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Blind Identification of Underdetermined Mixtures by
Simultaneous Matrix Diagonalization

Lieven De Lathauwer, Senior Member, IEEE, and Joséphine Castaing

Abstract—In this paper, we study simultaneous matrix diago-
nalization-based techniques for the estimation of the mixing ma-
trix in underdetermined independent component analysis (ICA).
This includes a generalization to underdetermined mixtures of the
well-known SOBI algorithm. The problem is reformulated in terms
of the parallel factor decomposition (PARAFAC) of a higher-order
tensor. We present conditions under which the mixing matrix is
unique and discuss several algorithms for its computation.

Index Terms—Canonical decomposition, higher order tensor, in-
dependent component analysis (ICA), parallel factor (PARAFAC)
analysis, simultaneous diagonalization, underdetermined mixture.

I. INTRODUCTION

C
ONSIDER the following basic linear mixture model:

(1)

The stochastic vector represents multi-

channel observations, the components of the stochastic vector

correspond to unobserved source signals, and

denotes additive noise. The a priori unknown

mixing matrix characterizes the way

the sources are combined in the observations. The goal of

independent component analysis (ICA) [12], [37], or blind

source separation (BSS), consists of the estimation of the

source signals and/or the mixing matrix from observations of

, assuming that the sources are statistically independent.

The literature on ICA addresses for the most part the so-called

overdetermined case, where . Here, we consider the

underdetermined or overcomplete case, where .
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A large class of algorithms for underdetermined ICA starts

from the assumption that the sources are (quite) sparse [5], [27],

[32], [42], [63]. In this case, the scatter plot typically shows

high signal values in the directions of the mixing vectors. These

extrema may be localized by maximization of some clustering

measure [5], [27], [63]. Some of the clustering-based techniques

perform an exhaustive search in the mixing vector space, and are

therefore very expensive when there are more than two obser-

vation channels. In a preprocessing step, a linear transform may

be applied such that the new representation of the data is sparser

(e.g., short-time Fourier transform in the case of audio signals)

[5]. The method in [1] only requires that for each source one area

in the time-frequency plane can be found where only that par-

ticular source is active; the signals may overlap anywhere else.

In [24], the difference between long-time stationary sources and

sources that are only short-time stationary is exploited to sepa-

rate the latter.

There are two aspects to ICA: estimation of the mixing ma-

trix and separation of the sources. In the overdetermined case,

sources are usually separated by multiplying the observations

with the pseudoinverse of the mixing matrix estimate. This is

no longer possible in the case of underdetermined mixtures: for

each sample , the corresponding source sample that satis-

fies is only known to belong to an affine variety of di-

mension —hence the term “underdetermined.” However,

the mixing matrix and the source densities are still unique under

mildly restrictive conditions [28]. Uniqueness of the source dis-

tributions allows for the joint estimation of sources and mixing

matrix in a probabilistic framework [43]. However, even in the

case of underdetermined mixtures, the estimation of the mixing

matrix is an overdetermined problem, such that it makes sense to

estimate the mixing matrix first, and then estimate the sources.

The source values may subsequently be estimated by max-

imizing the log posterior likelihood [43]. In the case of sparse

sources, characterized by Laplacian densities, this can be formu-

lated in terms of a linear programming problem [5], [9], [42].

If at most sources can be active at the same time, then

for each sample, the active mixing vectors may be determined

and the corresponding mixture inverted [32]. In the case of fi-

nite alphabet signals in telecommunication, one may perform an

exhaustive search over all possible combinations. In this paper

we focus on the estimation of the mixing matrix. The estimate

of the mixing matrix may subsequently be used to separate the

sources by means of the techniques mentioned earlier.

