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Abstract

Blind image deblurring aims to recover sharp image

from a blurred one while the blur kernel is unknown. To

solve this ill-posed problem, plenty of image priors have

been explored and used in this area. In this paper, we

present a blind deblurring method based on Local Maxi-

mum Gradient (LMG) prior. Our work is inspired by the

simple and intuitive observation that the maximum value of

a local patch gradient will diminish after blurring process,

which is proved to be true both mathematically and empiri-

cally. This inherent property of the blurring process allows

us to establish a new energy function. By introducing a lin-

ear operator to compute the Local Maximum Gradient, to-

gether with an effective optimization scheme, our method

can handle various specific scenarios. Extensive experi-

mental results illustrate that our method is able to achieve

favorable performance against state-of-the-art algorithms

on both synthetic and real-world images.

1. Introduction

Single image blind deblurring has drawn considerable

attention in recent years. Photography equipments, from

surveillance camera to personal hand-held smart phone, are

often suffered from blurring when capturing images. The

blurring process is characterized by the relative rotation or

translation between cameras and objects within camera lens

exposure time.

If the blur kernel is space-invariant, we consider it as

uniform blur. The blurring process is modelled as a convo-

lution operation, i.e.,

B = I ⊗K + ǫ, (1)

where B, I , K and ǫ represent blurry input, latent image,
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blur kernel and the inevitable noise, respectively, and ⊗ de-

notes the convolution symbol. Latent image I and blur ker-

nel K are what we intend to acquire out of this equation.

This is a highly ill-posed problem, because different pairs

of I and K can bring about the same B.

Recent works, either optimization-based [4, 23, 2, 27,

20] or learning-based [24, 22, 17, 30, 25], have brought

significant improvements in blind deconvolution. We give

a detailed introduction to the highly related optimization-

based methods in this section.

Fergus et al. [4] introduce heavy-tailed distribution of

natural images gradient histogram and sparse characteristic

of blur kernel. Shan et al. [23] exploit a new representa-

tion by concatenating two piece-wise continuous functions

to fit the heavy-tailed distribution of logarithmic gradient,

and incorporate it with a local prior for blind deblurring.

To accelerate the iteration process, Cho and Lee [2] adopt

a multi-scale framework, and utilize image gradient for the

deblurring process rather than pixel values. Xu et al. [26]

find that strong edges could not improve kernel estimation

when object scale is relatively smaller than the kernel, and

they introduce a two-phase method to refine the kernel es-

timation step. Moreover, Levin et al. [14] derive an ef-

fective method to optimize the popular maximum a poste-

riori (MAP ) framework. Krishnan et al. [10] utilize an

L1/L2 regularization which inhenrently favors clear image

over blurred ones. Hu et al. [7] adopt conditional random

field framework to learn good regions for deblurring. Xu

et al. [27] develop an unnatural L0 sparse expression and

greatly reduce the running time. Instead of utilizing the

salient edges for kernel estimation directly, Gong et al. [5]

use a gradient activation method to automatically select a

subset of gradients of the latent image for the task. These

methods perform well on natural blurry images. However,

when it comes to special occasions, such as human face

[18], low-light [6] and text [19] blurred images, some of

them will encounter setbacks.

A number of image priors have also been utilized to solve

this ill-posed problem [16, 11, 21, 20, 28, 15]. To name a

few, natural image patches across different scales are previ-

ously used by Michaeli and Ironi [16], as the patches recur-
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(a) Blurred image (b) Our result (c) LMG map of (a) (d) LMG map of (b)
Figure 1. Deblurring result of a blurred image. The blurring process diminishes the LMG value of a clear image. Maximizing LMG value

helps to recover blurry images.

rence will decrease in blurred images. Lai et al. [11] uti-

lizes the normalized color-line prior to restore sharp edges.

