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Abstract— We develop an efficient general-purpose blind/
no-reference image quality assessment (IQA) algorithm using a
natural scene statistics (NSS) model of discrete cosine transform
(DCT) coefficients. The algorithm is computationally appealing,
given the availability of platforms optimized for DCT computa-
tion. The approach relies on a simple Bayesian inference model
to predict image quality scores given certain extracted features.
The features are based on an NSS model of the image DCT
coefficients. The estimated parameters of the model are utilized
to form features that are indicative of perceptual quality. These
features are used in a simple Bayesian inference approach to
predict quality scores. The resulting algorithm, which we name
BLIINDS-II, requires minimal training and adopts a simple
probabilistic model for score prediction. Given the extracted
features from a test image, the quality score that maximizes
the probability of the empirically determined inference model
is chosen as the predicted quality score of that image. When
tested on the LIVE IQA database, BLIINDS-II is shown to
correlate highly with human judgments of quality, at a level
that is competitive with the popular SSIM index.

Index Terms— Discrete cosine transform (DCT), generalized
Gaussian density, natural scene statistics, no-reference image
quality assessment.

I. INTRODUCTION

T
HE UBIQUITY of transmitted digital visual information
in daily and professional life, and the broad range of

applications that rely on it, such as personal digital assistants,
high-definition televisions, internet video streaming, and video
on demand, necessitate the means to evaluate the visual quality
of this information. The various stages of the pipeline through
which an image passes can introduce distortions to the image,
beginning with its capture until its consumption by a viewer.
The acquisition, digitization, compression, storage, transmis-
sion, and display processes all introduce modifications to the
original image. These modifications, also termed distortions or
impairments, may or may not be perceptually visible to human
viewers. If visible, they exhibit varying levels of annoyance.
Quantifying perceptually annoying distortions is an important
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process for improving the quality of service in applications
such as those listed above. Since human raters are generally
unavailable or too expensive in these applications, there is a
significant need for objective image quality assessment (IQA)
algorithms.

Only recently did full-reference image quality assessment
(FR-IQA) methods reach a satisfactory level of performance,
as demonstrated by high correlations with human subjective
judgments of visual quality. SSIM [1], MS-SSIM [2], VSNR
[3], VIF index [4], and the divisive normalization-based
indices in [5] and [6] are examples of successful FR-IQA
algorithms. These methods require the availability of a
reference signal against which to compare the test signal.
In many applications, however, the reference signal is not
available to perform a comparison against. This strictly limits
the application domain of FR-IQA algorithms and points to
the need for reliable blind/NR-IQA algorithms. However, no
NR-IQA algorithm has been proven consistently reliable in
performance [7]. While some FR-IQA algorithms are reliable
enough to be deployed in standards, (e.g., the inclusion of
the SSIM index in the H.264/MPEG4 Part 10 AVC reference
software [8], [1]), generic NR-IQA algorithms have been
regarded as having a long way to go before reaching similar
useful levels of performance.

The problem of blindly assessing the visual quality of
images, in the absence of a reference, and without assuming
a single distortion type, requires dispensing with older ideas
of quality such as fidelity, similarity, and metric comparison.
Presently, NR-IQA algorithms generally follow one of three
trends: 1) distortion-specific approaches. These employ a
specific distortion model to drive an objective algorithm to
predict a subjective quality score. These algorithms quantify
one or more distortions such as blockiness [9], blur [10], [11],
or ringing [12] and score the image accordingly; 2) training-
based approaches: these train a model to predict the image
quality score based on a number of features extracted from
the image [13]–[15]; and 3) natural scene statistics (NSS)
approaches: these rely on the hypothesis that images of the
natural world (i.e., distortion-free images) occupy a small
subspace of the space of all possible images and seek to find
a distance between the test image and the subspace of natural
images [16].