This paper presents new contributions to the class of alge-

braic algorithms for underdetermined ICA. In [14], [16], and

[17], algorithms are derived for the specific case of two mix-

tures and three sources. An arbitrary number of mixing vectors

1053-587X/$25.00 © 2008 IEEE
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can be estimated from two observation channels by sampling

derivatives of sufficiently high order of the second character-

istic function [62]. A more stable version of [62] is presented in

[15]. Algebraic underdetermined ICA is based on the decompo-

sition of a higher order tensor in a sum of rank-1 terms. Some

links with the literature on homogeneous polynomials are dis-

cussed in [13]. A simultaneous matrix diagonalization technique

that may still be used when the number of sources exceeds the

number of sensors, is presented in [69]. In [21], the algebraic

structure of the fourth-order cumulant tensor is exploited. On

the other hand, the algebraic structure of the sixth-order cumu-

lant tensor is partially exploited in [2]. A similar idea can be

applied to a set of fourth-order cumulant tensors, corresponding

to different time lags, when the individual source signals are de-

pendent over some time interval [31].

In this paper, we assume that the sources are individually cor-

related in time. The spatial covariance matrices of the observa-

tions then satisfy [3]

...

(2)

in which is diagonal, . One

of the delays can be equal to zero. For simplicity, we have

dropped the noise terms; they can be considered as a perturba-

tion of (2). The problem we want to solve is the estimation of

from the set , in the case . This is the under-

determined version of the SOBI problem [3]. The solution will

obtained by interpreting (2) as a tensor decomposition.

Stack the matrices in a tensor as

follows: ,

. Define a matrix by ,

, . Then, we have

(3)

which we write as

(4)

in which denotes the tensor outer product and in which

and are the columns of and , respectively.

Stack the entries of tensor in matrices ,

, as follows:

Then, (4) can be written in a matrix format as

(5)

(6)

(7)

in which denotes the Khatri–Rao product (for a definition, see

the end of this section).

Equation (4) is a decomposition of tensor in a sum of

rank-1 terms. It is a constrained version of a so-called “canon-

ical decomposition” (CANDECOMP) [8] or “parallel factors

model” (PARAFAC) [34]. The minimal number of rank-1 ten-

sors in which a higher order tensor can be decomposed, is called

its rank. Note that each rank-1 term in (4) consists of the contri-

bution of one distinct source to . Hence, in terms of this tensor,

“mixture identification” amounts to the computation of decom-

position (4), provided it is unique. In contrast to the matrix case,

PARAFAC can be unique (up to some trivial indeterminacies)

even when i) the rank-1 terms are not mutually orthogonal and

ii) the rank is greater than the smallest tensor dimension. This al-

lows for the determination of the mixing matrix (up to a scaling

and permutation of its columns) in the overcomplete case.

Although our formulation is in terms of spatial covariance

matrices for different time lags, our results apply to any ICA

technique that is based on a simultaneous matrix diagonaliza-

tion like (2). An example is the algorithm proposed in [47]

for the separation of non-stationary sources subject to a con-

stant mixing, where the matrices correspond to spatial

covariance matrices measured at different time instances. In [4]

the matrices are observed spatial time-frequency distri-

butions. In [68], one works with Hessian matrices of the second

characteristic function of the observations, sampled at different

working points.

The paper is organized as follows. PARAFAC and its unique-

ness properties are discussed in Section II. Sections III and IV

present algorithms for the computation of decomposition (4).

Section III deals with algorithms that can be applied when

. More powerful results are obtained for the case where

in Section IV. Section V shows the results of some simula-

tions. Section VI is the conclusion. The presentation is in terms

of complex signals. Whenever the results cannot be directly ap-

plied to real data, this will be explicitly mentioned.

A short version of this manuscript appeared as the conference

paper [22]. The foundations of Section IV were laid in [7]. Some

mathematical aspects are developed in more detail in [20].

Notation: Scalars are denoted by lower-case italic letters

, vectors by lower-case boldface letters ,

matrices by boldface capitals and tensors by cal-

ligraphic letters . Italic capitals are used to denote

index upper bounds . The entry with row index

and column index in a matrix , i.e., , is symbolized

by . Likewise, we have . The columns of

are denoted by . Conversely, the matrix with columns

is denoted by . The superscripts , and

denote the transpose, the complex conjugate, and the complex

conjugated transpose, respectively. We will often stack

matrices in -dimensional vectors

The inverse of this operation is denoted by .

