both the MSE and SAD losses and using the LReLU or ReLU activations. The black
bars show the standard deviation. All experiments consisted of 25 runs. (a) Urban dataset with LReLU. (b) Samson dataset with LReLU. (c) Urban dataset with
ReLU. (d) Samson dataset with ReLU.

the Urban and Houston images is for small batch sizes, while
for Samson, it is best to use moderately large batch sizes. It
can be seen that for the Urban image, having more parameters
in the decoder is beneficial for the mSAD scores of extracted
endmembers.

The case of the Samson image is not as clear and depends
on the batch size. The results for the Houston image show that
a nonlinear decoder gives better mSAD scores, indicating that
this image has more nonlinear mixing than the other images.
Regarding the quality of the abundance maps, the experiment is
not conclusive. However, it is interesting to see that a nonlinear
decoder that does not correspond to the LMM can benefit end-
member extraction, while the quality of abundance maps does
not change much. A deeper encoder in combination with the
nonlinear decoder might give better abundance maps.

4) Summary: The results of the ablation experiments can
now be summarized as follows.

a) Autoencoder methods should use a scale-invariant loss
such as SAD, and the use of MSE should be avoided

unless the methods specifically handle spectral variability
through an extended LMM.

b) Using the LReLU activation in combination with softmax
to enforce the ASC works well, but abundance maps might
be less sparse than if ReLU is used. Care should be taken
when using the ReLU activation to prevent units from
getting stuck.

c) Batch size affects the performance of unmixing autoen-
coders and is dataset dependent.

d) Using a nonlinear decoder with more parameters can
benefit the quality of extracted endmembers, especially for
images with nonlinear mixing. The effect on the quality
of the abundance maps is not very significant.

D. Synthetic Datasets With Varying Spectral Variability

For this experiment, a VAE was used to learn the Urban
image and the reference endmembers (four endmembers) were
encoded into codes in the 2-D latent space of the encoder.
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Fig. 10. Comparison between having a linear or nonlinear decoder. The encoder uses the LReLU activation. Four different batch sizes are tested. The graphs
in the top row show the average SAD for extracted endmembers, while the bottom row shows the RMSE of the abundances. The black lines show the standard
deviation. All experiments consisted of 25 runs. (a) Urban dataset—SAD. (b) Samson dataset—SAD. (c) Houston dataset—SAD. (d) Urban dataset—RMSE.
(e) Samson dataset—RMSE. (f) Houston dataset—RMSE.

By sampling within a circle in the latent space centered on
the codes of the reference endmembers, new variations of the
endmembers can be generated using the generator part. The
radius of the sampling circle controls the spectral variability of
the sampled endmembers. A 100 × 100 pixel crop of the Urban
dataset reference abundance maps was then used to provide the
ground truth abundance fractions for every pixel and new spectra
generated by using sampled endmembers for every pixel in the
abundance maps.

Four such datasets were generated with sampling radii of 0,
0.1, 0.2, and 0.4. Fig. 11 shows examples of sampled endmem-
bers for two different radii. Every method was run 25 times for
each of these synthetic datasets, and a bar plot of the average
SAD for each dataset is shown in Fig. 12.

Fig. 12 is very informative. It shows well the effect of spectral
variability on the performance of methods using the MSE objec-
tive function. The six rightmost methods all use the MSE fidelity
term, and they all achieve very good mSAD for zero spectral
variability. Even the mDAE method that performs very poorly on
real datasets achieves good mSAD for zero spectral variability. It
is striking to see how similar the performance of the NAE-VCA,
SNSA, uDAS, and DAEN is to NMF-�1/2 on these datasets.
As the spectral variability increases, the non-scale-invariant
methods perform increasingly worse.

The methods using scale-invariant fidelity terms exhibit
strong robustness against spectral variability. Only DAEU

performs increasingly worse with increasing spectral variability.
The methods CNNAEU and MTAEU seem to benefit from being
spectral–spatial as demonstrated by the low mSAD score. The
Endnet method also has good performance and is not affected
by the increasing spectral variability. OSPAEU method using
the hyper-Laplacian loss shows some sensitivity to the spectral
variability, which is to be expected, but less than the methods
using the MSE loss. The results of this experiment indicate that
experiments with synthetic datasets having low or zero spectral
variability are not a good benchmark for autoencoder methods
in general. Low spectral variability results in a bias toward
non-scale-invariant fidelity terms on such datasets that would
not reflect real datasets.