The first approach is distortion-specific, and hence to some
degree, application-specific. It is important to understand,
however, that while distortion modeling is important, it
does not necessarily embody perceptual relevance (distortion
annoyance), since such factors as masking and contrast
sensitivity need to be considered. The second approach is
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only as reliable as the features used to train the learning
model. Algorithms following this approach often use a large
number of features without perceptually justifying each
individual feature. The third approach relies on extensive
statistical modeling and reliable generalization of visual
content and the perception of it. DIIVINE, which is a recent
wavelet-based algorithm, is a combination of the second and
the third approaches [17]. It uses a two-stage framework,
where the distortion type is predicted first and then, based
on this prediction, image quality is estimated. DIIVINE uses
a support vector machine (SVM) to classify an image into
a distortion class and support vector regression to predict
quality scores. A large number of features are used for
classification and for quality score prediction (88 features) to
achieve high performance against human quality judgments.

As an alternative, we propose a fast single-stage framework
that relies on a statistical model of local discrete cosine
transform (DCT) coefficients. We derive an algorithm that
we dub blind image integrity notator using DCT statistics
(BLIINDS-II). The new BLIINDS-II index advances the ideas
embodied in an earlier prototype (BLIINDS-I) [18], which
uses no statistical modeling and a different set of sample DCT
statistics. BLIINDS-I was a reasonably successful experiment
to determine whether DCT statistics could be used for blind
IQA. BLIINDS-II fully unfolds this possibility and provides
an improvement in both performance and in the use of an
elegant and general statistical model. It uses a simple Bayesian
approach to predict quality scores after a set of features is
extracted from an image. For feature extraction, a generalized
NSS based model of local DCT coefficients is estimated. The
model parameters are used to design features suitable for
perceptual image quality score prediction. The statistics of
the DCT features vary in a natural and predictable manner
as the image quality changes. The NSS features are used
by the Bayesian probabilistic inference model to infer visual
quality. We show that the method correlates highly with human
subjective judgments of quality. We also interpret, analyze, and
report how each feature in isolation correlates with human
visual perception.

The contributions of our approach are as follows.
1) BLIINDS-II inherits the advantages of the NSS approach

to IQA. While the goal of IQA research is to produce
algorithms that accord with visual perception of quality,
one can to some degree avoid modeling poorly under-
stood functions of the human visual system (HVS), by
resorting to established models of the natural environ-
ment instead. This is motivated by the fact that HVS
modeling and NSS modeling can be regarded as dual
problems, owing to the widely accepted hypothesis that
the HVS has evolutionally adapted to its surrounding
visual natural environment [19], [20].

2) BLIINDS-II is non-distortion-specific, while most NR-
IQA algorithms quantify a specific type of distortion,
the features we use are derived independently of the
type of image distortion and are effective across multiple
distortion types.

3) We propose a novel model for the statistics of
DCT coefficients. Previous work on reduced-reference

(RR)-IQA has shown that local image wavelet coef-
ficients are Laplacian-distributed and tend toward
Gaussian-distributed when a divisive normalization
transform is applied [21], [22]. Our experiments have
shown that DCT coefficients have a symmetrical distri-
bution in a manner that can be captured by a generalized
Gaussian distribution (GGD) model.

4) Since the framework operates entirely in the DCT
domain, one can exploit the availability of platforms
devised for the fast computation of DCT transforms.
Many image and video compression algorithms are
based on block-based DCT transforms (JPEG, MPEG2,
H263, and H264 which uses a variation of the DCT).

5) Minimal training is required under the simple Bayesian
model.

6) Finally, the method correlates highly with human visual
perception of quality and yields highly competitive
performance. We provide a MATLAB implementation
of BLIINDS-II, which can be downloaded from the
Laboratory of Image and Video Engineering (LIVE)
website at http://live.ece.utexas.edu/.

The rest of this paper is organized as follows. In Section II,
we describe the DCT-domain NSS features and the motivation
behind the choice of the features. In Section III, we show
how each feature correlates with subjective difference-mean-

opinion-scores (DMOS). In Section IV, we describe the
generalized probabilistic prediction model. We present the
results in Section V, and we conclude in Section VI.

