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Abstract

This paper proposes an efficient identification algorithm for spatial multiplexing (SM) and Alamouti

(AL) coded orthogonal frequency division multiplexing (OFDM) signals. The cross-correlation between

the received signals from different antennas is exploited to provide a discriminating feature to identify

SM-OFDM and AL-OFDM signals. The proposed algorithm requires neither estimation of the channel

coefficients and noise power, nor the modulation of the transmitted signal. Moreover, it does not need

space-time block code (STBC) or OFDM block synchronization. The effectiveness of the proposed algo-

rithm is demonstrated through extensive simulation experiments in the presence of diverse transmission

impairments, such as time and frequency offsets, Doppler frequency, and spatially correlated fading.

Index Terms

Signal identification, space-time block code (STBC), orthogonal frequency division multiplexing

(OFDM).

I. INTRODUCTION

Blind signal identification plays an important role in various military and commercial appli-

cations, including electronic warfare, radio surveillance, software defined radio, and spectrum

awareness in cognitive radio [1]–[3]. For example, in software defined radio the transmitter

provides a flexible architecture, in which the same hardwarecan be used for different transmis-

sion parameters, e.g., modulation format, coding rate, andantenna configuration. Accordingly,

algorithms are required at the receive-side to blindly estimate these signal parameters [3].

This work was supported in part by the Defence Research and Development Canada (DRDC)

Yahia A. Eldemerdash, and Octavia A. Dobre are with the Faculty of Engineering and Applied Science, Memorial University

of Newfoundland, St. John’s, Canada. Email:{yahia.eldemerdash, odobre}@mun.ca.

Bruce J. Liao is with Defence Research and Development Canada, Ottawa, Canada. E-mail: bruce.liao@drdc-rddc.gc.ca.

http://arxiv.org/abs/1612.03071v1


2

Numerous studies have addressed the problem of blind signalidentification in single-input

single-output scenarios. These include identification of the modulation format [4]–[8], single-

versus multi-carrier transmissions [9], the type of multi-carrier technique [10], [11], and channel

encoders [12]–[14], as well as blind parameter estimation [9], [15]. Recently, multiple-input

multiple-output (MIMO) technology has been adopted by different wireless standards, such

as IEEE 802.11n, IEEE 802.16e, and 3GPP LTE [16]. However, the study of MIMO signal

identification is at an early stage. For example, estimationof the number of transmit antennas has

been investigated in [17], [18], modulation identificationin [19]–[21], and space-time block code

(STBC) identification in [22]–[27]. All these studies considered single-carrier transmission over

frequency-flat fading. However, in practice high data rate applications necessitate transmissions

over frequency-selective channels; hence, the assumptionof frequency-flat fading is not practi-

cally accepted. Additionally, the orthogonal frequency division multiplexing (OFDM) technique

has been adopted as the main transmission scheme over frequency-selective fading channels

[16]. Therefore, investigating the problem of MIMO-OFDM signal identification becomes a

practically required challenge. Recently, this problem has been explored in [28]–[31]: modulation

identification for spatial multiplexing (SM)-OFDM was studied in [28] and STBC-OFDM signal

identification was considered in [29]–[31], with the latterbeing relevant for our work. The

identification algorithm proposed in [29], [30] requires a large observation period to achieve a

good identification performance and suffers from high sensitivity to frequency offset. In addition

to these drawbacks, the algorithm in [31] is applicable onlyfor a reduced number of OFDM

subcarriers.

In this paper, we propose an efficient algorithm to blindly identify Alamouti (AL)-OFDM

and SM-OFDM signals1. A novel cross-correlation is defined for the received sequences with

re-arranged blocks, which provides a powerful discriminating feature. Additionally, a novel

criterion of decision is developed based on the statisticalproperties of the feature estimate.

The proposed algorithm does not require information about the channel, modulation format,

noise power, or timing synchronization. Moreover, it has the advantage of providing a good

identification performance with a short observation periodand for various numbers of OFDM

1Note that we assume that the received signal is either AL-OFDM or SM-OFDM. The AL and SM STBCs are considered,

as they are commonly used in various wireless standards, such as IEEE 802.11n, IEEE 802.16e, and 3GPP LTE [16].
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Fig. 1: Block diagram of a MIMO-OFDM transmitter [32].

subcarriers, as well as of being relatively robust to the frequency offset.

