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Blind identification and allocation of multivariate disturbances

Matthijs Boerlage, Bram de Jager, and Maarten Steinbuch

Abstract— A second order statistics based blind identification
technique is used to recover the physical sources from distur-
bances acting on a multivariable system. The results are then
used to find the physical location of disturbance sources in an
active vibration isolation platform. Furthermore, implications
for multivariable controller design are discussed.

I. INTRODUCTION

In multivariable systems, the same disturbance, due to

a single physical cause (source), can enter in more than

one controlled variable. A typical example can be found

in motion control, where multiple degrees of freedom of a

controlled plant suffer from the same disturbance sources,

e.g., pump, floor and machine vibrations. The sources cannot

be measured directly, only an unknown mixture of these

sources is observed at a certain place in the feedback loop.

In order to study the physical nature of the disturbances,

one has to recover both the sources and the mixture of these

sources.

In this work, we show that this is equivalent to solving a

blind identification problem. Blind identification problems

appear in information theory, direction of arrival problems

and array processing, see [3], [5] for a survey. Blind

identification methods often rely on higher order statistics of

the observed signals. An example of this is the independent

component analysis technique used in [15]. Using higher

order statistics implies that Gaussian sources cannot be

retrieved. Also, as estimates of higher order statistics have

high variance, long data sets are required. The novelty of our

contribution is that we show that for time colored sources,

only a set of second order statistics are required to solve the

blind identification problem. Hence, the method from [1]

can be used to solve the blind identification problem within

some indeterminacies.

As opposed to other disturbance modeling techniques,

e.g. [14], we are able to find a structured disturbance

model. Herein, the contribution of each source can be

studied individually. Also, the direction of each source is

identified which is crucial for multivariable control design,

as suggested in [9], [11, p. 85]. Furthermore, we show that

with some additional assumptions, the physical location

of sources can be recovered. This offers the possibility to

trace down the sources and reduce their influence through

mechanical redesign. The theory is demonstrated on a non

trivial 6 × 6 MIMO active vibration platform.

Matthijs Boerlage, Bram de Jager, and Maarten Steinbuch are with
the Faculty of Mechanical Engineering Technische Universiteit Eindhoven,
5600MB Eindhoven, The Netherlands m.l.g.boerlage@tue.nl

In the next section, we discuss how multivariate disturbances

can be recovered from closed loop measurements. From

thereon, we introduce the blind identification method used

in this work. This is then applied to the active vibration

isolation platform. Herein, disturbances are allocated using

the proposed methodology. Finally the implications on

multivariable feedback control design are discussed.

II. MULTIVARIATE DISTURBANCES

We consider a plant G with n inputs and n outputs which

is controlled by a feedback controller K in the architecture

depicted in Fig. 1. The disturbance vector d enters the

- K

G d

Ge y

s

d

w

Fig. 1. Feedback control structure. G is the plant, K the controller, Gd

the disturbance model.

loop at the input of the plant. In this paper, we assume

that the plant is invertible and known within negligible

uncertainties. Hence, disturbances at the output of the plant

can be considered at the input of the plant (and vice versa).

The error e equals

e = SoGd (1)

where So = (I + GK)−1 is the output sensitivity function.

From an initial experiment, a batch of observations of the er-

ror can be obtained, e(t) ∈ R
n for t = 0, ..., TsN , where Ts

denotes the sample time and N +1 is the number of samples.

With e(t) given, one can reconstruct d(t) by using the inverse

of the output sensitivity, d(t) = G−1(q)S−1
o (q)e(t), with q

the differential operator, qu(t) = ∂u(t)
∂t

. The disturbance at

each channel di, i = 1, ..., n results from a mixture of sources

that are to be identified sj , j = 1, ...,m, where m ≤ n and

sources that are not identified wl, l = 1, ..., n. The challenge

is to find 1) the number of physical disturbances (m), 2)

the physical disturbance sources (s(t)),and 3) the matrix that

mixes the sources (the relevant part of Gd).
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III. BLIND IDENTIFICATION

As we do not know the mixing matrix Gd and have

no knowledge about the sources s(t), we face a blind

identification problem. Key in this analysis, is the use of

the τ -lagged covariance matrix, defined for a multivariate

signal x(t),

Rx(τ) = E{x(t)x(t − τ)T } (2)

where E{·} is the statistical expectancy. The components

of x(t) are uncorrelated if Rx(0) is diagonal.