II. OVERVIEW OF THE METHOD

We will refer to undistorted images captured by imaging
devices that sense radiation from the visible spectrum as
natural scenes, and statistical models built for undistorted
natural scenes as NSS models. Deviations from NSS models,
caused by the introduction of distortions to images, can be
used to predict the perceptual quality of the image. The
model-based NSS-IQA approach developed here is a process
of feature extraction from the image, followed by statistical
modeling of the extracted features. Purely NSS-based IQA
approaches require the development of a distance measure
between a given distorted test image and the NSS model.
This leads to the question of what constitutes appropri-
ate and perceptually meaningful distance measures between
distorted image features and NSS models. The Kullback–
Leibler divergence [21] as well as other distance measures
have been used for this purpose, but no perceptual justification
has been provided for its use.

Our approach relies on the IQA algorithm learning how the
NSS model parameters vary across different perceptual levels
of image distortion. The algorithm is trained using features
derived directly from a generalized parametric statistical model
of natural image DCT coefficients against various perceptual
levels of image distortion. The learning model is then used to
predict perceptual image quality scores.

Unlike much of the prior work on image/video quality
assessment (QA) [1], [2], [4], [23], [24], we make little direct
use of specific perceptual models such as area V1 cortical
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Fig. 1. High-level overview of the BLIINDS-II framework.

decompositions [24], masking [1], [2], [4], [5], [6], [21], [25],
and motion perception [24]. Yet we consider our approach as
perceptually relevant since the NSS models reflect statistical
properties of the world that drive perceptual functions of the
HVS. This is a consequence of the belief that the HVS is
adapted to the statistics of its visual natural environment. In
other words, models of natural scenes embody characteristics
of the HVS, which is hypothesized to be evolutionally adapted
to models conforming to natural scenes [19], [20], [26]. HVS
characteristics that are intrinsic to, or that can be incorporated
into NSS models include: 1) visual sensitivity to structural
information [1], [2]; 2) perceptual masking [19], [21], [22],
[24]; 3) visual sensitivity to directional information [27], [28];
4) multiscale spatial visual processing [4], [19], [24]; and
5) intolerance to flagrantly visible visual distortions [29]. In
the following sections we explain how one or more of these
HVS properties are embedded in the model.

The framework of the proposed approach is summarized
in Fig. 1. An image entering the IQA “pipeline” is first
subjected to local 2-D DCT coefficient computation. This
stage of the pipeline consists of partitioning the image into
equally sized nxn blocks, henceforth referred to as local image
patches, then computing a local 2-D DCT on each of the
blocks. The coefficient extraction is performed locally in the
spatial domain in accordance with the HVS’s property of local
spatial visual processing (i.e., in accordance with the fact
that the HVS processes the visual space locally) [19]. This
DCT decomposition is accomplished across spatial scales. The
second stage of the pipeline applies a generalized Gaussian
density model to each block of DCT coefficients, as well as
for specific partitions within each DCT block.

We next briefly describe the DCT block partitions that are
used. In order to capture directional information from the local
image patches, the DCT block is partitioned directionally as
shown in Fig. 8 into three oriented subregions. A generalized
Gaussian fit is obtained for each of the oriented DCT coef-
ficient subregions. Another configuration for the DCT block
partition is shown in Fig. 6. The partition reflects three radial
frequency subbands in the DCT block. The upper, middle,
and lower partitions correspond to the low-frequency, mid-
frequency, and high-frequency DCT subbands, respectively.
A generalized Gaussian fit is obtained for each of the radial
DCT coefficient subregions as well.

The third step of the pipeline computes functions of the
derived generalized Gaussian model parameters. These are the

Fig. 2. Generalized Gaussian density for varying levels of the shape
parameter γ .

features used to predict image quality scores. In the following
sections, we define and analyze each model-based feature,
demonstrate how it changes with visual quality, and examine
how well it correlates with human subjective judgments of
quality.

The fourth and final stage of the pipeline is a simple
Bayesian model that predicts a quality score for the image. The
Bayesian approach maximizes the probability that the image
has a certain quality score given the model-based features
extracted from the image. The posterior probability that the
image has a certain quality score given the extracted features
is modeled as a multidimensional GGD.