Vectorization of an tensor is done as follows:
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Fig. 1. Visualization of third-order PARAFAC.

The symbol stands for the Kronecker delta, i.e.,

if and 0 otherwise. The identity matrix is denoted by .

Finally, we recall the definition of the Kronecker product and

the Khatri–Rao product [50]

...
...

II. PARALLEL FACTOR ANALYSIS

We have the following definitions.

Definition 1: The outer product of three vectors ,

, , is the tensor defined by

The outer product of , and is denoted by .

Definition 2: A tensor has rank 1 if it equals

the outer product of three vectors , , .

Definition 3: The rank of a tensor is the minimal number

of rank-1 tensors that yield in a linear combination.

Definition 4: A Canonical or Parallel Factor Decomposition

of a tensor is a decomposition of as a linear

combination of a minimal number of rank-1 terms:

(8)

The decomposition is visualized for third-order tensors in Fig. 1.

The fully symmetric variant in which ,

, was already studied in the Nineteenth Century

in the context of invariant theory [13]. The unsymmetric de-

composition was introduced by Hitchcock in 1927 [35], [36].

Around 1970, it was independently reintroduced in psycho-

metrics [8] and phonetics [34]. Later on, the decomposition

was also applied in chemometrics and food industry [57]. In

these various disciplines PARAFAC is used for the purpose

of multiway factor analysis. The term “canonical decompo-

sition” is standard in psychometrics, while in chemometrics

the decomposition is called a “parallel factors model.” Re-

cently, PARAFAC has found important applications in signal

processing. In wireless communications, it provides powerful

means for the exploitation of different types of diversity [53],

[54], [56]. It also describes the basic tensor structure on which

all algebraic ICA methods are (implicitly) based [12], [18],

[37]. Moreover, PARAFAC is intimately linked with the har-

monic analysis problem [38], [55].

To a large extent, the practical importance of PARAFAC

stems from its uniqueness properties. It is clear that PARAFAC

can only be unique up to permutation of the rank-1 terms and

scaling and counterscaling of the factors of the rank-1 terms.

We call the unsymmetric decomposition in (8) essentially

unique if any other matrix triplet that satisfies (8)

is related to via

(9)

with diagonal matrices, satisfying

, and a permutation matrix. Likewise, we

call the constrained decomposition (4) essentially unique if any

other matrix pair and that satisfies (4) is related to and

via

(10)

with diagonal matrices, satisfying

, and a permutation matrix.

A first uniqueness result requires the notion of Kruskal-rank

of a matrix [40].

Definition 5: The Kruskal rank or -rank of a matrix , de-

noted by , is the maximal number such that any set of

columns of is linearly independent.

Example 1: Consider the matrix

which has rank 2. The -rank of is 1, because its last two

columns are proportional.

The following theorem establishes a condition under which

essential uniqueness is guaranteed [39], [40], [53], [59].

Theorem 1: The PARAFAC decomposition (8) is essentially

unique if

(11)

From (11), we have immediately that decomposition (4) is

essentially unique when

(12)

We call a property generic when it holds with probability

one when the parameters it involves are drawn from contin-

uous probability densities. Generically, a matrix is full rank and

full -rank. Hence, in practice, and

. Equation (12) then guarantees identifiability

when the number of sources is bounded as follows:

if (13)

if (14)

These conditions are sufficient for essential uniqueness but not

always necessary. They hold both in the real and the complex

case.

Remark 1: It is well-known that in the SOBI algorithm for

overdetermined mixtures the sources all need to have a dif-

ferent spectrum [3]. This constraint is also implicit in the bounds

above. Assume that sources and , , have pro-

portional vectors and . Then , such that (12) can

impossibly be satisfied.
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For a second uniqueness condition we assume that .