E. Experiments With Real HSIs

1) Endmember Extraction: When evaluating the endmember
extraction performance of the methods, the following three
qualities will be in focus:

a) The average SAD from the reference endmembers;
b) The variance of the average SAD score. A good method

should have a low variance;
c) The accuracy of the method is studied.
Accuracy is not quite the same thing as consistency. Here, we

are looking at if the method finds the same correct endmembers
every time or most of the time. A consistent method is a method
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Fig. 11. Sampled endmembers for the synthetic experiment based on the
Urban image for two different sampling radii. (a) Sampled endmembers using
radius = 0.05. (b) Sampled endmembers using radius = 0.4.

that finds similar endmembers in each run, i.e., has low variance.
Plotting all extracted endmembers for every run and showing
these together in a single figure is an excellent way to evaluate the
methods. The Urban, Houston, and Apex datasets were used to
evaluate the endmember extraction performance of the methods.

a) Urban dataset: In the first experiment, we use the Urban
dataset, extract the first four, then five, and finally six endmem-
bers, and compare the extracted endmembers to the reference
endmembers. As the number of estimated endmembers in-
creases, it becomes harder to get good solutions. It is interesting
to see how the solutions for the initial endmembers behave as
new additional endmembers are estimated. Figs. 13–15 show
extracted endmembers for all the methods for the Urban dataset
with four, five, and six reference endmembers, respectively. The
reference endmembers are shown with red color. Tables II– IV
tabulate the average SAD from reference endmembers in radians

along with the standard deviation for the Urban dataset with four,
five, and six reference endmembers, respectively.

When estimating four endmembers, CNNAEU, MTAEU, and
Endnet show good performance, low variance, and good accu-
racy. The DAEN method has good consistency but bad accuracy.
The mDAE method, which is the only method with tied weights,
is very unstable, and this instability can most likely be attributed
to tying the weights and spectral variability in the image. The
method NLAEU has highly negative endmembers as it lacks
a nonnegativity constraint. This makes the method essentially
unusable when not initialized and trained carefully.

The methods uDAS, SNSA, and DAEN interestingly all yield
similar endmembers. The DAEU and SIDAEU methods have
medium consistency and not very good accuracy, i.e., mSAD
score. The OSPAEU technique has bad accuracy because the
“Roof” endmember oscillates between three different solutions.

As the number of estimated endmembers is increased to five,
the average SAD scores of all methods increase and many meth-
ods’ accuracy decreases significantly. Endmembers that previ-
ously had good accuracy become unstable. Again, CNNAEU,
MTAEU, and Endnet show the best performance and accuracy,
with CNNAEU having the best accuracy and consistency and
Endnet having the second-best consistency. MTAEU has one
inconsistent run, where it estimates the Asphalt endmember as a
“Tree” endmember variant, resulting in worse mSAD and lower
consistency.

The OSPAEU technique estimates the new “Soil” endmem-
ber quite well, but the “Asphalt” endmember, which previ-
ously, when estimating four endmembers was good, becomes
unstable. Interestingly, the NLAEU method, which previously
yielded highly negative endmembers, estimates them consis-
tently mostly nonnegative. Still, the consistency is not good.
DAEN, uDAS, and SNSA seem to have trouble estimating the
new “Soil” endmembers.

When estimating six endmembers, the trend of increasing
average SAD and decreasing consistency continues. The best-
performing methods are again CNNAEU, MTAEU, and Endnet.
CNNAEU and MTAEU have greater difficulty estimating the
“Metal” endmember than the Endnet method, but they retain
excellent accuracy and good SAD scores for the five other
endmembers. Both methods are spectral–spatial methods. For
Endnet, the cost of a good “Metal” endmember is a poorer
solution for the “Soil” endmember. All the other methods show
bad accuracy for most endmembers other than “Tree,” which is
the best-represented endmember in the Urban scene.

Interestingly, the only method to consistently estimate the
“Metal” endmember well is the Endnet method. This method
uses a highly customized hidden layer in the encoder, where
the standard dot product used to calculate the layer’s activations
from its weight matrix and inputs is replaced with a custom
and more “spectrally discriminating” dot product based on the
SAD similarity measure. For some reason, the DAEN method
sometimes took too long to extract six endmembers for this
dataset, so it had to be omitted.

b) Houston dataset: The extracted endmembers by all meth-
ods for the Houston dataset are shown in Fig. 16, and the SAD
scores for individual endmembers along with the average SAD
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Fig. 12. Bar plot showing the average SAD for the four synthetic datasets. The spectral variability increases with increasing sampling radius. The six rightmost
methods all use the MSE objective function. The black vertical lines show the standard deviation. All experiments consisted of 25 runs.

TABLE II
MEAN SAD FROM REFERENCE ENDMEMBERS IN RADIANS ALONG WITH THE STANDARD DEVIATION FOR ALL METHODS FOR THE

URBAN DATASET WITH FOUR REFERENCE ENDMEMBERS

The number of runs is 25. Best results are in red and the second best in blue.