A. Generalized Probabilistic Model

The Laplacian model has often been used to approximate
the distribution of DCT image coefficients [30]. This model is
characterized by a large concentration of values around zero
and heavy tails. However, the introduction of distortions to the
images changes the distribution of the coefficients, as shown in
[4] and [31]. Such descriptive terms as heavy tails, peakedness

at zero, and skewness, which have often been used to describe
distributions, are intrinsically heuristic. In our prior work
[18], we used such sample statistics (kurtosis, entropy, etc.,),
without image modeling, to create a reasonably successful
but preliminary blind IQA algorithm. We have refined our
approach by modeling image features using a generalized
Gaussian family of distributions which encompasses a wide
range of observed behavior of distorted DCT coefficients.
The generalized Gaussian model has recently been used as a
feature in a NSS-based RR-IQA algorithm [21] and in a simple
two-stage NR-IQA algorithm in [15].

The univariate generalized Gaussian density is given by

f (x |α, β, γ ) = αe−(β|x−µ|)γ (1)

where µ is the mean, γ is the shape parameter, and α and β

are the normalizing and scale parameters given by

α =
βγ

2Ŵ(1/γ )
(2)

β =
1

σ

√

Ŵ(3/γ )

Ŵ(1/γ )
(3)
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Fig. 3. 2-D generalized Gaussian density plotted for several values of the
shape parameter γ .

where σ is the standard deviation, and Ŵ denotes the gamma
function given by

Ŵ(z) =

∫ ∞

0
t z−1e−t dt . (4)

This family of distributions includes the Gaussian distribution
(β = 2) and the Laplacian distribution (β = 1) [32], [33].
As β → ∞, the distribution converges to a uniform distrib-
ution. Fig. 2 shows the GGD at varying levels of the shape
parameter γ.

A variety of parameter estimation methods have been
proposed for this model. We deploy the reliable method given
in [34].

The multivariate version of the generalized Gaussian density
is given by

f (x |α, β, γ ) = αe−(β(x−µ)T�−1(x−µ))γ (5)

where � is the covariance matrix of the multivariate random
variable x, and the remaining parameters are as defined in the
univariate case. We use (5) to form a probabilistic prediction
model in Section IV. Fig. 3 shows the 2-D GGDs for various
values of the shape parameter γ .

Parameter estimation is treated similar to the univariate case
once the quantity (x − µ)T�−1(x − µ) is estimated from the
sample data.

B. DCT Feature Domain

The performance of any IQA model is a function of the
representativeness of the features that are used for quality score
prediction. In other words, the prediction is only as good as
the choice of features extracted. This motivates us to design
features representative of human visual perception of quality.
Consequently, given that it is broadly agreed upon that the
HVS is adapted to the statistics of images of its natural envi-
ronment, we design features motivated by natural scene char-
acteristics. It has been shown that natural images exhibit strong
spatial structural dependencies [1]. Consequently, we define
features representative of image structure, and whose statistics
are observed to change with image distortions. The structural
information1 in natural images may loosely be described

1Related to spatial correlation between pixel intensities.

Fig. 4. Histograms of non-DC DCT coefficients. Sharp-peaked histogram:
Distorted image histogram. Lower-peaked histogram: reference image
histogram.

as smoothness, texture, and edge information composed by
local spatial frequencies that constructively and destructively
interfere over scales to produce the spatial structure in natural
scenes.

Visual images are subjected to local spatial frequency
decompositions in the visual cortex [4], [19], [35]. Likewise,
in our IQA model, feature extraction is performed in the
local frequency (DCT) domain. The main motivation behind
feature extraction in the DCT domain is the observation that
the statistics of DCT coefficients change with the degree and
type of image distortion. Another advantage is computational
convenience: optimized DCT-specific platforms [36]–[39], and
fast algorithms for DCT computation [40], [41] can ease
computation. For instance, DCTs can be computed efficiently
by variable-change transforms from computationally efficient
fast Fourier transform algorithms [42]. Many image and
video compression algorithms are based on block-based DCT
transforms (JPEG, MPEG2, H263, and H264 that relies on a
variation of the DCT). Consequently, the model-based method
could be applied to already-computed coefficients, resulting
in even greater computational efficiency. Finally, and perhaps
most importantly, it is possible to define simple and naturally
defined model-based DCT features that capture perceptually
relevant image and distortion characteristics in a natural and
convenient manner.