The rest of this paper is organized as follows. Section II introduces the system model. Section

III describes the proposed identification algorithm. Simulation results are presented in Section

IV. Finally, concluding remarks are drawn in Section V.

II. SYSTEM MODEL

We consider a MIMO-OFDM system with two transmit antennas, which employs either an AL

or SM encoder, as shown in Fig. 1. The data symbols, which are randomly and independently

drawn from anM-point constellation,M ≥ 4, are considered as blocks of lengthN . These

are fed to the encoder, whose output is[ c(0)2b+0 c
(0)
2b+1; c

(1)
2b+0 c

(1)
2b+1

] for AL-OFDM and

[ c
(0)
b+0; c

(1)
b+0

] for SM-OFDM. The notationc(f)Ub+u = [c
(f)
Ub+u(0), ..., c

(f)
Ub+u(N − 1)] is used to

represent the(Ub+ u)th data block ofN symbols from thef th antenna,f = 0, 1, with b as the

STBC block index,U as the length of the STBC block (U = 2 for AL and U = 1 for SM), and

u as the slot index within an STBC block,u = 0, 1, ..., U − 1. For AL-OFDM, the data blocks

have the property that [29]:c(1)2b+1 = (c
(0)
2b+0)

∗ andc
(0)
2b+1 = −(c

(1)
2b+0)

∗, where∗ denotes complex

conjugate.

Each blockc(f)Ub+u is input to anN-point inverse fast Fourier transform (N-IFFT), leading to the

time-domain blockg(f)
Ub+u = [g

(f)
Ub+u(0), g

(f)
Ub+u(1), ..., g

(f)
Ub+u(N−1)]. Then, a cyclic prefix of length

ν is added, with the resulting OFDM block written asg̃(f)
Ub+u = [g̃

(f)
Ub+u(0), ..., g̃

(f)
Ub+u(ν), g̃

(f)
Ub+u(ν

+1), ..., g̃
(f)
Ub+u(N + ν − 1)] = [g

(f)
Ub+u(N − ν), ..., g

(f)
Ub+u(0), g

(f)
Ub+u(1), ..., g

(f)
Ub+u(N − 1)]. Accord-

ingly, the time-domain samples of the OFDM block can be expressed as
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g̃
(f)
Ub+u(n) =

1√
N

∑N−1
p=0 c

(f)
Ub+u(p)e

j2πp(n−ν)
N , n = 0, 1, .., N + ν − 1. (1)

With the transmit sequence from thef th antenna ass(f) =
[

...g̃
(f)
−1 , g̃

(f)
0 , g̃

(f)
1 , g̃

(f)
2 , ...

]

, whose

kth element is denoted bys(f)(k), the kth received sample at theith receive antenna,i =

0, 1, ..., Nr − 1, can be expressed as [29]

r(i)(k) =
1

∑

f=0

Lh−1
∑

l=0

hfi(l)s
(f)(k − l) + w(i)(k), (2)

whereLh is the number of propagation paths,hfi(l) is the channel coefficient corresponding to

the lth path between the transmit antennaf and the receive antennai, andw(i)(k) represents

the complex additive white Gaussian noise (AWGN) at theith receive antenna, with zero mean

and varianceσ2
w.

III. PROPOSED ALGORITHM

In this section, we investigate the second-order cross-correlation as a discriminating feature

for AL-OFDM and SM-OFDM signal identification. Initially, we consider theNr = 2 case,

for which we explore the cross-correlation between{r(0)(k)} and{r(1)(k)} and develop a new

decision criterion based on the statistical properties of the feature estimate. Then, we extend the

analysis to the case ofNr > 2.

A. Cross-correlation properties (Nr = 2)

First, the cross-correlation properties for AL-OFDM and SM-OFDM signals are analyzed at

the transmit-side, and then the analysis is extended at the receive-side.

Transmit-side

Let us form the sequences(f,τ), whose components are given bys(f,τ)(k) = s(f)(k + τ),

τ = 0, 1, ..., N + ν − 1. This is further divided into consecutive (N + ν)-length blocks, i.e.,

s
(f,τ) = [...g̃

(f,τ)
−1 , g̃

(f,τ)
0 , g̃

(f,τ)
1 , ..., g̃

(f,τ)
q−1 , g̃

(f,τ)
q , g̃

(f,τ)
q+1 , ...], as it is graphically illustrated in Fig. 2.

Proposition 1: For the AL-OFDM signal, the samples of the(N + ν)-length blocks of the

newly formed sequences(f,τ) exhibits the following properties:

• τ = 0 : g̃
(0,0)
2b+0(n) = g̃

(1,0)∗

2b+1 (mod(−(n− ν), N) + ν), n = 0, 1, ..., N + ν − 1, (3a)
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Fig. 2: Illustration of the relation between thes(f) ands
(f,τ) sequences. Solid lines are used to delimitate the OFDM blocks

of s(f), while dashed lines show the(N + ν)-length blocks ofs(f,τ).

• τ = N/2 : g̃
(0,N

2
)

2b+0 (n) = g̃
(1,N

2
)∗

2b+1 (mod(−(n− ν), N) + ν), n = 0, 1, ..., ν, (3b)

• τ = N/2 + ν : g̃
(0,N

2
+ν)

2b−1 (n) = g̃
(1,N

2
+ν)∗

2b+0 (mod(−(n− ν), N) + ν), n = N
2
, N

2
+ 1, ..., N

2
+ 2ν.