TABLE III
MEAN SAD FROM REFERENCE ENDMEMBERS IN RADIANS ALONG WITH THE STANDARD DEVIATION FOR ALL METHODS FOR THE

URBAN DATASET WITH FIVE REFERENCE ENDMEMBERS

The number of runs is 25. Best results are in red and the second best in blue.
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Fig. 13. Plots of all extracted endmembers by all methods (blue curves) and the reference endmembers (red) for the Urban dataset with four reference endmembers.
The number of runs is 25.
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Fig. 14. Plots of all extracted endmembers by all methods (blue curves) and the reference endmembers (red) for the Urban dataset with five reference endmembers.
The number of runs is 25.
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Fig. 15. Plots of all extracted endmembers by all methods (blue curves) and the reference endmembers (red) for the Urban dataset with six reference endmembers.
The number of runs is 25.
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Fig. 16. Plots of all extracted endmembers by all methods (blue curves) and the reference endmembers (red) for the Houston dataset with four reference
endmembers. The number of runs is 25.
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TABLE IV
MEAN SAD FROM REFERENCE ENDMEMBERS IN RADIANS ALONG WITH THE STANDARD DEVIATION FOR ALL METHODS (EXCEPT DAEN) FOR THE

URBAN DATASET WITH SIX REFERENCE ENDMEMBERS

The number of runs is 25. Best results are in red and the second best in blue.

TABLE V
SAD FROM REFERENCE ENDMEMBERS IN RADIANS ALONG WITH THE STANDARD DEVIATION FOR ALL METHODS FOR THE

HOUSTON DATASET WITH FOUR REFERENCE ENDMEMBERS

The number of runs is 25. Best results are in red and the second best in blue.

are tabulated in Table V. The three best-performing methods for
this dataset are CNNAEU, OSPAEU, and Endnet. Endnet has
excellent consistency, but its solution for the “running_track”
endmember is different from the reference. CNNAEU also has
good accuracy, with only one run out of 25 coming up with
a different solution for the “running_track” endmember, and
it also achieves the lowest average SAD score. OSPAEU has
some difficulty with the “running_track” endmember and oscil-
lates between two solutions, one of them being the reference
endmember. The OSPAEU method achieves the second-lowest
mSAD score for the dataset.

MTAEU also has trouble with the “running_track” endmem-
ber, showing similar behavior as OSPAEU. The DAEU and
SIDAEU methods have a reasonably good consistency. mDAE
does better on this dataset than it did on Urban but is still unsta-
ble. The methods SNSA, uDAS, and DAEN all have trouble with
the parking_lot2 endmember, which is highly correlated with
the parking_lot1 endmember. In addition, only uDAS is extract-
ing the “running_track” endmember similar to the reference.
NLAEU has some trouble with the parking_lot endmembers,
and the accuracy is not good with these endmembers. Its solution
for the “running_track” endmember has a good consistency, but
it is not the reference endmember.

Overall, the methods are doing better on the average on this
dataset than on the Urban dataset. The difference in performance
between methods that use scale-invariant fidelity terms and those
that do not is less than for the Urban dataset, indicating that the
Houston dataset has less spectral variability concerning scaling
of spectra. The common ambiguity in the solutions for the
“running_track” endmember is probably because it is the most
under-represented endmember.

c) Apex dataset: The Apex dataset is the final dataset for
the evaluation of blind unmixing performance. Fig. 17 shows
all extracted endmembers for all the methods, while Table VI
tabulates the average SAD scores for individual endmembers
along with the mSAD score. This dataset has very distinct and
easily identifiable endmembers. The water endmember in this
dataset can be challenging because the water spectra have a tiny
scale compared to the other endmembers. Methods using scale-
sensitive similarity measures such as MSE can have difficulties
with extracting such endmembers. A scale-sensitive objective
function can be lowered more by extracting a variant of a well-
represented endmember instead of the tiny scale endmember.
An endmember having a tiny scale can also manifest as a poorly
learned endmember having irregularities and generally being
badly formed.
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Fig. 17. Plots of all extracted endmembers by all methods (blue curves) and the reference endmembers (red) for the Apex dataset with four reference endmembers.
The number of runs is 25.
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TABLE VI
SAD FROM REFERENCE ENDMEMBERS IN RADIANS ALONG WITH THE STANDARD DEVIATION FOR ALL METHODS FOR THE

APEX DATASET WITH FOUR REFERENCE ENDMEMBERS

The number of runs is 25. Best results are in red and the second best in blue.

TABLE VII
RMSE BETWEEN GENERATED ABUNDANCE MAPS AND REFERENCE MAPS FOR THE URBAN DATASET WITH FOUR REFERENCE ENDMEMBERS

The number of runs is 25. Best results are in red and the second best in blue.