It has been proven that the unsymmetric decomposition (8) is

generically essentially unique when

[20]. Likewise, in the complex case the constrained

decomposition (4) is generically essentially unique when

(15)

Numerically, this means that generic essential uniqueness is

guaranteed for , given by

In the real case a different condition applies. Here, we have

generic essential uniqueness for , given by [58]

In [58], an algorithm is derived that allows one to compute

for any value of . It is conjectured that the theoretical

expression of the bound in the real case is given by

(16)

where

if

if

Conditions (15) and (16) are also sufficient but not always nec-

essary for essential uniqueness. Note that these conditions are

more relaxed than (14). A (nongeneric) deterministic version

will be given in Remark 6.

Remark 2: In [10], [11], and [25] it is explained that in an-

tenna array applications, the characteristics of the antennas and

the geometry of the array may induce a structure in the entries

of the mixing matrix that limits the number of sources that can

effectively be dealt with. Such a structure is neglected in con-

dition (15). As a result, the number of sources that can be al-

lowed is bounded by the minimum of i) the number of sources

in condition (15) and ii) the maximal number of virtual sensors

(VSs), , derived in [10], [11], and [25]. For instance, for a uni-

form circular array (UCA) consisting of identical antennas,

the maximum number of VSs is given by

From this table and the table for above, we have, e.g.,

that in the case of a UCA formed by six antennas, the number

of sources is bounded by .

III. COMPUTATION: GENERAL CASE

In this section we review some methods for the computation

of PARAFAC. The standard way to compute the decomposition,

is by means of an “alternating least squares” (ALS) algorithm

[34], [53], [57]. The aim is to minimize the (squared) Frobenius

TABLE I
SOBIUM—GENERAL CASE

norm of the difference between and its estimated decompo-

sition in rank-1 terms by means of an iteration in which each

step consists of fixing a subset of unknown parameters to their

current estimates, and optimizing with regard to the remaining

unknowns, followed by fixing an other subset of parameters,

and optimizing with regard to the complimentary set, etc. More

specifically, one optimizes the cost function

(17)

(18)

Due to the multilinearity of the model, estimation of one of

the arguments, given the other two, is a classical linear least

squares problem. One alternates between updates of , , and

. After updating and , their columns are rescaled to

unit length, to avoid under- and overflow. Although, in the case

of the constrained decomposition (4), during the iteration the

symmetry of the problem is broken, one supposes that even-

tually and will both converge to an estimate of . If

some difference remains, then the mixing vector can be esti-

mated as the dominant left singular vector of the matrix ,

. The rank of is estimated by trial-and-error.

In [48] and [49], an exact line search (ELS) is proposed to en-

hance the convergence of the ALS algorithm. This means that

one looks for the new estimates on the line between the ALS es-

timates and the current values. The discussion in [48] and [49]

is limited to the real case. The complex case is addressed in [44]

and [45].

In [46], a Gauss–Newton method is described, in which all

the factors are updated simultaneously; in addition, the inherent

indeterminacy of the decomposition has been fixed by adding

a quadratic regularization constraint on the component entries.

Instead of the least-squares error (18), one can also minimize the

least absolute error. To this end, an alternating linear program-

ming algorithm as well as a weighted median filtering iteration

are derived in [67].

It has been proven that in some cases cost function (18) (or

any other measure of the difference between and its approx-

imation) only has an infimum, and not a minimum [23], [41],

[51], [60], [61]. However, this did not seem to pose major prob-

lems in our simulations.

The general scheme for second-order blind identification of

underdetermined mixtures (SOBIUM) is outlined in Table I. We

refer to this algorithm as Alg. I.

Remark 3: The choice of in (2) may affect the

condition of the problem. Condition aspects of PARAFAC have
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been little studied in the literature. Since we are looking for the

factor matrices , , and , it is clear from (5)–(7) that it is

advantageous to choose such that , ,

and the submatrices of are well conditioned.