We illustrate one instance of how the statistics of DCT
coefficients changes as an image becomes distorted in Fig. 4,
which shows the DCT coefficient histograms of a distortion-
free image and a Gaussian blur distorted image (in Fig. 5),
respectively. Fig. 4 shows an example of how the DCT coef-
ficient histograms of distorted and pristine images may differ
significantly. The differences in observed DCT coefficient
distributions between distorted and nondistorted images (such
as the difference observed in Fig. 4) are exploited in the design
of features of visual quality score prediction.

Similar trends in the histogram statistics are observed over
large databases of distorted images [18], [43], [44]. Among
the observed differences in the histograms is the degree of
peakedness at zero (blurred images are observed to have a
higher histogram peak at zero), and variance (blurred images
exhibit reduced variance). We utilize statistical differences
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Reference image (DMOS = 0) Blur distorted image (DMOS = 73.45)

Fig. 5. Images corresponding to the histograms of DCT coefficients in Fig. 4.

TABLE I

SROCC CORRELATIONS [SUBJECTIVE DMOS VERSUS DCT γ LOWEST 10th PERCENTILE AND 100th PERCENTILE, ζ HIGHEST 10th PERCENTILE AND

100th PERCENTILE, ENERGY SUBBAND RATIO HIGHEST 10th PERCENTILE AND 100th PERCENTILE, ORIENTED ζ VARIANCE POOLED ACCORDING TO

THE HIGHEST 10th PERCENTILE AND 100th PERCENTILE (FEATURE EXTRACTION BASED ON 5 × 5 DCT BLOCKS)]

γ ζ Subbands feature Orientation feature

LIVE Subset 10% 100% 10% 100% 10% 100% 10% 100%
JPEG2000 0.9214 0.7329 0.9334 0.9131 0.9313 0.8745 0.9175 0.9269
JPEG 0.7790 0.7295 0.8070 0.0446 0.9493 0.4601 0.8258 0.7662
WN 0.9580 0.9233 0.9582 0.9360 0.9754 0.9608 0.9524 0.9499
GBLUR 0.9009 0.3298 0.9245 0.8614 0.8850 0.5808 0.9277 0.9228
FASTFADING 0.8266 0.6282 0.8312 0.8410 0.8602 0.7558 0.8639 0.8656

such as these to develop an NR-IQA index. We describe each
of the model-based features used and show how each correlates
with human judgments of quality in the following.

III. MODEL-BASED DCT DOMAIN NSS FEATURES

We propose a parametric model to model the extracted
local DCT coefficients. The parameters of the model are
then utilized to extract features for perceptual quality score
prediction. We extract a small number of model-based features
(only four), as described next. Additionally, toward the end of
this section we point out the challenge of blindly predicting
visual quality across multiple distortions types, and we explain
the importance of multiscale feature extraction.

A. Generalized Gaussian Model Shape Parameter

We deploy a generalized Gaussian model of the non-DC

DCT coefficients from nxn blocks. The DC coefficient does
not convey structural information about the block, including it
neither increases nor decreases performance. The generalized
Gaussian density in (1) is parameterized by mean µ, scale
parameter β, and shape parameter γ . The shape parameter γ

is a model-based feature that is computed over all blocks in
the image.

The shape parameter quality feature is pooled in two ways.
First, by computing the lowest 10th percentile average of
the local block shape scores (γ ) across the image. This
kind of “percentile pooling” has been observed to result in
improved correlations with subjective perception of quality
[23], [45]. Percentile pooling is motivated by the observation
that the “worst” distortions in an image heavily influence
subjective impressions. We choose 10% as a round number
to avoid the possibility of training. In addition, we compute

Fig. 6. DCT coefficients, three bands.

the 100th percentile average (ordinary sample mean) of the
local γ scores across the image. Using both 10% and 100%
pooling helps inform the predictor whether the distortions are
uniformly annoying over space or exhibit isolated perceptually
severe distortions.

We demonstrate the distortion prediction efficacy of the
shape feature γ on a large database of distorted images.
The LIVE IQA Database consists of five subset datasets,
each of which consists of images distorted by five types
of representative realistic distortions [JPEG2000 compression,
JPEG compression, white noise, Gaussian blur, and fast-
fading channel distortions (simulated by JPEG2000 distortion
followed by bit errors)]. In Table I we report Spearman rank
order correlation coefficient (SROCC) scores between the
LIVE DMOS scores, and 10% and 100% pooled features,
respectively. (The DCT blocks from which γ was estimated
were chosen to be of dimension 5 × 5.)