In order to solve the blind identification problem, several

assumptions must be made. Here, we make use of the

following assumptions,

A 1: The sources are mutually statistical independent

A 2: Each source is a different time colored phenomena.

A 3: The mixing process Gd is constant in time

A 4: The sources and noise are uncorrelated

The first assumption A1 states that the sources are statistical

independent physical phenomena. Two variables are called

independent when knowing the value of one, does not

provide any information about the other. In that case, their

joint probability density function equals the product of the

marginal probability density functions, [5]. Sources that are

independent are also uncorrelated, but not vice versa. The

second assumption A2 assumes that the sources are time

colored. Then, the lagged covariance Rs(τ), is positive

semi-definite for non-zero τ . The sources are different so

that the lagged covariance is different for at least one value

of τ . Assumption A3 states that Gd is a static transfer

function, at least at the frequencies of interest. This is

justified when sources have a narrow band spectrum and

locations of the sources do not change in time. For ease of

notation, we assume the sources are zero mean.

We divide the sources in two classes, namely the sources

s(t) which are to be identified, and the noise signals w(t)
which are not identified directly. Depending on the nature

of w(t), great simplifications in the blind identification

problem can be realized. We assume that the noise and

the sources are uncorrelated, A4. The disturbance model

becomes;

d(t) =
[

Gs Gw

]

︸ ︷︷ ︸

Gd

[
s(t)
w(t)

]

(3)

The blind identification procedure consists of two steps;

Step A) principal component analysis and scaling, Step B)

independent component analysis.

A. Principal component analysis

The objective of principal component analysis (PCA) is to

find the minimal number of uncorrelated components z(t) in

the observed disturbances d(t). In addition, the uncorrelated

components are scaled to unit covariance. This procedure is

also known as whitening, [1]. Hence the objective is to find

a possibly non-square matrix W so that,

z(t) = Wd(t) (4)

with, Rz(0) = I . Using (3), the covariance of the disturbance

equals,

Rd(0) = GsRs(0)GT
s + GwRw(0)GT

w (5)

The issue is that the structure at the right hand side of this

equation is to be determined while only Rd(0) is known.

The unknown singular value decompositions of the source

and noise parts, is defined as,

GsRs(0)GT
s = UsΣsU

T
s , GwRw(0)GT

w = UwΣwUT
w , (6)

where Rs(τ), Rw(τ) are symmetric. Next, the singular value

decomposition of the covariance of d(t) is studied, so that,

Rd(0) = UdΣdU
T
d (7)

= UsΣsU
T
s + UwΣwUT

w

=
[

Uds Udw

]
[

Σds 0
0 Σdw

] [
UT

ds

UT
dw

]

The ith singular value of Rd(0), σdi, namely the ith diagonal

element of Σd, equals the square of the variance of the ith

principal component in decreasing order. The best rank m

approximation of Rd(0) is achieved by considering the m

dimensional subspace related to the first, hence largest, m

principal components. The costs of this dimension reduction

is small when
σ(Σds)−σ(Σdw)

σ(Σds) is large. When the sources

dominate the noise signals, one finds the subspace of the

sources as, GsRs(0)GT
s ≈ UdsΣdsU

T
ds.

In the case that the noise space outside the source

space can be approximated as Σdw ≈ ρ2In−m. And one

can assume, e.g., on physical bases, that Σds = Σs + ρ2Im,

one can determine the variance of the spatially white

noise space as ρ2 ≈ 1
n−m

tr(Σdw). Hence, an unbiased

estimate of the source variances can be obtained using,

GsRs(0)GT
s ≈ Uds(Σds − ρ2Im)UT

ds. This strategy

is justified in the special case that Gw = In and

Rn(τ) = ρ2Inδt,τ . This special structure is commonly

assumed in array processing applications, [12]. Herein, all

sensors in the array are assumed to suffer from sensor

noise with the same covariance. In control applications,

these assumptions may be justified when all channels (e.g.

all sensors) have the same noise variance. This is a crude

assumption in most applications.