IV. COMPUTATION: CASE

In this case, one can still work as in the previous section.

However, more powerful results can be derived. We assume that

the second uniqueness condition in Section II is satisfied. This

implies in particular that . We develop a reasoning sim-

ilar to the one in [7] and [21].

We start from the matrix equation (5). We assume at this point

that and are full column rank. In the complex case,

this is generically true if . In the real case,

the condition is [20]. (Also recall

Remark 2.) The full column rank property of and

implies that the number of sources is simply equal to the

rank of . Instead of determining it by trial-and-error, as in the

previous section, it can be estimated as the number of significant

singular values of . Let the “economy size” singular value

decomposition (SVD) of be given by

(19)

in which and are columnwise or-

thonormal matrices and in which is positive diag-

onal. We deduce from (5) and (19) that there exists an a priori

unknown matrix that satisfies

(20)

Since both and are full column rank, is non-

singular. If we knew , then the mixing matrix would im-

mediately follow. Define and

, . Then is theoretically a

rank-one matrix: . This means that can, up to an

irrelevant scaling factor, be determined as the left singular vector

associated with the largest singular value of , .

We will now explain how the matrix in (20) can be found.

Define and ,

. We have

(21)

This means that the matrices consist of linear combinations

of the rank-one matrices and that the linear combina-

tions are the entries of the nonsingular matrix . It would

be helpful to have a tool that allows us to determine whether a

matrix is rank-one or not. Such a tool is offered by the following

theorem.

Theorem 2: Consider the mapping

defined by

for all index values. Given , if and

only if the rank of is at most one.

Proof: A proof for unsymmetric was given in [20]. The

reasoning remains valid when is real symmetric or complex

Hermitean.

From the set of matrices we construct the set of ten-

sors . Now, let be any diagonal

matrix and let . Then, using the bilinearity of ,

its rank-one detecting feature, and (20), it is readily found that

. This suggests to determine matrices

from the latter equation, and find as the matrix that jointly

diagonalizes the set by congruence. More specifically, we have

the following theorem.

Theorem 3: Assume that the tensors ,

, are linearly independent. Then there exist precisely

linearly independent complex symmetric1 matrices

that satisfy

(22)

The matrix diagonalizes each of these matrices by congru-

ence, i.e.,

...

(23)

in which are diagonal.

Proof: A proof for the unsymmetric PARAFAC decompo-

sition (8) was given in [20]. The reasoning remains valid when

.

Equations (22) and (23) provide the means to find . Equation

(22) is just an homogeneous set of linear equations, from which

the matrices may be computed. Then, the matrix follows

from the simultaneous diagonalization (23). We now consider

these two steps in more detail.

In practice, we work with noisy covariance estimates, such

that (22) will only approximately be satisfied. The matrices

are then determined as follows. Due to the symmetry of ,

and the fact that , , (22) can be written

as

(24)

In the usual form of a set of homogeneous linear equations, we

have

(25)

in which the coefficient matrix is given by

(26)

1The matrices satisfyM =M , also in the complex case.
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TABLE II
SOBIUM, CASE R K

The least-squares solution of (25) consists of the right sin-

gular vectors of that correspond to the smallest singular

values. After stacking these vectors in upper triangular matrices

, in the manner suggested by (25), the matrices

are obtained as .

After computation of the matrices , is obtained from

(23). Note that we have turned the underdetermined problem (2)

into a (square) overdetermined problem. In the absence of noise,

already follows from the eigenvalue decomposition (EVD)

(27)

in which we assumed that , and hence , is nonsingular.

Stated otherwise, is a generalized eigenmatrix of the

pencil ; see [6], [26], [33], and [52], and references

therein. In practice, it is more reliable to take all matrices in

(23) into account. The set can be simultaneously diagonalized

by means of the algorithms presented in [19], [34], [48], [49],

[64]–[66], [69], and [70]. Comparing these algorithms is out-

side the scope of this paper. The generalized eigenmatrix of the

pencil can be used as initial value.