Ren et al. [21] make use of low rank characteristic of simi-

lar local patch groups. However, the low-rank property has

their limitations when the blurred image contains rich tex-

tures. Pan et al. [20] utilize dark channel prior (most of the

smallest pixels value in a patch are likely to be zero) and

outperform various existing methods. Nevertheless, when

the images are bright pixels dominant, dark channel prior

based method is less likely to help estimate the kernel. To

remedy this problem, Yan et al. [28] introduce an extreme

channel prior based on dark channel and the opposite bright

channel. To incorporate with the deep learning approach,

Li et al. [15] adopt a CNN network structure to learn a dis-

criminative prior for the task.

In this paper, we propose a new blind deblurring frame-

work based on Local Maximum Gradient (LMG) prior. We

find that after the blurring process, the maximum gradi-

ent value of a local patch will diminish. We incorporate

this property into a conventional sparse-based energy func-

tion. Empirically, we enforce an L1 norm to the LMG in-

volved term which favours clear images over blurred images

during the iteration steps. With a non-linear optimization

scheme, our algorithm performs well on both synthetic and

real datasets.

Our contributions of this work can be summarized as fol-

lows: (1) we present a new image prior termed as LMG
and mathematically prove why it works during deblurring

process; (2) we adopt L1 norm on the LMG involved term,

and provide an effective optimization scheme for the energy

function; (3) our method performs well on both synthetic

benchmark datasets [13, 9, 12] and real images against

state-of-the-art algorithms.

2. Local Maximum Gradient Prior

We now introduce the new prior, and then prove why

it works mathematically. The prior is based on a proposi-

tion that, in a local image patch, the maximum value of the

LMG will diminish after the blurring process (as shown in

Fig. 1). To better illustrate this observation, we formally

define LMG as follows,

LMG(I)(x) = max
c∈{r,g,b}

( max
y∈P (x)

(|∇Ic(y)|)), (2)

where both x and y denote pixel locations in the image,

P (x) is the image patch centered at x, c is the color channel

which belongs to set {r, g, b}, ∇ denotes gradient operator

in two dimensions. Here we use length accumulation of

two dimensions. Note that from Eq. (2), if the input image

is gray-scale, only one max operation is needed.

We take the one-dimension signal as an example. As

shown in Fig. 2(a), we can observe that in a certain do-

main area △h, the gradient of the blurred signal (red curve)

is smaller than the corresponding clear one (dark straight).

This observation conforms to our proposition. The same

situation can be extended to two-dimension signal such as

an image.

Additionally, we validate our theory on a dataset of

4, 000 images from PASCAL 2012 dataset [1]. We blur the

images to obtain 4, 000 corresponding blurry images, and

then calculate the LMG value of these images. As shown

in Fig. 2(b) and (c). Most LMG values of blurred images

are below 0.4, while the LMG values of corresponding clear

images are distributed ranging from 0 to 2. Therefore, this

statistical law demonstrates that the blurring process will

diminish the LMG value. The phenomenon is not surpris-

ing. To confirm the above observation, we conduct follow-

ing verification,

max
y∈P (x)

|∇B(y)| = max
y∈P (x)

|∇(I(y)⊗K) |

= max
y∈P (x)

|∇I(y)⊗K |

≤ max
y∈P (x)

|∇I(y)| ∗ |K|

= max
y∈P (x)

|∇I(y)|,

(3)

the second to third step in Eq. (3) can be proved by Young’s

convolution inequality [29]. Considering that color channel

is not an influential factor of the proposition, we extend Eq.
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Figure 2. (a) The maximum gradients of clear signal (black) and corresponding blurry signal (red). △h and △v denote range and gra-

dient. (b) Average intensity histograms of LMG elements of both clear image and blurry image in PASCAL 2012 dataset [1]. (c) The

corresponding cumulative distribution of (b).

(3) to,
max

c∈{r,g,b}
( max
y∈P (x)

(|∇Bc(y)|)) ≤

max
c∈{r,g,b}

( max
y∈P (x)

(|∇Ic(y)|)).
(4)

This notion of LMG holds for all the patches in the image.