(3c)

Such properties do not hold for any other values ofτ andn. Additionally, these are not valid

for the SM-OFDM signal.

Proof: See Appendix.

Illustrative examples forProposition 1are provided in Fig. 3 for the AL-OFDM signal with

N = 4, ν = N
4
= 1, τ = 0, τ = 2 (= N

2
), andτ = 3 (= N

2
+ν). Note that the vector components

are written based on (23)-(29), given in the appendix, and bytaking into account the relationship

betweeng̃(f)
2b+u andg

(f)
2b+u. The uncorrelated and correlated samples are indicated by using ’×’

and braces, respectively.

Based on results ofProposition 1, we define the following cross-correlation

Rg(τ) = E

{

g̃
(0,τ)
q

[

ḡ
(1,τ)
q+1

]T
}

, lim
NB→∞

1

NB

NB−1
∑

q=0

g̃
(0,τ)
q

[

ḡ
(1,τ)
q+1

]T

,
(4)

where E{.} indicates the statistical expectation over the block,ḡ
(1,τ)
q+1 is an(N + ν)-length block

with components̄g(1,τ)q+1 (p) = g̃
(1,τ)
q+1 (mod(−(p−ν), N)+ν), p = 0, 1, ..., N+ν−1, the superscript

T denotes matrix transpose, andNB is the number of blocks.
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Fig. 3: Illustration of the cross-correlation between the(N+ν)-length blocks, withN = 4 andν = 1, and forτ = 0, N
2
, N

2
+ν.

By usingProposition 1, one can easily see that forτ = 0, 1, ..., N+ν−1, the cross-correlation

for AL-OFDM and SM-OFDM signals is respectively given by

RAL
g (τ) =



























1
2
(N + ν)σ2

d, τ = 0,

1
2
(ν + 1)σ2

d, τ = N
2
,

1
2
(2ν + 1)σ2

d, τ = N
2
+ ν,

0, otherwise,

(5)

and

RSM
g (τ) = 0, (6)
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Fig. 4: |R̂a(τ )| with QPSK modulation,N = 512, ν = N/4, andNB = 100, at SNR = 10 dB over multipath Rayleigh fading

channel,Lh = 4, for (a) AL-OFDM and (b) SM-OFDM signals.

whereσ2
d is the variance of the modulated symbols2. Note that the factor1

2
in (5) is due to the

fact that correlation exists only between the(N+ν)-length blocks which belong to the same AL

block. According to (5) and (6),Rg(τ) provides a feature for the identification of the AL-OFDM

and SM-OFDM signals.

Receive-side

Without loss of generality, we assume that the first intercepted sample corresponds to the

start of an OFDM block; later in the paper, we will relax this assumption. Let us define the

sequencer(i,τ), whose components are given byr(i,τ)(k) = r(i)(k + τ), τ = 0, 1, ..., N + ν − 1,

and further divide it into(N + ν)-length3 blocks, i.e.,r(i,τ) = [...,a
(i,τ)
−1 ,a

(i,τ)
0 ,a

(i,τ)
1 , ...], where

a
(i,τ)
q = [a

(i,τ)
q (0), ..., a

(i,τ)
q (N+ν−1)], with a(i,τ)q (p) = r(i,τ)(q(N+ν)+p), p = 0, 1, ..., N+ν−1.

By using (2), the definition of the correlation in (4), (5), and (6), and taking into account

the independence between the transmitted data symbols, noise, and channel coefficients, for

τ = 0, 1, ..., N + ν − 1 it is straightforward to find that

2Note that based on the Parseval’s theorem, the variance of the modulated symbols is equal to the variance of the samples in

the blockg(f)
Ub+u at the output of the IFFT.

3We assume that the OFDM block length is known. Different algorithms in the literature, e.g., [33], can be combined with

the proposed algorithm to blindly estimate the OFDM block length.
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RAL
a (τ) = E

{

ã
(0,τ)
q

[

ā
(1,τ)
q+1

]T
}

=











































































σ2
d

2
(N + ν)Ξ(τ), τ = 0, 1, ..., Lh − 1,

σ2
d

2
(ν + 1)Ξ(τ), τ = N

2
, N

2
+ 1, ...,

N
2
+ Lh − 1,

σ2
d

2
(2ν + 1)Ξ(τ), τ = N

2
+ ν, N

2
+ ν + 1,

..., N
2
+ ν + Lh − 1,

0, otherwise,

(7)

and

RSM
a (τ) = 0, (8)

whereΞ(τ) =
∑Lh−1

l,l′=0(h00(l)h11(l
′)− h10(l)h01(l

′))δ(τ − l − l′).