The overall SOBIUM algorithm for the case is out-

lined in Table II. We refer to this algorithm as Alg. II.

Remark 4: In the derivation above, we assumed that the ma-

trices and are both full column rank and that the ten-

sors , , are linearly indepen-

dent. The derivation shows that these deterministic conditions

are sufficient for essential uniqueness of the PARAFAC decom-

position (4). This result has independently, in an entirely dif-

ferent way, been obtained in [39]. For generic mixtures, the con-

ditions reduce to the dimensionality constraints (15) and (16)

[20], [58].

Remark 5: Recall that in the SOBI algorithm for overdeter-

mined mixtures, the sources all need to have a different spectrum

[3]. The conditions above are stronger. It is not only needed that

does not have proportional columns; this matrix should be

full column rank.

Remark 6: As already stated in Remark 3, the choice of

in (2) may affect the condition of the problem. From

(5) and (19), we recall that the matrix is used to determine the

dominant -dimensional subspace of the column space of .

The more accurately this subspace can be estimated, the better

for the overall accuracy of the method. It is thus advantageous

to choose such that is well conditioned.

V. SIMULATIONS

We consider narrowband sources, received by a UCA of

identical sensors of radius . We assume free space

propagation. This means that the entries of the mixing matrix

before normalization are given by

where ,

, and . We have

. The mixing matrix is obtained by dividing

the columns of by their Frobenius norm. The sources are

unit-variance quadrature phase-shift keying (QPSK) (taking

their values equally likely in the set ), shaped

by a raise cosine pulse shape filter with roll-off . All

sources have the same symbol duration , where

is the sample period. The number of snapshots ,

in which is the number of transmitted symbols. The

directions-of-arrival (DOAs) of the different sources are given

by , , , , ,

and , , ,

, , . We consider two cases:

and . In the case , we only consider the

first five sources. There is a residual carrier, characterized

by , , ,

, , .

Additive zero-mean complex Gaussian noise is added to

the data. Although the signals are cyclostationary, their

statistics are estimated by means of an empirical estimator. It

is explained in [29], [30] that the empirical estimator of the

second-order statistics of the data is unbiased for zero-mean

sources whatever the circularity properties of the latter. The

time delays in (2) are defined by . The mixing matrix

is estimated by means of i) the SOBIUM algorithm (the scheme

of Alg. I when and the scheme of Alg. II when ,

unless stated otherwise) and ii) the FOBIUM algorithm [31],

which uses the fourth-order cumulant of the observations. In

FOBIUM, we used the cumulants ,

, like in [31]. In Step 2 of Alg. I, we use the

ALS+ELS algorithm of [48], [49]. Since the data are complex,

the step size is computed as in [44] and [45]. The precision is

measured in terms of the mean relative error

error (28)

in which the norm is the Frobenius norm and in which repre-

sents the optimally ordered and scaled estimate of . We con-

duct Monte Carlo experiments consisting of 100 runs.

Figs. 2–6 compare Alg. I and FOBIUM for the case

and . Fig. 2 shows the accuracy as a function of the

signal-to-noise ratio (SNR) when symbols are trans-

mitted. Figs. 3 and 4 show the accuracy and the computational

cost, respectively, as a function of the number of data symbols,

when the SNR is 10 dB. (The computation time varies little as a

function of the SNR.) We see that the length of the data set de-

termines which of the two methods is more accurate. SOBIUM
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Fig. 2. Accuracy as a function of SNR in the first experiment (K = 4;R = 5;
N = 1000).

Fig. 3. Accuracy as a function of data length in the first experiment (K = 4;
R = 5; 10 dB).

is more accurate than FOBIUM when data blocks are short. FO-

BIUM is more reliable when data sets are long. (Recall that

the signal is oversampled by a factor 8.) This is as expected.