We can also derive from the definition of LMG (Eq. (2))

that the theoretical maximum value of LMG at a pixel is

2. Based on these properties, we have the following inequa-

tion,

LMG(B)(x) ≤LMG(I)(x), (5)

which implies,

2− LMG(B)(x) ≥2− LMG(I)(x). (6)

Eq. (5) demonstrates that LMG values of latent images

are tending to be larger than those of blurred image. We

adopted the convex L1 norm to accumulate all LMG in-

volved term throughout the image, and the reason for choos-

ing the L1 norm will be demonstrated in section 5.3. Thus,

we have the inequations,

‖2− LMG(B)‖1 ≥ ‖2− LMG(I)‖1. (7)

We incorporate the LMG term to our energy function to

form a new model. From Eq. (7) we know that minimizing

the term ‖2−LMG(·)‖1 will obtain a solution favours clear

image. One may argue the reason for choosing the exact

number 2 in Eq. (6) and (7). Certainly, any number above

2 is feasible. However, it will result in greater energy value

in our function. Thus, selecting the doable minimum value

is our best choice.

3. Proposed Model

In this section, we put forward a concrete deblurring

model and an effective optimization scheme. With a con-

ventional deblurring framework, our energy function is de-

fined as,

min
I,K

‖I ⊗K −B‖2 + β‖2− LMG(I)‖1

+γ‖∇I‖0 + τ‖K‖2,
(8)

where β, γ and τ are corresponding weight parameters for

the following regularization terms. The first fidelity term

enforces similarity between convolution result I ⊗ K and

the observed blurred image B. The second term is the new

LMG involved term aforementioned. The third term en-

sures that only salient edges affect the function by remov-

ing tiny ones which is first introduced in [27], and previ-

ously used in a hybrid manner in [19, 20, 28, 15]. As for the

last regularization term, some methods use L1 norm [23, 8],

we adopt the conventional L2 norm for calculation conve-

nience, and it works to constrain the kernel to be smooth.

Before presenting our algorithm to solve the above

model. We first tackle the tricky problem of LMG oper-

ation.

We know that both the operations max and | · | can be

regarded as mapping matrices. The | · | can be seen as

a matrix A applied to the vectorized image gradient ∇I.

Each value of A belongs to the set {1,−1}, and is depen-

dent on the polarity of the element in ∇I. Note that there

are two dimensions involved in the gradient operator, i.e.,

∇ = (∇h,∇v)
T . Therefore, the absolute operator is also

two-dimensional, i.e., A = (Ah, Av), which is given by,

Ah(x, y) =

{

1, ∇Ih(x, y) ≥ 0
−1, ∇Ih(x, y) < 0

.

Similar for Av , we have

|∇I| = A⊙∇I,

where we use ⊙ to denote hadamard product. Note that in

vector form of I , both the operators A and ∇ should be

sparse, and in this case,

|∇I| = A∇I1.

Drawing a lesson from [20], max operator can be substi-

tuted with a sparse matrix M applied to the vectorized form

1Here we use A to denote the diagnoal form of A, and I to denote the

vectorized form of I for consistence. The matrix form of ∇ is toeplitz

manner.
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of image |∇I|, which satisfies,

M(x, z) =

{

1, z = argmaxy∈P (x) |∇I|(y)
0, otherwise

.

All the matrices could be acquired during the deblurring

process, and are computed with intermediate latent image.

Let G = M ∗ A ∗∇, the LMG operation can be written as,

LMG(I) = GI. (9)

3.1. Proposed Algorithm

Instead of solving Eq. (8) directly, we split the energy
function into two sub problems, and alternatively optimize
them. Two sub problems can be written as follows,







min
I

‖I ⊗K −B‖2 + β‖2− LMG(I)‖1 + γ‖∇I‖0, (10)

min
K

‖I ⊗K −B‖2 + τ‖K‖2. (11)

We further provide an effective optimization scheme to

solve the above sub problems.

3.1.1 Estimate Latent Image

Owing to the non-convex L0 norm, optimizing Eq. (10)

directly becomes computationally formidable. Considering

this, we adopt the half-quadratic splitting method [27]. With

new substitution variable u → 2− LMG(I) and g → ∇I ,

Eq. (10) can be rewritten as,

min
I,u,g

‖I ⊗K −B‖2 + β‖u‖1 + γ‖g‖0+

α1‖2− LMG(I)− u‖2 + α2‖∇I − g‖2,
(12)

where α1 and α2 are the penalty parameters. We can solve

Eq. (12) by optimizing I, u, g alternatively while fixing oth-

ers.