Observe that the correlations are consistently higher when
the lowest 10th percentile pooling strategy is adopted. This
may be interpreted as further evidence that human sensitivity
to image distortions is not a linear function of the distortion.
For instance, humans tend to judge poor regions in an image
more harshly than good ones, and hence penalize images with
even a small number or area of poor regions more heavily
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Fig. 7. Matrix of DCT coefficients.

[29], [45]. Unlike perceptual masking, which has a quantitative
explanation in terms of perceptual adaptive gain mechanisms
[25], this effect is a behavioral one.

B. Coefficient of Frequency Variation

Let X be a random variable representing the histogrammed
DCT coefficients. The next feature is the coefficient of

frequency variation feature

ζ =
σ|X |

µ|X |

(6)

which we shall show is equivalent to

ζ =

√

Ŵ(1/γ )Ŵ(3/γ )

Ŵ2(2/γ )
− 1 (7)

where σ|X | and µ|X | are the standard deviation and mean of
the DCT coefficient magnitudes |X |, respectively.

If X has probability density function (1) and µX = 0, then

µ|X | =

∫ +∞

−∞

|x |αe−(β|x |)γ dx =
2α

β2γ
Ŵ(

2

γ
) (8)

where α and β are given by (2) and (3), respectively. Substi-
tuting for α and β yields

Ŵ(1/γ )Ŵ(3/γ )

Ŵ2(2/γ )
=

σ 2

µ2
|X |

. (9)

Further
σ 2

|X | = σ 2
X − µ2

|X | (10)

so that

ζ =
σ|X |

µ|X |

=

√

Ŵ(1/γ )Ŵ(3/γ )

Ŵ2(2/γ )
− 1 (11)

and σX is the standard deviation of X .
The feature ζ is computed for all blocks in the image. The

feature is pooled by averaging over the highest 10th percentile
and over all (100th percentile) of the local block scores
across the image. The motivation behind the percentile pooling
strategy is similar to that for pooling of the shape parameter
feature γ . As shown in Table I, the highest 10th percentile
pooling correlates well with human subjectivity. As before,
both pooling results (10% and 100%) are supplied to the
predictor, since the difference between these is a compact but
rich form of information regarding the distribution of severe
scores.

In the coefficient of frequency variation ζ , the denominator
µ|X | measures the center of the DCT coefficient magnitude
distribution, while σ|X | measures the spread or energy of the

DCT coefficient magnitudes. The ratio ζ correlates well with
visual impressions of quality as shown in Table I. The high
correlation between ζ and subjective judgments of perceptual
quality is an indication of the monotonicity between ζ and
subjective DMOS. Since ζ is the ratio of the variance σ|X | to
the mean µ|X |, the effect of an increase (or decrease) of σ|X |

in the numerator is mediated by the decrease (or increase) of
µ|X | in the denominator of ζ . Indeed, two images may have
similar perceptual quality even if their respective DCT coeffi-
cient magnitude energy (σ|X |) is very different, depending on
where the distribution of the coefficient magnitude energy is
centered (µ|X |).

C. Energy Subband Ratio Measure

Image distortions often modify the local spectral signatures
of an image in ways that make them dissimilar to the spectral
signatures of pristine images. To measure this, we define a
local DCT energy–subband ratio measure. Consider the 5 × 5
matrix shown in Fig. 7. Moving from the top-left corner of
the matrix toward the bottom-right corner, the DCT coeffi-
cients represent increasingly higher radial spatial frequencies.
Consequently, we define three frequency bands depicted by
different levels of shading in Fig. 6. Let 	n denote the set of
coefficients belonging to band n, where n = 1, 2, 3, (lower,
middle, higher). Then define the average energy in frequency
band n to be the model variance σ 2

n corresponding to band n

En = σ 2
n . (12)

This is found by fitting the DCT data histogram in each of
the three spatial frequency bands to the generalized Gaussian
model (1), and then using the σ 2

n value from the fit. The ratio of
the difference between the average energy in frequency band
n and the average energy up to frequency band n, as well as
the sum of these two quantities is then computed