Fig. 4 shows the absolute value of the estimated cross-correlation, |R̂a(τ)|, τ = 0, 1, ..., N +

ν−1, for both AL-OFDM and SM-OFDM signals with QPSK modulation,N = 512, ν = N/4,

and NB = 100 over multipath Rayleigh fading channel withLh = 4 at SNR=10 dB. Note

that the limited observation period results in non-zero, but statistically non-significant values for

|RAL
a (τ)| and|RSM

a (τ)| at the null positions. The existence of the statistically significant peaks in

|RAL
a (τ)| will be used as a discriminating feature to identify AL-OFDMand SM-OFDM signals.

It is worthy to mention that the first received sample does nothave to correspond to the start of

an OFDM block. In such a case, the peaks in Fig. 4 (a) will be cyclically shifted by the number

of samples corresponding to the delay between the first received sample and the start of the first

received OFDM block, which does not affect the discriminating feature.

B. Discriminating feature and decision criterion (Nr = 2 case)

The identification of AL-OFDM and SM-OFDM signals relies on detecting whether statis-

tically significant peaks are present or not in|R̂a(τ)|, τ = 0, 1, ..., N + ν − 1. This can be

formulated as a binary hypothesis testing problem, where under hypothesisH0 (no peaks are

detected) SM-OFDM is decided to be the received signal, whereas AL-OFDM signal is selected

under hypothesisH1 (peaks are detected). Here we propose a statistical test to detect the peak

presence.
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Without loss of generality, we assume that the number of observed samples,K, corresponds

to an integer number of OFDM blocks,NB = K
N+ν

4. In this case,Ra(τ) can be estimated as

R̂a(τ) =
1

NB

NB−1
∑

q=0

a
(0,τ)
q

[

ā
(1,τ)
q+1

]T

. (9)

Following [34], R̂a(τ) can be represented as

R̂a(τ) = Ra(τ) + ψ(τ), (10)

whereψ(τ) is a zero-mean random variable representing the estimationerror, which vanishes

asymptotically (NB → ∞). As shown in (7), under the assumption that the first received sample

corresponds to the start of an OFDM block,RAL
a (τ) exhibitsLh peaks aroundτ = 0, N

2
, and

N
2
+ ν. In general, if the first received sample corresponds to theτ0th point in the OFDM

block, the peaks inRAL
a (τ) will be around τ = τ0, τ = τ1 = mod(τ0 + N

2
, N + ν), and

τ = τ2 = mod(τ0 +
N
2
+ ν,N + ν).

Based on (7), (10) can be written for the AL-OFDM signal as

R̂AL
a (τ) = RAL

a (τ) + ψAL(τ), (11)

whereRAL
a (τ) is non-zero forτ ∈ Ω0, Ω0 = {τ0, τ0 + 1, ..., τ0 + Lh − 1} ∪ {τ1, τ1 + 1, ..., τ1 +

Lh − 1} ∪ {τ2, τ2 + 1, ..., τ2 + Lh − 1}.

Furthermore, based on (8), (10) can be written for the SM-OFDM signal as

R̂SM
a (τ) = ψSM(τ), ∀τ = 0, 1, ..., N + ν − 1. (12)

As such, if Ra(τ) 6= 0 5 for at least one value ofτ , the AL-OFDM signal is declared

present (H1 is true); otherwise, the SM-OFDM signal is declared present(H0 is true). The

proposed statistical test detects the presence of the non-zero value ofRa(τ) as follows. For

τ = 0, 1, ..., N + ν − 1, we defineτp as the value ofτ that maximizes|R̂a(τ)|,

4If this not the case, zeros can be added after the observed samples to ensure this relation. Additionally, it is worth noting

that the number of received blocks used for signal identification, NB , is finite.

5Henceforth, the superscript AL or SM is dropped in the cross-correlation, as this is not known at the receive-side.
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τp = argmax
τ

|R̂a(τ)|. (13)

Based on the results provided in (7), one can notice that for the AL-OFDM signal,τp will take

values in the set{τ0, τ0+1, ..., τ0+Lh−1}. Depending on theτp value within this range, in order to

eliminate all possible peak positions, we consider the setΩp = {τp−Lh+1, ..., τp, ..., τp+Lh−1}

∪{τp1 − Lh + 1, ..., τp1, ..., τp1 + Lh − 1} ∪ {τp2 − Lh + 1, ..., τp2, ..., τp2 + Lh − 1}, with τp1 =

mod(τp+
N
2
, N+ν) andτp2 = mod(τp+

N
2
+ν,N+ν). As such,Ra(τ) = 0 for both AL-OFDM

and SM-OFDM signals for the delay rangeτ /∈ Ωp, τ = 0, 1, ..., N + ν − 1. This result will be

used in the definition of the test statistic to avoid the statistically significant peaks.