Given the LMG matrix G, we can solve I in following

manner,

min
I

‖KI − B‖2 + α1‖2− GI − u‖2 + α2‖∇I − g‖2, (13)

here we use K to denote toeplitz form of blur kernel K,

B, u, g to denote vector form of B, u, g, respectively.

Eq. (13) is a quadric problem referring to I. We can solve

it with the conjugate gradient method. However, because of

the large size of G, conjugate gradient method will require

tremendous time to convergence (Details are demonstrated

in supplementary material.). Therefore, we introduce an-

other auxiliary variable q for I in the second term of Eq.

(13) as a trade off between speed and accuracy. Thus, Eq.

(13) can be represented by following approach,

min
I,q

‖KI − B‖2 + α1‖2− Gq − u‖2+

α2‖∇I − g‖2 + α3‖I − q‖2,
(14)

where α3 is a positive penalty parameter. We can solve Eq.
(14) by updating I and q in an alternative manner, which is
given by,







min
I

‖KI − B‖2 + α2‖∇I − g‖2 + α3‖I − q‖2, (15)

min
q

α1‖2− Gq − u‖2 + α3‖I − q‖2. (16)

Both the Eq. (15) and (16) have a closed-form solution.

We can solve Eq. (15) with FFT (Fast Fourier Transform)

directly, and the solution can be obtained according to [27,

28]. The solution of Eq. (16) is given by,

q =
α1GT (2− u) + α3I

α1GT G + α3

.

Given I , we can compute u and g separately by following

two sub-equations,

min
u

β‖u‖1 + α1‖2− GI − u‖2, (17)

min
g

λ‖g‖0 + α2‖∇I − g‖2. (18)

Eq. (17) is a one-dimension shrinkage, and the solution can

be written as,

u = sign(2− GI) ·max(|2− GI| −
β

2α1
, 0).

Eq. (18) is a pixel-wise optimization problem according to

[27]. The answer is given by,

g =

{

∇I, |∇I|2 ≥ λ
α2

0, otherwise
.

3.1.2 Estimate Blur Kernel

With I given, optimizing K becomes a least squares prob-

lem. To accelerate the convergence rate, we adopt the kernel

estimation method from [2]. Thus, Eq. (11) can be rede-

fined as

min
K

‖∇I ⊗K −∇B‖2 + τ‖K‖2. (19)

The optimal solution of K can be acquired with a FFT

method directly. We know K is subject to the constraints

that Ki > 0 and
∑

i Ki = 1. After acquiring the kernel, we

will set negative elements of K to zero, and regularize K.

Empirically, we adopt the coarse-to-fine deblurring scheme

with an image pyramid [2]. Main steps from one pyramid

level are shown in Alg. 1. More details about the algorithm

are provided in the supplementary material.

4. Experimental Results

We implement our model in MATLAB. First, we carry

out experiments on natural image datasets [13, 9, 12]and
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Algorithm 1: Blur kernel estimation with LMG
prior algorithm

Input: Blurry image B
Initialize K from the coarser level.

while iter = 1:maxiter do
Update I with Eq. (10).

Update K with Eq. (11).

end

Output: Blur kernel K. Intermediate latent image

I .
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Figure 3. (a), (b) are quantitative evaluations on the benchmark

datasets by [13] and [12], respectively. Our model performs well

among state-of-the-art algorithms.

real images, and compare it with other state-of-the-art al-

gorithms. Furthermore, we evaluate our method on text

[19], face[18], saturated [6] images, and compare it with the

method tailored to these specific scenarios. We use the same

non-blind deconvolution method from [19] unless otherwise

mentioned. We use Peak-Signal-to-Noise Ratios (PSNR) on

benchmark dataset [9] as the performance evaluation, and

evaluate outputs on datasets [12, 13] in terms of error ratio,

which is measured by the ratio between deconvolution error

with the estimated kernel and deconvolution with the truth

kernel [13]. In all experiments, we use following parame-

ters: β = γ = 0.004, τ = 2. The patch size for computing

LMG value is fixed as 35 × 35. All the results from other

methods are either provided or generated by the code from

authors’ website using default settings. Please refer to the

supplementary material for more examples.