When none of the above arguments hold, and no clear decay

of the singular values of Rd(0) is visible, it is questionable

if reduction of the dimension of the disturbance signal space

is justified. If the dimension is reduced, performance of the

blind identification procedure may decrease significantly,

as shown in [8]. Blind identification procedures that make

no use of a post-processing step as principal component

analysis, such as [7], can then be considered.
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In the following, we assume that we can use

GsRs(0)GT
s ≈ UdsΣdsU

T
ds, so that the signal dimension

can be reduced to m. Next, the issue is to find the whitening

matrix W ∈ R
m×n so that,

Rz(0) = WRd(0)WT (8)

= WUdsΣdsU
T
dsW

T = I

when we assume, without loss of generality, that Rs(0) = I ,

we find that,

W = Σ
− 1

2

ds UT
ds (9)

Now, the directions of the dominant disturbances are

contained in Uds. The most dominant disturbance lies in the

direction of the first column of Uds. Note that when m < n,

all signals in the subspace orthogonal to W , i.e., signals in

the image of Udw, are not considered in future steps of the

blind identification procedure.

The covariance matrix Rz(0) does not change when

z(t) is transformed with any unitary matrix U . Due to this

freedom, the uncorrelated components z(t) can still result

from a mixture of the sources with any unknown unitary

matrix U ,

z(t) = Us(t). (10)

Even though the components are uncorrelated, their behavior

can be much different from the behavior of the physical

sources s(t). The next step in the blind identification proce-

dure is to reduce this freedom by using a stronger statistical

condition, namely statistical independence.

B. Independent component analysis

In this step, the uncorrelated components z(t) are trans-

formed to components that are mutually statistical indepen-

dent. As independence is a stronger statistical condition, the

residual freedom in the blind identification problem reduces.

As the sources are time colored signals, their τ lagged

covariance, Rs(τ) is non-zero. The case is studied where

the noise signals are small and fast compared to the source

signals. Hence Rs(τ) ≫ Rn(τ), τ > 0, so that,

Rd(τ) = GsRs(τ)GT
s , τ > 0. (11)

In [12] it is argued, that when the lagged covariance matrix is

diagonal for multiple lags, the components are independent.

Starting from the whitened components z(t) ∈ R
m, Rz(0) =

0, Rz(τ) � 0, τ > 0, the objective is to find a unitary matrix

U so that,

Rs(τ) = UT Rz(τ)U (12)

is diagonal for a set of τk > 0, τk = {τ1, ..., τNk
}.

This is a unitary simultaneous diagonalization problem

that can be solved within two indeterminacies; namely

sign and permutation of the columns of U . We express

these indeterminacies with the matrix P which is the

product of a permutation matrix and a phase matrix. The

solution V P = U , with unknown P , is the approximated

eigenstructure of Rz(τk) for τk = τ1, ..., τNk
. A solution

exists if at least one covariance matrix Rs(τk) has distinct

diagonal values. As long as this covariance matrix is in

the set for τk = τ1, ..., τNk
, the sources can be separated.

Hence, increasing Nk, will improve signal separation,

especially for more broadband disturbances. The unitary

simultaneous diagonalization can be formulated as a

optimization problem. Here, we use the joint approximate

diagonalization of eigenmatrices (JADE) solver from [4] to

find V .

Knowing both W and V , the physical sources can be

recovered up to the indeterminacies P as,

ŝ(t) = Ps(t) = V T Wd(t). (13)

We define Ĝs = W †V . The indeterminacies P imply

arbitrary ordering and arbitrary sign of the recovered sources.

The arbitrary permutation, implies that the ordering of the

recovered sources is not fixed. In the principal component

analysis, it was assumed that Rs(0) = I , which implies that

all scalings of the sources are contained in Ĝs. Alternatively,

one may choose to scale the columns of Ĝs to unity, as

we show in Section IV. This is just a matter of convention

and does not play any role in further use of this disturbance

model.