When the SM-OFDM signal is received (under hypothesisH0), R̂a(τ) = ψ(τ) has an asymp-

totic complex Gaussian distribution with zero-mean and varianceσ2 [34], [35]. Therefore, the

normalized cross-correlation,
√

2
σ2 R̂a(τ), asymptotically follows a complex Gaussian distribution

with zero-mean and variance equal to 2. Based on that, we define the functionF(τ) as

F(τ) =
2|R̂a(τ)|

2

1

N+ν−Ωp

∑

τ ′ /∈Ωp

|R̂a(τ
′)|2

, (14)

whereΩp is the cardinality of the setΩp.6 Note that the denominator in (14) is an estimate of

the variance ofR̂a(τ) under hypothesisH0, which converges toσ2 whenN goes to infinity.

As such,F(τ) has an asymptotic chi-square distribution with two degreesof freedom under

hypothesisH0 [36]. Accordingly, we define the test statisticΥ as

Υ = maxF(τ), τ = 0, 1, ..., N + ν − 1. (15)

Then we set a threshold,η, to yield a desired probability of false alarm,Pfa, i.e., Pfa =

P (H1|H0) = P (Υ ≥ η). Using the expression of the cumulative distribution function (CDF) of

the chi-square distribution with two degrees of freedom [36], we can find that

P (Υ < η) = (1− e
−η
2 )(N+ν). (16)

6Note that in a practical implementation of the algorithm, knowledge ofLh is not required; a reasonably large value is

considered. However, this is significantly low when compared to N + ν and does not affect the algorithm performance.
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SincePfa = 1− P (Υ < η), the threshold,η, can be calculated for a givenPfa as

η = −2 ln(1− (1− Pfa)
1

N+ν ). (17)

Finally, if Υ ≥ η, the AL-OFDM signal is decided to be received; otherwise, the SM-OFDM

signal is selected. A summary of the proposed identificationalgorithm is given below.

Summary of the proposed identification algorithm (Nr = 2)
Required signal pre-processing:Estimation of the OFDM block length (N + ν).

Input: The observedK samples from two receive antennas
{

r(0)(k)
}K−1

k=0
and

{

r(1)(k)
}K−1

k=0
.

- Estimate the cross-correlationRa(τ), τ = 0, 1, ..., N + ν − 1, using (9).

- ComputeΥ using (14) and (15).

- Computeη using (17) based on the targetPfa.

if Υ ≥ η then

- the AL-OFDM signal is declared present (H1 true).

else

- the SM-OFDM signal is declared present (H0 true).

end if

C. Discriminating feature and decision criterion (Nr > 2 case)

In the previous section we considered two receive antennas (Nr = 2); here, we generalize

the proposed identification algorithm toNr > 2. Basically, the cross-correlations between each

pair of the receive antennas will be combined to improve the discriminating feature. Similar to

(9), the cross-correlation between theith andjth receive antennas,̂Ra,i,j(τ), i = 0, 1, ..., Nr − 2,

j = i+ 1, i+ 2, ..., Nr − 1, can be estimated as

R̂a,i,j(τ) =
1

NB

NB−1
∑

q=0

a
(i,τ)
q

[

ā
(j,τ)
q+1

]T

. (18)

For each pair of receive antennas, the functionFi,j(τ), τ = 0, 1, ..., N+ν−1, is calculated as

Fi,j(τ) =
2|R̂a,i,j(τ)|

2

1

N+ν−Ωp,i,j

∑

τ /∈Ωp,i,j

|R̂a,i,j(τ)|
2
, (19)

and the functions for all pairs of receive antennas are combined as
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Fc(τ) =
Nr−2
∑

i=0

Nr−1
∑

j=i+1

Fi,j(τ). (20)

Accordingly, the test statistic is defined as

Υ = maxFc(τ). (21)

As Fi,j(τ) has an asymptotic chi-square distribution with two degreesof freedom under

hypothesisH0, Fc(τ) asymptotically follows the chi-square distribution with2Nc degrees of

freedom, whereNc = Nr(Nr−1)
2

is the number of the pairs of receive antennas. Hence, for a

certainPfa = P (H1|H0) = P (Υ ≥ η) we set the threshold based on the CDF of this chi-square

distribution, i.e.,

(1− Pfa)
1

N+ν =
γ(Nc, η/2)

(Nc − 1)!
, (22)

whereγ(�, �) is the lower incomplete Gamma function [37]. Note that forNr = 2, the threshold,

η, in (22) can be expressed as in (17). On the other hand, forNr > 2, the thresholdη cannot be

expressed in a closed form; in such cases, this is numerically calculated for a certainPfa using

the bisection method [38].

D. Computational complexity

The computational complexity of the proposed algorithm is measured by the required number

of floating point operations (flops) [39], which can be easilyfound to be equal toNc(6NB(N +

ν)2 + (2NB + 4)(N + ν)). For example, withN = 256, ν = N
4

, Nr = 2, andNB = 100, the

proposed algorithm requires 61,505,280 flops. Practicallyspeaking, a microprocessor with 79.992

Giga-flops7 can perform the calculations needed for the proposed algorithm in approximately

769µsec.