4.1. Nature images

To better illustrate the effectiveness of our model, we use

three mainstream benchmark datasets mentioned above.

We first test our model on the dataset from Levin et

al.[13], and compare with several other methods [4, 2, 10,

20, 28]. There are total 4 × 8 images in the dataset. It

was generated from 4 original images filtered with 8 differ-

ent kernels. Due to the relative translation between ground

truth and deconvolution result, calculating PSNR directly

will cause inaccuracy of the result. Thus, we use error ratio

as performance evaluation on this dataset instead. Fig. 3

(a) shows that our LMG based method outperforms state-
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Figure 4. Average PSNR value of the dataset [9]. Our method

achieves 30.37 on average, leading among state-of-the-art meth-

ods.

of-the-art algorithms with 100% of our results under error

ratio 1.8, and the corresponding proportion for the second

best [20] is 93.75%.

Next, We evaluate our method on the uniform dataset

from [12] which contains 100 images including face, text

and low-illumination images. We run a thorough test of all

the images and computed the cumulative error ratio. A to-

tal of seven other algorithms [4, 2, 27, 14, 31, 19, 28] are

taken as comparison objects. For fair comparison, we use

the non-blind algorithm from [3] to generate final results af-

ter acquiring blur kernels. The overall comparison result is

shown in Fig. 3 (b). Our model takes lead with 45% of the

output under error ratio 2.

Moreover, we test our method on the benchmark dataset

[9] against other latest algorithms [2, 10, 26, 20, 28, 15].

The dataset is constituted of 4 original images corrupted

with 12 kernels. We calculate the PSNR value by com-

paring each of our results with 199 original images cap-

tured along the blur trajectory and mark the finest value.

The comparison result is shown in Fig. 4, our method

achieves higher average PSNR value (30.37) than the sec-

ond best [15] (30.15). Demonstrating with one image from

this dataset, the corresponding results are shown in Fig.

5. Our method generates a more visually pleasing result

against [27, 28], and contain less ringing artifacts than dark

channel based method[20].

We further test our method on real-world blurred images.

As shown in Fig. 6, we use the same non-blind deconvolu-

tion method from [6] to generate final results for each com-

parison methods [10, 20, 19, 6]. While other state-of-the-art

methods produce varying degrees of ringing artifacts, our

method generates sharper edges and contain fewer artifacts.

4.2. Domain specific images

Deblurring Low-illumination blurred images are rather

challenging for most methods. Fig. 7 shows an example

from [6]. Natural image deblurring method [27] fails to

generate clear images mainly due to the large region of sat-

urated pixels. Meanwhile, our method yields even sharper

edges than the state-of-the-art low-illumination deblurring
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Input Xu et al. [27] Yan et al. [28] Pan et al. [20] Ours
Figure 5. Qualitative comparison with other state-of-the-art methods on image from dataset [9]. The image estimated by LMG based

method is visually more pleasing and has less ringing artifact.

(a) Input (b) Krishnan et al. [10] (c) Pan et al. [20]

(d) Pan et al. [19] (e) Hu et al. [6] (f) Ours

Figure 6. Comparison with other state-of-the-art methods on real-

world blurred image. Results are produced by the same non-blind

deconvolution method[6]. Our method generates finer edges and

clearer details as are shown in red boxes (Best viewed on high

resolution display with zoom-in).

(a) Input (b) Xu et al. [27]

(c) Hu et al. [6] (d) Ours
Figure 7. Results on low-illumination blurred image. Results

are generated by the same non-blind deconvolution method from

[6]. Red boxes contain varying degrees of ringing artifacts (Best

viewed on high-resolution display with zoom-in).

model [6] as shown in the red boxes.