In Fig. 17, we see that all methods utilizing SAD as the
similarity measure in the loss function have no trouble extracting
the “Water” endmember, and it is close to the reference. The
water spectra in the dataset have minimal spectral variability,
which explains the excellent match. CNNAEU has good accu-
racy and consistency for this dataset. OSPAEU, which uses a
scale-sensitive fidelity term, the hyper-Laplacian loss, manages
to extract the “Water” endmember very well. The loss is ap-norm
of the difference between input and reconstruction raised to the
power p and having p = 0.7, which can explain why the lower
scale of the endmember is not as problematic as it is for the MSE
loss.

The Endnet method fails consistently to extract the “Water”
endmember and extracts some vegetation endmember instead.
This can be explained by the MSE term in the loss of this
method. Despite this, the method has a good consistency. The
MTAEU and DAEU methods fail to consistently extract the
reference form of the “Roof” endmember and extract some
vegetation endmember instead. It is hard to attribute this to some
implementation details without doing some experimentation.
However, the methods that have bad accuracy for the “Roof”
endmember all have deep encoders, i.e., MTAEU, DAEU, and
OSPAEU. NLAEU, SNSA, uDAS, and DAEN all have trouble
with the “Road” and the “Water” endmember.

d) Average mSAD versus scale invariance: Fig. 19 shows the
average mSAD for all real datasets of method groups, where
their loss function is scale invariant or non-scale invariant. The
SAD and SID similarity measure are scale invariant. All methods
using the MSE and the hyper-Laplacian loss function belong
to the last group of scale-sensitive methods. The graph clearly
shows that having a non-scale-invariant loss function leads to
substantially lower performance than if a scale-invariant loss
had been used.

2) Abundance Maps: The quality of generated abundance
maps by blind unmixing methods depends on the quality of the
extracted endmembers. The discussion of abundance maps will
be limited to the Urban dataset. Fig. 18 shows the generated
abundance maps by all methods for the best mSAD score.
Table VII tabulates the RMSE scores for individual endmembers
and the average of all maps.

The method that achieves the lowest RMSE score is the
MTAEU method. CNNAEU, despite having a lower mSAD
score, does not achieve a good RMSE score. Fig. 18 shows that
the abundance maps for CNNAEU are intense and sparse. This is
a consequence of using the softmax function to enforce the ASC
and using a sizeable spatial filter for the decoder convolutional
layer. This causes high values of the feature maps entering the
softmax function, which then acts like �1-sparsity regularization.
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Fig. 18. Abundance maps for the run with the best mSAD score for all methods for the Urban dataset. The reference abundance maps are in the top row.
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Fig. 19. Box plot of the average mSAD of methods grouped by whether their
loss function is scale invariant, semi-invariant, or not at all.

The OSPAEU method also produces intense and binary-
looking abundance maps. This results likely from the orthogo-
nality prior of the abundance maps. The Endnet method achieves
the second-lowest RMSE score and produces good abundance
maps. This method employs forced sparsity by applying a
“top_k” function to the abundances, selecting the k highest
abundances and setting all the others to zero. A value of k = 2
was used in the experiments.

F. Robustness to Noise

A blind unmixing experiment was performed using the Sam-
son dataset to investigate the methods’ robustness to noise.
The dataset was corrupted with noise to obtain four versions
having signal-to-noise ratio (SNR) of 10, 20, 30, and 40 dB.
Fig. 20 shows a bar chart of the mSAD score of all the
methods for the Samson dataset for the four different SNR
levels and the original uncorrupted dataset. Fig. 20 shows
that most methods are relatively robust to noise. MTAEU
and OSPAEU seem largely unaffected by the noise for this
dataset. Endnet shows good performance and low variance for
all SNR levels but is relatively largely affected by SNR =
10 dB.

Paradoxically, SNSA and DAEN perform best at SNR =
10 dB. NLAEU is heavily affected by noise, and SIDAEU does
not handle SNR = 10 dB well. CNNAEU performs best under
moderate noise (SNR = 30) corruption and also has a low
variance for this SNR. The NMF method performs best at SNR=
20 and 30 dB. We are not able to explain why some methods
perform better at the highest noise level than with moderate
noise.

Endnet has the best performance and the best consistency on
the original dataset, and MTAEU has the second-best perfor-
mance. CNNAEU comes third. Interestingly, the NMF method
performs worse on the original dataset than on the datasets
having SNR = 20 and 30 dB.

Two synthetic datasets from the spectral variability experi-
ment, having no and moderate spectral variability, were used for
robustness experiments. They were corrupted with noise also
such that each image has SNR of 20, 30, and 40 dB. This is
useful because it decouples the effects of spectral variability
and noise. The results are shown in Fig. 21(a) for no spectral
variability and in Fig. 21(b) when there is moderate spectral
variability.

In Fig. 21(a), we see that the MSE-based methods perform
best, with the exception of NMF-�1/2 and mDAE. The methods
SNSA, uDAS, and DAEN perform overall best. This is not very
surprising as the HSI does not have any spectral variability, and
all the methods, except NMF-�1/2, are designed to deal with
noisy data. Comparing these methods to NMF-�1/2 confirms
this.