IV. SIMULATION RESULTS

A. Simulation setup

The identification performance of the proposed algorithm was evaluated using Monte Carlo

simulations with 1000 trials for each signal type. The OFDM signals are generated based on

7[online], available: http://download.intel.com/support/processors/corei7/sb/corei7-900 d.pdf

http://download.intel.com/support/processors/corei7/sb/core$_$i7-900$_$d.pdf
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the IEEE 802.11e standard, with a useful OFDM block durationof 91.4µsec and a subcarrier

spacing of10.94 kHz. Unless otherwise mentioned, the modulation was QPSK, the number of

OFDM subcarriersN = 256 (2.5 MHz double-sided bandwidth), the cyclic prefixν = N/4,

the number of observed OFDM blocksNB = 100, the number of receive antennasNr = 2, and

the probability of false alarmPfa = 10−3. Furthermore, the received signal was affected by a

frequency selective Rayleigh fading channel8 consisting ofLh = 4 statistically independent taps,

with an exponential power delay profile [40],σ2(l) = exp(−l/5), where l = 0, ..., Lh − 1. A

Butterworth filter was used at the receive-side to remove theout-of-band noise, and the SNR

was considered at the output of this filter. The average probability of correct identification,

Pc = 0.5(P (λ = AL |AL) + P (λ = SM|SM)), was employed as a performance measure, where

λ is the estimated signal type.

B. Performance evaluation

Fig. 5 shows the performance of the proposed algorithm in comparison with that in [29] for

different numbers of OFDM subcarriers,N . Apparently, the proposed algorithm outperforms the

algorithm in [29], which basically fails; the reason is thatthe latter requires a large number of

OFDM blocks to estimate the discriminating feature, e.g., simulation results show thatNB =

10, 000 is needed to reachPc ≈ 1 at SNR = -4 dB.

In terms of computational complexity, the algorithm in [29]requires(N + ν)(8NB +4) flops.

If we compare the complexity of this algorithm and the proposed algorithm for given values of

NB, N , ν, andNr, the algorithm in [29] is less computationally demanding. For example, for

NB = 100, N = 256, ν = N/4, andNr = 2, the former requires 257,280 flops, while the latter

needs 61,505,280 flops. However, such a complexity comparison is not fair due to the difference

in performance (as discussed above, based on results in Fig.5). If we consider theNB values

for which the algorithms reachPc ≈ 1 at a given SNR, along with the fact that the time to make

a decision consists of both observation and computing times, then it can be easily found that

the algorithm in [29] requires a longer time for decision. For example, when a microprocessor

with 79.992 Giga-flops is employed for computation, the algorithm in [29] needs 1.1428 sec to

8While a Rayleigh fading channel is considered here, it is worth noting that a similar performance is achieved under multipath

Nakagami-m fading conditions, as the distribution of the test statistic is similar under diverse channel conditions, as shown

by simulations.
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Fig. 5: Performance comparison between the proposed algorithm and the one in [29] for various numbers of OFDM subcarriers,

N , with NB = 100.

make a decision withPc ≈ 1 at SNR= -4 dB (NB = 10, 000), whereas the proposed algorithm

requires only 12.194msec (NB = 100).

Furthermore, it can be observed from Fig. 5 that the identification performance of the proposed

algorithm significantly improves by increasingN . This is because the peak values in|RAL
a (τ)|

are significantly enhanced, i.e.,|RAL
a (τ)| is proportional to(N + ν) as can be noticed from (7).

This reflects on the discriminating feature and leads to identification performance improvement.

C. Effect of the number of OFDM blocks

Fig. 6 shows the effect of the number of OFDM blocks,NB, on the average probability of

correct identification,Pc. A comparison with the algorithm in [29] forNB = 400 is also included.

As expected, increasingNB enhances the performance of the proposed algorithm, as it leads to

a better estimate of the cross-correlation,R̂a(τ). Note that the proposed algorithm provides an

excellent performance (Pc ≈ 1) at SNR = 0 dB and with a small number of blocks,NB = 50,

whereas the algorithm in [29] does not achieve a good performance even forNB = 400.
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Fig. 6: The effect of the number of OFDM blocks,NB , on the average probability of correct identification,Pc.

D. Effect of the cyclic prefix length

Fig. 7 shows the average probability of correct identification, Pc, for ν = N/4, N/16, and

N/32. One can notice that the performance slightly improves by increasingν; this is because

under theH1 hypothesis (the AL-OFDM signal), the peak values in|R̂AL
a (τ)| slightly increase

with ν. It is worth noting that the improvement obtained by increasing N is more significant,

as was seen in Fig. 5.