(a) Input (b) Yan et al. [28]

(c) Pan et al. [19] (d) Ours
Figure 8. Results on text blurred image. Here we use the same

non-blind deconvolution method from [19]. Our method yields a

result comparable to the model specific on text [19].

(a) Input (b) Xu et al. [27] (c) Pan et al. [20] (d) Ours

Figure 9. Results on face blurred image. Here we use the same

non-blind deconvolution method [3]. Our method produces more

visually pleasing result.

Text images are yet another herculean task for most

methods, because the contents of interest are mainly two-

toned (black and white) which do not follow the heavy-

tailed statistics of natural images [19]. As shown in Fig.

8. Kernel estimated by extreme channel prior[28] result in

large residual blur, and the result generated by our model

compares favorably with the method tailored to text [19].

Face images often contain few edges or texture [18]
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Figure 10. Quantitative evaluations on the benchmark dataset from

[13]. (a) Effectiveness of the proposed LMG prior. (b) Ablation

study referring to the norm constraint on LMG related term. The

model with ‖2− LMG(·)‖1 generate better results.

which is vital for kernel estimation. Fig. 9 demonstrates

deblurring result on an face image. Our method generate

finer result with less ringing artifacts than nature image de-

blurring method [27, 20].

5. Analysis and Discussion

In this section, we further evaluate the effectiveness of

LMG prior, discuss its relation with L0 regularized meth-

ods, norm constrains on LMG related term, effect of the

patch size used for computing LMG map, and analyse its

convergence property and the limitations.

5.1. Effectiveness of LMG prior

Our model adopts two regularized terms including sparse

constraint on the image gradient and the LMG related term.

Fig. 11 (g) and (h) show an example of our model with and

without LMG prior. The kernel estimated with LMG prior

yields sharper images over iterations, while the kernel esti-

mated without LMG looks like a delta kernel. The com-

parison demonstrates the effectiveness of the LMG related

term. To better evaluate the effectiveness of LMG prior, we

further conduct ablation study on benchmark dataset [13]

with, without and with only the LMG prior. We disable

the LMG prior in our implementation to ensure a fair com-

parison. As shown in Fig. 10 (a), our model with LMG
term (red line) generates better results than the one without

it (green line). However, we found if only with the LMG
term, our model performs poorly with majority of the ssd

error above 2. This indicates that LMG prior is not able to

handle deblurring task alone.

5.2. Comparison with other L0-regularized priors

Several methods adopt L0-regularized priors in deblur-

ring task [27, 19] because of the strong sparsity of the L0

norm. Recent approaches enforce sparsity on the dark chan-

nel [20] and the bright channel [28] of latent images. As

shown in Fig. 11 (b) and (c). They fail to estimate the

blur kernel when there are not enough extreme (dark and

bright) pixels. Although our method yields the same kernel

at the early stages of the deblurring process, but the change

(a) Input (b) Pan et al. [20](c) Yan et al. [28] (d) Ours

(e) Intermediate result of Pan et al. [20].

(f) Intermediate result of Yan et al. [28].

(g) Intermediate result of Our model without LMG prior.

(h) Intermediate result of Our model with LMG prior.

(i) Intermediate result of LMG map.
Figure 11. Deblurred results and its corresponding intermediate

results. The results of several methods [20, 28] are shown in (b) -

(d), corresponding intermediate results over iterations (from left to

right) are shown in (e) - (h). Our model with LMG prior generates

sharper edges and contains fewer artifacts. The LMG map of

the intermediate latent image gets brighter over iterations which

complies with our observation (Here we regularize the range of

LMG to 0− 1 by dividing its value by 2).

of LMG helps to restore shaper edges than the extream

channel based approaches in the following stages. Our ex-

perimental results on three different datasets also indicate

the superiority of our model as illustrated in the previous

section.