CNNAEU and MTAEU that use SAD loss are the best-
performing methods. Somewhat surprisingly, the method Endnet
is the worst-performing method. This is very different from the
Samson experiment where it was the best-performing method.
The SAD-based methods are practically unaffected by the dif-
ferent noise levels with the exception of the Endnet and SIDAEU
methods.

From Fig. 21(b), we can see a different situation with the
addition of some spectral variability. The MSE-based methods
perform worse compared to SAD-based methods, as expected.
It is interesting to see that the NMF-�1/2 method performs better
for SNR = 30 and 40 dB than the other MSE methods and some
SAD methods. Again, Endnet performs relatively poorly on this
dataset.

The NAE-VCA performs best overall of the MSE methods. In
addition, the addition of spectral variability increases the vari-
ance of the uDAS method substantially. CNNAEU also shows
increased variance for two noise levels, while SIDAEU shows
decreased variance. It can be seen by comparing the figures that
the SAD-based methods, especially MTAEU, CNNAEU, and
OSPAEU, show good robustness against both spectral variability
and noise. It is puzzling that both NAE-VCA and mDAE perform
best at the highest SNR.

This experiment indicates that using the SAD loss for unmix-
ing autoencoders can provide good robustness to both spectral
variability and noise, although they are not designed for that.
The consistency of CNNAEU and MTAEU regarding noise and
spectral variability demonstrates this.

G. Computation Cost

It is challenging to meaningfully compare the running time
of different methods since it depends on hyperparameters such
as batch size, the number of training data samples, and imple-
mentation details such as what programming language and DL
framework are being used. In addition, CNN methods run on
a GPU, while dense neural network methods run on a CPU if
implemented using Tensorflow or MATLAB. Table VIII shows
running times in seconds for a single run for the methods for
three different datasets. The main conclusion that can be drawn
from Table VIII is that methods implemented in the Python
programming language using the Tensorflow or Pytorch DL
frameworks are significantly faster than the methods imple-
mented in MATLAB. The experiments were performed on a
computer with an eight-core CPU and 64 GB of memory and a
GPU with 11 GB of memory.

VII. CONCLUSION

This article critically compares numerous blind autoencoder-
based unmixing methods and gives an overview of the architec-
tures and implementation details utilized up until now. Eleven
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Fig. 20. Bar plot of the mSAD score for all methods for the Samson dataset with four different levels of SNR and the original uncorrupted dataset. The black
vertical lines show the standard deviation. All experiments consisted of 25 runs.

Fig. 21. Bar plot of the mSAD score for all methods for the synthetic datasets having (a) no spectral variability and (b) moderate spectral variability (r = 0.2)
and with three different levels of SNR (20, 30, and 40 dB). (a) Synthetic dataset having no spectral variability with three different levels of SNR. (b) Synthetic
dataset having moderate spectral variability with three different levels of SNR.
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TABLE VIII
COMPUTATION TIME IN SECONDS FOR A SINGLE RUN FOR THE METHODS FOR THREE DATASETS

The values for the Urban image are for estimating four endmembers.

different autoencoder methods were compared by performing
blind unmixing on four different real hyperspectral datasets
and four synthetic datasets with a varying degree of spectral
variability.

It is generally tough to interpret the results of experiments
in terms of concrete implementation details of neural network
methods when they differ in so many ways. Because of this, com-
prehensive ablation experiments with a simple spectral unmix-
ing autoencoder were carried out. These ablation experiments
provide further experimental evidence for many of the details
discussed in this article.

Why do autoencoders work well for spectral unmixing com-
pared to traditional methods? What exactly is it that makes
them perform so well? A linear nonnegative autoencoder using
the MSE loss function essentially performs NMF and should
perform similarly to traditional NMF methods in unmixing.
However, autoencoders can use any loss functions that allow for
backpropagation. The option to use scale-invariant loss func-
tions gives autoencoders increased flexibility over traditional
methods for linear unmixing. In addition, the encoder and the
decoder can be arbitrarily nonlinear, which can further improve
performance.

Because of inherent spectral variability in real HSIs and the
inability of the LMM to model it, the scale-invariance of the loss
function used by the methods matters extensively. The results of
the experiments with real datasets confirm this. The results of
ablation experiments where a simple autoencoder was compared
to the NMF-�1/2 method and experiments with the synthetic
datasets with varying spectral variability further strengthen this
conclusion.

Scale-sensitive fidelity terms should be avoided if the method
performs unmixing according to the LMM model. Unless the
architecture of the method is designed to handle spectral variabil-
ity, such as the method in [77], a scale-invariant loss or as close
to it as possible should be chosen. Even if spectral variability is
handled by the method, another problem remains if a strongly
scale-sensitive similarity measure such as MSE is used. It is
the difficulty with extracting endmembers that have a tiny scale
compared to all the other endmembers in a scene, such as the
water endmember in the Apex dataset.