E. Effect of the number of receive antennas

Fig. 8 illustrates the effect of the number of receive antennas,Nr, on the average probability

of correct identification,Pc. It can be seen that the identification performance is improved by

increasingNr. For example, withNr = 5, an excellent performance is obtained at SNR= −10

dB, when compared with SNR= −2 dB for Nr = 2. However, the computational complexity

increases by a factor of 10, according to results presented in Section III.D.

F. Effect of the modulation format

Fig. 9 presents the effect of the modulation format on the average probability of correct

identification,Pc. Clearly, it does not affect the performance of the proposedalgorithm, as the
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Fig. 7: The effect of the cyclic prefix length,ν, on the average probability of correct identification,Pc.
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Fig. 9: The effect of the modulation format on the average probability of correct identification,Pc.

peak values in|RAL
a (τ)| do not depend on the modulation format, according to (7).

G. Effect of the timing offset

Perfect timing synchronization was assumed in the previousstudy. Here we evaluate the

performance of the proposed algorithm in the presence of a timing offset. As mentioned in

Section III, a timing offset equal to a multiple integer of the sampling period leads to a shift

in the positions of the|RAL
a (τ)| peaks by an amount corresponding to that offset; consequently,

this does not affect the discriminating feature. On the other hand, when the timing offset is a

fraction of the sampling period, its effect is modeled as a two path channel[1 − µ, µ], where

0 ≤ µ < 1 is the normalized timing offset [22]. Fig. 10 shows the average probability of correct

identification,Pc, for µ = 0, 0.2, and 0.5. The results indicate that while the performance slightly

decreases at lower SNRs, it is not affected at higher SNRs. This can be explained, as the effect

of µ can be considered as an additional noise component that affects the peaks in|RAL
a (m)|.

H. Effect of the frequency offset

Fig. 11 presents the effect of the frequency offset normalized to the subcarrier spacing,∆f , on

the average probability of correct identification,Pc, at SNR = 0 dB and for different values ofN



18

−16 −14 −12 −10 −8 −6 −4 −2 0 2 4
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

SNR (dB)

P
c

 

 

µ = 0

µ = 0.2

µ = 0.5

Fig. 10: The effect of the timing offset on the average probability of correct identification,Pc.

andNB. Note that as the OFDM block duration is constant regardlessof N (see Section IV.A),

the observation period increases withNB, which leads to an increased effect of the frequency

offset on the performance. It is worth noting that a reduced number of OFDM blocks is required

to achieve a good performance for a larger number of subcarriers, which results in a lower

sensitivity to the frequency offset. Results in Fig. 11 showa good robustness for∆f < 10−2

whenN = 2048 andNB = 6.

I. Effect of the Doppler frequency

The previous analysis assumed constant channel coefficients over the observation period. Here,

we consider the effect of the Doppler frequency on the performance of the proposed algorithm.

Fig. 12 shows the average probability of correct identification, Pc, versus the absolute value of

the Doppler frequency normalized to the sampling rate,|fd|, at SNR= 0 dB andNB = 50 and

100. The results show a good robustness for|fd| < 10−4.

J. Effect of the spatially correlated fading

In the previous study, independent fading was considered. Here, we show the effect of the

spatially correlated fading on the performance of the proposed algorithm. Fig. 13 shows the
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Fig. 13: The effect of the spatially correlated fading on theaverage probability of correct identification,Pc, at SNR=-4 dB and

0 dB.

average probability of correct identification of the proposed algorithm,Pc, versus the spatial

correlation coefficient,ρ, at SNR= −4 dB and 0 dB. As shown in (7), the channel coefficients

affect the peak values in|R̂AL
a (τ)| by the factor |

∑Lh−1
l,l′=0(h00(l)h11(l

′) − h10(l)h01(l
′))|. At

high values ofρ, h00(l) ≈ h01(l) and h11(l′) ≈ h10(l
′), l, l′ = 0, 1, ..., Lh − 1. As such,

the discriminating peaks vanish and the identification performance degrades9. As expected, the

performance is more affected by spatially correlated fading at lower SNR.

V. CONCLUSION

The identification of the AL-OFDM and SM-OFDM signals has been investigated in this

paper. A new cross-correlation was developed, which provides an efficient feature for signal

identification. Based on the statistical properties of the feature estimate, a novel criterion of de-

cision was introduced. The proposed identification algorithm, which employs the aforementioned

discriminating feature and decision criterion, provides an improved performance when compared

9It is worth noting that the same performance is obtained if the spatially correlated fading occurs at the transmit-side;in this

caseh00(l) ≈ h10(l) andh11(l
′) ≈ h01(l

′), l, l′ = 0, 1, ..., Lh − 1, at high values of the correlation coefficient.



21

with the previous work in the literature, at lower SNR and with reduced observation period.