On one hand, for the estimation of the fourth-order cumulants

in FOBIUM more samples are needed than for the estimation

of the covariance matrices in SOBIUM. On the other hand,

fourth-order cumulants are blind to additive Gaussian noise.

Fig. 4 shows us that Alg. I is computationally cheaper than FO-

BIUM, except for short data sets.

Fig. 5 shows the accuracy as a function of the condition of the

problem. In this figure, is varied from to ,

thereby passing the value of ). The SNR was taken equal to

10 dB and 1000 symbols were transmitted. Fig. 6 shows the

same results using the following error measure:

error (29)

This error takes a value between 0 and 1. It is zero when and

are equal up to permutation and scaling of the columns. The

Fig. 4. Computation time as a function of data length in the first experiment
(K = 4; R = 5; 10 dB).

Fig. 5. Accuracy as a function of angle of first mixing vector in the first exper-
iment (K = 4; R = 5; 10 dB; N = 1000).

Fig. 6. Accuracy as a function of angle of first mixing vector in the first exper-
iment (K = 4; R = 5; 10 dB; N = 1000).

criterion (29) gives the error associated to the mixing vector that

has been estimated the least well. Figs. 5 and 6 do not contradict.

When approaches , it is possible that an algorithm finds

one vector, say , that is a good approximation of both and

, while an other estimated vector, say , does not particularly
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Fig. 7. Accuracy as a function of SNR in the second experiment (K = 12;
R = 5, 6; N = 1000).

Fig. 8. Accuracy as a function of data length in the second experiment (R = 5;
10 dB).

well estimate any of the mixing vectors. This is detected by

error (28) but not by error (29): in (28) has to be assigned

to one of the columns of , while can be assigned to both

and in (29). This causes the FOBIUM curve to stabilize

around 10 dB in Fig. 5, while it decreases in Fig. 6. We also

mention that the vectors and are less close than

the vectors and (cf. [11]), such that higher order methods

have a conceptual advantage when mixing vectors are close.

Figs. 7–11 are the counterparts of Figs. 2–6, respectively,

when and when Alg. II is used instead of Alg. I. In

Fig. 8, we have also checked what happens when fewer matrices

are taken into account . The result was as expected: by

adding more rows to , the condition number of generally

decreased, which in turn improved the accuracy. We have also

compared to Alg. I in Fig. 8. In this simulation Alg. II turned

out to be somewhat more accurate than Alg. I. This is not nec-

essarily generally true: in [19] and [20], we have observed that

an algorithm that directly optimizes the cost function (17), ini-

tialized with an algebraic solution, sometimes yields a modest

Fig. 9. Computation time as a function of data length in the second experiment
(K = 12; R = 5; 10 dB).

Fig. 10. Accuracy as a function of angle of first mixing vector in the second
experiment (K = 12;R = 5; 10 dB; N = 1000).

Fig. 11. Accuracy as a function of angle of first mixing vector in the second
experiment (K = 12;R = 5; 10 dB; N = 1000).

gain in precision. Finally, we mention that Alg. II can be initial-

ized with the noise-free solution (27), while Alg. I has to work
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its way to the solution without guidance, which makes it much

less efficient.

VI. CONCLUSION

In this paper, we exploited differences in autocovariance to

estimate the mixing matrix in underdetermined ICA. The joint

decomposition of a set of spatial covariance matrices was inter-

preted as a PARAFAC decomposition of the third-order tensor in

which these matrices are stacked. We distinguished between two

cases, depending on whether the number of covariance matrices

exceeds the number of sources or not. For both cases, we

presented theoretical bounds on the number of sources that can

be allowed and discussed algebraic algorithms. We explained

that, in the case , the noise-free solution can be obtained

by means of an EVD. The performance of the main algorithms

was illustrated by means of simulations. Our results can be used

to generalize any ICA technique, based on a simultaneous ma-

trix diagonalization like (4), to the underdetermined case.
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