IV. EXPERIMENTAL SETUP

An industrial active vibration isolation platform is studied,

see Fig. 2. The platform consist of an active mounted table

Shakers

Fig. 2. Active vibration isolation platform. Shakers mounted at the table
surface generate disturbances.

where actuators apply forces and moments at the center of

gravity (COG). Geophones (sensors) measure the velocity

of the COG. As the table behaves rigid in the domain

of interest, the transfer function matrix of the plant is

diagonal. Hence, all six cartesian degrees of freedom can

be controlled independently.

Two disturbances are added synthetically to the system, by

means of two shakers placed at the surface of the table.

Both the location and the time behavior of the disturbances

are considered to be unknown. For validation purposes,

the acceleration of the shakers is measured. The errors are
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measured, so that using (1), the disturbances d(t) can be

recovered, see Fig. 3. It is visible that due to the location

of the shakers, the shakers excite all controlled axes. In the

0 0.2 0.4 0.6 0.8 1
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0

5
x 10
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 [
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Fig. 3. Reconstructed input disturbance of the active vibration isolation
platform.

principal component analysis, we find the singular values of

the covariance matrix Rd(0), Fig. 4. We take in account three

principal components (m = 3). There is no clear distinction

between the third and fourth singular value of Rd(0). The

influence of other sources in the m dimensional signal

subspace of Rd(0) can therefore be significant. We choose

to do this, to illustrate the power of the blind identification

procedure. In Fig. 5 the three components are shown,

as z(t) = Wd(t),W ∈ R
3×6. Next, using independent

component analysis the uncorrelated components z(t) are

transformed to independent components, Fig. 6. Herein,

we used Nk = 50 lagged covariance matrices in the

simultaneous diagonalization problem, (12). We decompose

the recovered matrix Ĝs in the directions of, Gs, and the

input gains Γ, so that Ĝs = GsΓ

Gs =











−0.013 0.003 0.209
−0.010 −0.007 0.582
−0.997 0.970 0.781
−0.008 −0.093 −0.078
−0.081 −0.224 0.026
−0.001 0.002 0.020











Γ =





0.020 0 0
0 0.013 0
0 0 0.002



 (14)

1 2 3 4 5 6
−160

−140

−120

−100

−80

−60

principal components

σ
(R

d
)

Fig. 4. Singular values of Rd(0), equals the squared variance per principal
component.
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Fig. 5. Three principal components z recovered from the observed
disturbances.

The jth column of Gs is the direction of the jth independent

component. It is visible that the first and second independent

component act mostly in z direction. Also, both two sources

cause a rotation about the y-axis. The third source is a

disturbance in both z and y direction, this is due to the

motions of the floor in our laboratory for which the table is

poorly isolated. In Γ, it is visible that the first and second

source are much larger than the third source.

For validation, we compare the first two independent

components with the measurement of the acceleration

sensors of the shakers, Fig. 7. We see that, within a

scale, sign and permutation indeterminacy, the wave

forms match closely, so it is justified to conclude that

the independent components describe the behavior of the

sources. It is clear that the principal components, Fig. 5,

do not posses this property. Hence, for this application, the

practical significance of requiring statistical independence

is demonstrated.
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Fig. 6. Three independent components ŝ recovered from the observed
disturbances.
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Fig. 7. Derivative of ŝ1(t), ŝ2(t) and the acceleration of the shakers.

V. ALLOCATION

Finding the location of disturbance sources is of great

value in system design. When the physical source of a

disturbance is recovered, measures to reduce the influence

of that source on machine performance can be taken

either through mechanical or control (re)design. From the

blind identification procedure, the contribution of each jth

disturbance source to the disturbance is identified, see (18).

As the disturbances are studied at the input of the

plant, dsj is expressed in terms of cartesian forces and

moments acting on the center of gravity of the table, so that

for the jth disturbance source holds that,

dsj = [dj
x, dj

y, dj
z, d

j
Rx, d

j
Ry, d

j
Rz]

T (15)

We assume that the disturbance source acts point wise and

the table is rigid. Allocation of the source then boils down

to finding the vector from the center of gravity to the point

where the disturbance source acts, see Fig. 8. As we have

x y

z r j
s j

C O G

r x y j

Fig. 8. Multi body model to find the location of the jth independent
component from the disturbance forces acting on the center of gravity.