The ablation experiments show that an LReLU activation that
allows negative activations, coupled with the softmax function to
enforce the ASC constraint, works well and is robust. In addition,
the batch size is an important parameter for spectral unmixing
autoencoders, and it is dataset dependent. Furthermore, using
nonlinear decoders with a higher number of parameters can
benefit the quality of extracted endmembers, especially if the
images have substantial nonlinear mixing.

Another observation concerns the use of spatial information,
i.e., whether methods process a single spectrum at a time or
if they operate on a patch at a time and make use of the spa-
tial correlations existing within real HSIs. The spectral–spatial
methods seem to benefit from the additional spatial information
by operating on whole patches of HSIs at a time. This is es-
pecially evident on the synthetic dataset. Using as much of the
available information within an HSI as possible can lead to better
unmixing performance if done correctly. Better performance can
come, e.g., in the form of better consistency.

At this moment, the greatest challenge for HU using autoen-
coders is creating methods that perform well and have a good
consistency for many diverse datasets. Methods can show very
strong performance on one dataset and mediocre performance
on a different dataset. Increasing the robustness of autoencoder
methods will continue to be a crucial issue going forward.
Handling endmember variability is an aspect of this.

Recently, multistream autoencoders utilizing adversarial reg-
ularizations or VAEs have become popular. VAEs allow for treat-
ing endmembers as distributions instead of having them fixed for
every pixel. Doing so enables methods to address spectral vari-
ability with scale-sensitive object functions. This is a promising
approach that abandons unmixing models such as the LMM,
which can be too restrictive and simple. Using generative models
in this way is a trend that the authors expect to continue. In
addition, borrowing concepts from image-to-image translation
such as cycle consistency and perceptual loss shows promise.
The performance of autoencoder methods adhering strictly to
restrictive and simple models such as the LMM is unlikely to see
much more improvement and more complex, e.g., multistream,
combined with adversarial or variational architectures, will be
needed for better performance and robustness in the future.

The intersection of HU and DL is currently a very vibrant
field of research. More and more autoencoder-based methods
are being published every year, utilizing the latest results from
the study of autoencoders in the context of DL.
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[69] J. Masci, U. Meier, D. Cireşan, and J. Schmidhuber, “Stacked convo-
lutional auto-encoders for hierarchical feature extraction,” in Proc. Int.
Conf. Artif. Neural Netw., 2011, pp. 52–59.

[70] B. Palsson, M. O. Ulfarsson, and J. R. Sveinsson, “Convolutional autoen-
coder for spectral–spatial hyperspectral unmixing,” IEEE Trans. Geosci.
Remote Sens., vol. 59, no. 1, pp. 535–549, Jan. 2021.

[71] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities improve
neural network acoustic models,” in Proc. Int. Conf. Mach. Learn., 2013,
vol. 30, no. 1, p. 3.

[72] H. Mhaskar, Q. Liao, and T. Poggio, “When and Why Are Deep Networks
Better than Shallow Ones?,” in Proc Thirty-First AAAI Conf. Artif. Intell.,
2017, pp. 2343.2349.

[73] B. Palsson, J. Sigurdsson, J. R. Sveinsson, and M. O. Ulfarsson, “Hyper-
spectral unmixing using a neural network autoencoder,” IEEE Access,
vol. 6, pp. 25646–25656, 2018.

[74] B. Palsson, J. R. Sveinsson, and M. O. Ulfarsson, “Spectral-spatial
hyperspectral unmixing using multitask learning,” IEEE Access, vol. 7,
pp. 148861–148872, 2019.

[75] Y. Su, X. Xu, J. Li, H. Qi, P. Gamba, and A. Plaza, “Deep autoencoders
with multitask learning for bilinear hyperspectral unmixing,” IEEE Trans.
Geosci. Remote Sens., vol. 59, no. 10, pp. 8615–8629, Oct. 2021.

[76] Z. Dou, K. Gao, X. Zhang, H. Wang, and J. Wang, “Hyperspectral
unmixing using orthogonal sparse prior-based autoencoder with hyper-
Laplacian loss and data-driven outlier detection,” IEEE Trans. Geosci.
Remote Sens., vol. 58, no. 9, pp. 6550–6564, Sep. 2020.

[77] Z. Dou, K. Gao, X. Zhang, H. Wang, and J. Wang, “Blind hyperspectral
unmixing using dual branch deep autoencoder with orthogonal sparse
prior,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process, 2020,
pp. 2428–2432.

[78] M. M. Elkholy, M. Mostafa, H. M. Ebied, and M. F. Tolba, “Hyperspectral
unmixing using deep convolutional autoencoder,” Int. J. Remote Sens.,
vol. 41, no. 12, pp. 4799–4819, 2020.