5.3. Norm constraint on the LMG term

As demonstrated in Eq. (7), we adopt the L1 norm to

constrain the LMG related term. However, we know that

L2 norm is also reasonable since the LMG related term

(2−LMG) is positive. Also, the sparsity of LMG term en-

courages us to explore the effectiveness of L0 norm applied

in the term. To better evaluate the effect of ‖2−LMG(·)‖0,

‖2− LMG(·)‖1 and ‖2− LMG(·)‖2, we conduct experi-

ments using these three different constrains on dataset from

Levin et al. [13]. As shown in Fig. 10 (b), our model
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(b) Kernel similarity
Figure 12. Convergence analysis of the proposed algorithm. We

evaluate the energy value of Eq. (10), and the kernel similarity [7]

at the finest scale.

with any constraint forms is better than without using LMG
prior, which indicates that LMG is an inherent property and

can help the deblurring process. Also, we found constraint

with L1 norm generates the best results, i.e., our model with

‖2− LMG(·)‖1 can achieve the best performance.

Table 1. Evaluations on datasets [13] with different patch size.

Patch size 15× 15 25× 25 35× 35 45× 45

Avg. PSNR 33.05 33.12 33.29 33.12

5.4. Effect of patch size for computing LMG map

The patch size is an critical factor for computing LMG
map. We conduct experiments with different patch sizes on

dataset [13]. As shown in Tab. 1, we compute the average

PSNR value of the results generated by different patch sizes.

The dataset contains images of size 255 × 255. Thus, the

maximum patch size we consider is 45×45. Overall, PSNR

differences between each patch size are rather small, which

indicates that our model is insensitive to the patch size once

it is in a reasonable range.

5.5. Convergence analysis

Our method adopt half-quadratic scheme to optimize the

non-convex L0 norm and the non-linear LMG operation.

Since it involves several auxiliary variables during estimat-

ing latent image, one may question the overall convergence

property. We analyse its convergence by empirically con-

ducting experiments on the dataset [13] to see the change

of energy refering to Eq. (10), and the kernel similarity [7]

referring to Eq. (11) over iterations. The experiments are

carried out at the finest image scale. As shown in Fig. 12,

our algorithm converges less than 50 iterations, which vali-

dates the effectiveness of our optimization scheme.

5.6. Limitation

One of the limitations of our method is its ineffectiveness

when dealing with image contains significant non-gaussian

noise. Fig. 13 shows an example of our method dealing

(a) (b) (c)
Figure 13. Limitation of the proposed model. Our method cannot

handle blurred image with non-gaussian noise. (a) Input blurred

image. (b) Deblurring result of our method. (c) Deblurring result

of our method with applying gaussian filter to the blurred image

first.

with images degraded by salt and pepper noise. As shown

in Fig. 13 (b), it will not work if we apply the proposed

method to the blurred image directly. In this case, we settle

the problem by enforcing gaussian filter on the noisy blurred

image first, and the result is more pleasing as shown in Fig.

13 (c).

Another drawback of the proposed method is that it re-

quires plenty of time to iteratively update variables. Tab. 2

demonstrates the time comparison of several methods on a

computer with 12 GB RAM and Intel Core i5− 7400 CPU.

Table 2. Running time comparison. The code is implemented in

MATLAB unless mentioned.

Method 225× 225 600× 600 800× 800

Xu et al. (C++) [27] 1.22 3.61 6.90

Krishnan et al. [10] 6.04 50.02 90.94

Yan et al. [28] 22.33 178.31 367.70

Pan et al. [20] 137.43 945.91 1992.44

Ours 65.20 376.94 755.43

6. Conclusions

In this paper, we introduce a new Local Maximum Gra-

dient prior for blind deblurring. Our work is motivated by

the fact that the maximum gradient value of a local patch

will diminish after the blurring process. Therefore, max-

imizing LMG value will help restore clearer images. In

order to recover the latent image restricted by the LMG
prior, we present an effective optimization scheme based on

half-quadratic splitting strategy. With a coarse-to-fine MAP

framework, our model works well in most cases. Exper-

imental results depict that our method performs favorably

against state-of-the-art algorithms on natural images, and

generate solid outputs on given occasions including face,

text, and low-illumination images. Furthermore, we believe

our proposed prior has the potential to be extended to other

image reconstruction areas in future work.
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