−→
MCOG = −→r ×

−→
F COG, see [10], it follows that





d
j
Rx

d
j
Ry

d
j
Rz



 =





0 dj
z −dj

y

−dj
z 0 dj

x

dj
y −dj

x 0









rj
x

rj
y

rj
z



 (16)

Note that the matrix at the right hand side of this equation

has rank 2. Hence, it is only possible to find the shortest

distance rj to a line on which the jth source is located.

When we assume that the source is located at the surface of

the table, the vector −→r j
xy from the center of gravity to the

source location can be uniquely determined, Fig. 8. In (16),

the ratio between the elements in dsj (15) is important, it

suffices to take in account the direction of dsj , which equals

the jth column of Gs (14). Hence, we recovered the vector
−→r j

xy from the center of gravity to each source, and the

direction of the source (equals direction of [dj
x, dj

y, , dj
z]

T

at COG).

The first two sources, recovered in Section IV, are

used to demonstrate this allocation procedure. For ten

different measurements, the estimated locations are depicted

in Fig. 9. The actual location of the shakers is marked with

the diamonds. The estimation accuracy improves when the

number of lagged covariance matrices (Nk) is increased.

VI. IMPLICATIONS FOR CONTROL DESIGN

The insights after blind identification offer new opportu-

nities for multivariable control design. Here we discuss pos-

sibilities for using the knowledge from blind identification

for physical interpretation and redesign of a multivariable

feedback controller.

A. Changes in the disturbances

After blind identification, one can study the contribution

of each source in the disturbance d(t). Hence, the benefit of

eliminating a particular source in order to improve machine

performance can be studied. Here, we measure the perfor-

mance with a norm on e(t). The disturbances can be factored

as contributions from the independent components ds(t) and

contributions from the noise space dw(t),

d(t) = ds(t) + dw(t), (17)
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Fig. 9. Top view of table surface. Estimated location of the sources for
10 experiments, ŝ1 (+), ŝ2 (∗) and actual location of the shakers ⋄.

with ds(t) = Ĝsŝ(t). The contribution of each jth indepen-

dent component ŝj(t) to the disturbance equals,

dsj(t) = gdj ŝj(t). (18)

Herein gdj equals the jth column of Ĝs, so that ds(t) =
∑m

j=1 dsj(t). Using (1), the error as a result of each com-

ponent ŝj(t) is then,

esj(t) = So(p)G(p)dsj(t) (19)

The benefit of eliminating the jth source can be obtained

from calculating ‖e(t) − esj(t)‖p, for any p-norm.

B. Redesign of feedback controller

Given the structured disturbance model, one has the ability

to redesign the feedback controller to reject the distur-

bances related to the individual sources. Defining vj(t) =
G(p)dsj(t), and using (19), we have that

esj(t) = So(p)vj(t). (20)

As So(p) is a transfer function matrix, the size of esj(t)
depends on the gain at the input direction of So(p) cor-

responding to the direction of vj(t). When the direction

of vj(t) is fixed, one may consider shaping the sensitivity

function so that attenuation is high in that direction while

attenuation in orthogonal directions is decreased. Hence,

design freedom is exploit that has no scalar analogue, [9].

An H∞ controller design that demonstrates this is discussed

in [2].

VII. CONCLUSIONS

It is demonstrated that the spatial diversity and time

evolution of disturbances can be used to identify both

the disturbance sources and the way they are mixed in a

multivariable controlled system. Component wise analysis

offers great insight in the physical nature of disturbances and

facilitates allocation of sources and improved multivariable

controller design choices. The benefit of using directional

information of disturbances for improved weighting filter

selection in H∞ control design, is discussed in our recent

paper, [2].

More advanced blind identification techniques, that

have less stringent assumptions on the disturbance model

are currently under investigation. In [13] more general blind

identification techniques are discussed. Also, the case of

underdetermined mixtures (m > n), in [6], is subject to

future research.
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