[79] Y. Su, A. Mariononi, J. Li, A. Plaza, and P. Gamba, “Nonnegative sparse
autoencoder for robust endmember extraction from remotely sensed
hyperspectral images,” in Proc. IEEE Int. Geosci. Remote Sens. Symp.,
Jul. 2017, pp. 205–208.

[80] S. Ozkan, B. Kaya, and G. B. Akar, “EndNet: Sparse autoencoder network
for endmember extraction and hyperspectral unmixing,” IEEE Trans.
Geosci. Remote Sens., vol. 57, no. 1, pp. 482–496, Jan. 2019.

[81] Y. Qu, R. Guo, and H. Qi, “Spectral unmixing through part-based non-
negative constraint denoising autoencoder,” in Proc. IEEE Int. Geosci.
Remote Sens. Symp., Jul. 2017, pp. 209–212.

[82] D.-A. Clevert, T. Unterthiner and S. Hochreiter et al., “Fast and accurate
deep network learning by exponential linear units (elus),” NiN, vol. 8,
pp. 35–68, 2015, arXiv:1511.07289.

[83] G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter, “Self-
normalizing neural networks,” in Proc. 31st Int. Conf. Neural Inf. Process.
Syst., 2017, pp. 972–981.

[84] P. Ramachandran, B. Zoph, and Q. V. Le, “Swish: A self-gated activation
function,” 2017, arXiv:1710.05941.

[85] Y. Su, A. Marinoni, J. Li, J. Plaza, and P. Gamba, “Stacked nonnegative
sparse autoencoders for robust hyperspectral unmixing,” IEEE Geosci.
Remote Sens. Lett., vol. 15, no. 9, pp. 1427–1431, Sep. 2018.

[86] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift,” in Proc. 32nd Int.
Conf. Int. Conf. Mach. Learn., 2015, pp. 448–456.

[87] S. Santurkar, D. Tsipras, A. Ilyas, and A. Mądry, “How does batch
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D. Erdoğmuş, “Model-based deep autoencoder networks for nonlinear
hyperspectral unmixing,” IEEE Geosci. Remote Sens. Lett., vol. 19, 2022,
Art. no. 5506105.

[115] P. Refaeilzadeh, L. Tang, and H. Liu, Cross-Validation. Boston, MA,
USA: Springer, 2009, pp. 532–538.

[116] M. Feurer and F. Hutter, “Hyperparameter optimization,” in Automated
Machine Learning. Berlin, Germany: Springer, 2019, pp. 3–33.

[117] J. Bergstra and Y. Bengio, “Random search for hyper-parameter opti-
mization,” J. Mach. Learn. Res., vol. 13, no. 10, pp. 281–305, 2012.

[118] J. Snoek, H. Larochelle, and R. P. Adams, “Practical Bayesian opti-
mization of machine learning algorithms,” in Proc. Int. Conf. Neural
Inf. Process. Syst., 2012, vol. 2, pp. 2951–2959.

[119] J. Sigurdsson, M. O. Ulfarsson, and J. R. Sveinsson, “Parameter estima-
tion for blind LQ hyperspectral unmixing using Bayesian optimization,”
in Proc. 9th Workshop Hyperspectral Image Signal Process.: Evol. Re-
mote Sens., 2018, pp. 1–5.

[120] M. Pereyra, J. M. Bioucas-Dias, and M. A. Figueiredo, “Maximum-a-
posteriori estimation with unknown regularisation parameters,” in Proc.
23rd Eur. Signal Process. Conf., 2015, pp. 230–234.

[121] L. Zhuang, C.-H. Lin, M. A. T. Figueiredo, and J. M. Bioucas-Dias,
“Regularization parameter selection in minimum volume hyperspec-
tral unmixing,” IEEE Trans. Geosci. Remote Sens., vol. 57, no. 12,
pp. 9858–9877, Dec. 2019.

[122] S. Ozkan and G. B. Akar, “Deep spectral convolution network for
hyperspectral unmixing,” in Proc. 25th IEEE Int. Conf. Image Process.
2018, pp. 3313–3317.

[123] F. Khajehrayeni and H. Ghassemian, “Hyperspectral unmixing using
deep convolutional autoencoders in a supervised scenario,” IEEE J. Sel.
Topics Appl. Earth Observ. Remote Sens., vol. 13, pp. 567–576, 2020.

[124] B. Rasti, B. Koirala, P. Scheunders, and P. Ghamisi, “UnDIP: Hyper-
spectral unmixing using deep image prior,” IEEE Trans. Geosci. Remote
Sens., vol. 60, 2022, Art. no. 5504615.