The algorithm has the advantages that it does not require channel and noise power estimation,

modulation identification or timing synchronization. Furthermore, it exhibits a relatively low

sensitivity to spatially correlated fading and frequency offset.

APPENDIX: PROOF OFProposition 1

For the AL-OFDM signal, by using the definition of the (N + ν)-length blocks in thes(f,τ)

sequence (see Fig. 2 for the graphical illustration), one can easily express the samples ofg̃
(0,τ)
2b+0

and g̃(1,τ)
2b+1 respectively as

g̃
(0,τ)
2b+0(n) =







































g̃
(0)
2b+0(n + τ), n = 0, 1, ...,

N + ν − τ − 1,

g̃
(0)
2b+1(n + τ −N − ν), n = N + ν − τ,

..., N + ν − 1,

(23)

and

g̃
(1,τ)
2b+1(n

′) =







































g̃
(1)
2b+1(n

′ + τ), n′ = 0, 1, ...,

N + ν − τ − 1,

g̃
(1)
2(b+1)(n

′ + τ −N − ν), n′ = N + ν − τ,

..., N + ν − 1.

(24)

Based on (1), for the case ofτ = 0, it can be written that

g̃
(0,0)
2b+0(n) = g̃

(0)
2b+0(n) =

1√
N

∑N−1
p=0 c

(0)
2b+0(p)e

j2πp(n−ν)
N , n = 0, 1, .., N + ν − 1, (25)

and

g̃
(1,0)
2b+1(n

′) = g̃
(1)
2b+1(n

′) = 1√
N

∑N−1
p=0 c

(1)
2b+1(p)e

j2πp(n′
−ν)

N , n′ = 0, 1, .., N + ν − 1. (26)

By using thatc(1)2b+1(p) = (c
(0)
2b+0(p))

∗, p = 0, 1, ..., N − 1, for AL-OFDM signal, and taking

the complex conjugate of (26), it is straightforward that

g̃
(1,0)∗

2b+1 (n
′) = 1√

N

∑N−1
p=0 c

(0)
2b+0(p)e

−j2πp(n′
−ν)

N , n′ = 0, 1, .., N + ν − 1. (27)
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It is easy to see that̃g(0,0)2b+0(n) = g̃
(1,0)∗

2b+1 (n
′), n, n′ = 0, 1, ..., N + ν − 1 only whenn′ − ν =

mod(−(n − ν), N). A few examples are given as follows:n = 0, n′ = 2ν; n = ν, n′ = ν;

n = ν + 1, n′ = N + ν − 1; and n = N + ν − 1, n′ = ν + 1. Hence, one can notice that

n + n′ = 2ν for n = 0, 1, ..., ν, andn + n′ = N + 2ν for n = ν + 1, ..., N + ν − 1. This leads

to the result shown in (3a).

For τ > 0, it is straightforward that̃g(0,τ)
2b+0 and g̃

(1,τ)
2b+1 belong to the (same)bth AL block

for n, n′ = 0, 1, ..., N + ν − τ − 1. Moreover, based on the aforementioned results regarding

n andn′, one can see that̃g(0,τ)2b+0(n) = g̃
(1,τ)∗

2b+1 (n′ = mod(−(n − ν), N) + ν) if n and τ satisfy

n+ n′ = 2ν,N + 2ν andn+ n′ + 2τ = 2ν,N + 2ν. If n+ n′ = 2ν andn+ n′ + 2τ = N + 2ν,

then τ = N/2, n = 0, 1, ..., ν. This directly leads to the result in (3b). On the other hand,if

n+n′ = n+n′+2τ (either equal to2ν or N+2ν), thenτ = 0, n = 0, 1, ..., N+ν−1; this leads

to the case ofτ = 0 discussed above. Furthermore, ifn + n′ = N + 2ν andn+ n′ + 2τ = 2ν,

thenτ = −N/2, which is out of range (0 ≤ τ < N + ν).

Moreover, also for the AL-OFDM signal, one can similarly express the samples of̃g(0,τ)
2b−1 and

g̃
(1,τ)
2b+0 respectively as

g̃
(0,τ)
2b−1(n) =







































g̃
(0)
2b−1(n + τ), n = 0, 1, ...,

N + ν − τ − 1,

g̃
(0)
2b+0(n + τ −N − ν), n = N + ν − τ,

..., N + ν − 1,

(28)

and

g̃
(1,τ)
2b (n′) =







































g̃
(1)
2b+0(n

′ + τ), n′ = 0, 1, ...,

N + ν − τ − 1,

g̃
(1)
2b+1(n

′ + τ −N − ν), n′ = N + ν − τ,

..., N + ν − 1.

(29)

Accordingly, g̃(0,τ)2b−1(n) and g̃(1,τ)2b+0(n
′) belong to the (same)bth AL block for n, n′ = N + ν −

τ, ..., N + ν − 1. By using the same analysis as above, one can prove results in(3c).
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