[125] L. Qi, J. Li, Y. Wang, M. Lei, and X. Gao, “Deep spectral convolution
network for hyperspectral image unmixing with spectral library,” Signal
Process., vol. 176, 2020, Art. no. 107672.

[126] Z. Han, D. Hong, L. Gao, B. Zhang, and J. Chanussot, “Deep half-siamese
networks for hyperspectral unmixing,” IEEE Geosci. Remote Sens. Lett.,
vol. 18, no. 11, pp. 1996–2000, Nov. 2021.

[127] D. Hong et al., “Endmember-guided unmixing network (EGU-Net):
A general deep learning framework for self-supervised hyperspectral
unmixing,” IEEE Trans. Neural Netw. Learn. Syst., to be published,
doi: 10.1109/TNNLS.2021.3082289.

[128] Q. Jin, Y. Ma, X. Mei, H. Li, and J. Ma, “UTDN: An unsupervised
two-stream Dirichlet-Net for hyperspectral unmixing,” in Proc. IEEE
Int. Conf. Acoust., Speech, Signal Process., 2021, pp. 1885–1889.

[129] F. Zhu, “Structured sparse method for hyperspectral unmixing,” ISPRS
Journal of Photogrammetry and Remote Sensing, vol. 88, pp. 101–118,
2014.

[130] M. Magnusson, J. Sigurdsson, S. E. Armansson, M. O. Ulfarsson, H.
Deborah, and J. R. Sveinsson, “Creating RGB images from hyperspectral
images using a color matching function,” in Proc. IEEE Int. Geosci.
Remote Sens. Symp., 2020, pp. 2045–2048.

[131] L. J. Rickard, R. W. Basedow, E. F. Zalewski, P. R. Silverglate, and M.
Landers, “HYDICE: An airborne system for hyperspectral imaging,” in
Imaging Spectrometry of the Terrestrial Environment, vol. 1937, G. Vane,
Ed. Bellingham, WA, USA: SPIE, 1993, pp. 173–179.

[132] M. E. Schaepman et al., “Advanced radiometry measurements and earth
science applications with the airborne prism experiment (APEX),” Re-
mote Sens. Environ., vol. 158, pp. 207–219, 2015.

Burkni Palsson (Student Member, IEEE) received
the B.S. degree in mathematics and physics in 1999,
the B.S. degree in energy and environmental technol-
ogy in 2012, and the M.Sc. degree in electrical and
computer engineering in 2021, all from the University
of Iceland, Reykjavik, Iceland, where he is currently
working toward the Ph.D. degree in electrical engi-
neering.

His research interests include hyperspectral un-
mixing and classification in remote sensing and the
development and applications of deep-learning-based

methods in that field.

Johannes R. Sveinsson (Senior Member, IEEE) re-
ceived the B.S. degree from the University of Iceland,
Reykjavík, Iceland, and the M.S. and Ph.D. degrees
from Queen’s University, Kingston, ON, Canada, all
in electrical engineering.

He is currently a Professor with the Department
of Electrical and Computer Engineering, University
of Iceland, where he was with the Laboratory of
Information Technology and Signal Processing from
1981 to 1982 and with the Engineering Research In-
stitute and the Department of Electrical and Computer

Engineering as a Senior Member of research staff and a Lecturer, respectively,
from 1991 to 1998. He was a Visiting Research Student with the Imperial College
of Science and Technology, London, U.K., from 1985 to 1986. At Queen’s
University, he held teaching and research assistantships. His current research
interests include systems and signal theory.

Dr. Sveinsson is a recipient of the Queen’s Graduate Awards from Queen’s
University. He is a co-recipient of the 2013 IEEE Geoscience and Remote
Sensing Society Highest Impact Paper Award.

Magnus O. Ulfarsson (Senior Member, IEEE) re-
ceived the B.S. and M.S. degrees in Electrical and
Computer Engineering from the University of Ice-
land, Reykjavík, Iceland, both in 2002, and the Ph.D.
degree in Electrical and Computer Engineering from
the University of Michigan, Ann Arbor, MI, USA, in
2007.

In 2007, he joined the University of Iceland, where
he is currently a Professor and the Chair of the Faculty
of Electrical and Computer Engineering. Since 2013,
he has been with deCODE Genetics, Reykjavík. His

research interests include statistical signal processing, image processing, ma-
chine learning, remote sensing, medical imaging, and genomics.

Dr. Ulfarsson has been an Associate Editor for IEEE TRANSACTIONS ON

GEOSCIENCE AND REMOTE SENSING since 2018.

https://dx.doi.org/10.1109/TNNLS.2021.31142032021
https://dx.doi.org/10.1109/TGRS.2021.3094884
https://dx.doi.org/10.1109/LGRS.2021.3127075
https://dx.doi.org/10.1109/TGRS.2021.3098745
https://dx.doi.org/10.1109/TNNLS.2021.3082289


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