Rn =

∣

∣

∣En − 1
n−1

∑

j<n E j

∣

∣

∣

En + 1
n−1

∑

j<n E j

. (13)

Rn is defined for n = 2, 3. A large ratio corresponds to a large
disparity in the frequency energy between a frequency band
and the average energy in bands of lower frequencies. This
feature measures the relative distribution of energies in lower
and higher bands, which can be affected by distortions. In the
spatial domain, a large ratio roughly corresponds to uniform
frequency (textural) content in the image patch. A low ratio,
on the other hand, corresponds to a small frequency disparity
between the feature band and the average energy in the lower
bands. The mean of R2 and R3 is computed. This feature is
computed for all blocks in the image. As before, the feature
is pooled by computing the highest 10th percentile average
and the 100th percentile average (ordinary mean) of the local
block scores across all the image.

Table I we reports SROCC scores between the LIVE IQA
Database DMOS scores and the pooled highest 10% and
100% averaged feature values, respectively, using 5×5 blocks.
Observe that the correlation is consistently higher when the
10th percentile pooling strategy is adopted.
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Fig. 8. DCT coefficients collected along three orientations.

TABLE II

SROCC AND LCC CORRELATIONS OF EACH FEATURE AGAINST

SUBJECTIVE DMOS ON THE ENTIRE LIVE IQA DATABASE

SROCC LCC

Feature 10% 100% 10% 100%

Shape parameter γ 0.1167 0.1896 0.3830 0.4065
Coefficient of variation ζ 0.4173 0.1548 0.7285 0.6109
Energy subband ratio measure 0.3713 0.5495 0.3786 0.0629
Orientation feature 0.0236 0.012 0.1896 0.4065

D. Orientation Model-Based Feature

Image distortions often modify local orientation energy in
an unnatural manner. The HVS, which is highly sensitive to
local orientation energy [19] is likely to respond to these
changes. To capture directional information in the image that
may correlate with changes in human subjective impressions
of quality, we model the block DCT coefficients along three
orientations. We demonstrate how oriented DCT coefficients
are captured in Fig. 8 below. The three differently shaded areas
represent the DCT coefficients along three orientation bands.
A generalized Gaussian model is fitted to the coefficients
within each shaded region in the block, and ζ is obtained from
the model histogram fits for each orientation. The variance
of ζ is computed along each of the three orientations. The
variance of ζ across the three orientations from all the blocks
in the image is then pooled (highest 10th percentile and
100th percentile averages) to obtain two numbers per image.
We report how this pooled feature correlates with subjective
DMOS in Table I, again using 5 × 5 blocks.

Table I shows the SROCC for each feature pooled in two
different ways against DMOS. Notice that the improvement
in the percentile pooling (10% versus 100%) in JPEG and
white noise is slighter than for the other distortion types. This
can be attributed to the way in which distortions manifest in
each of these subsets (JPEG2000, JPEG, white noise, Gaussian
blur, and fast fading channel distortions). Percentile pooling is
particularly helpful when the errors are localized in the image
(i.e., occur at specific locations in the image), as opposed to
occurring uniformly over the image. In JPEG, for instance,
blocking can manifest over most of an image, whereas other
distortions produce spatially sparser effects such as JPEG2000,
which produces ringing near edges due to wavelet-based
compression. Some distortions, such as the packet loss in the
“fast fading” category of the LIVE IQA database, produce
visible artifacts only at isolated spatial locations in the image.

We performed a leave-one-out cross-validation analysis of
each of the four features using the prediction model described

Fig. 9. Multiscale image generation.

in Section IV. Our results showed that the prediction accuracy
drops if any one of the four features is left out. This analysis
was done to ensure that the set of features is nonredundant.

E. Blind Quality Assessment Across Distortion Types

Table I shows that each of the features correlates highly with
human visual perception of quality when applied to some, but
not all, individual distortion types (JPEG2000, JPEG, white
noise, Gaussian blur, fast fading channel distortions). A major
challenge arises when one assumes no knowledge of the type
of distortion affecting an image. It then becomes necessary
to combine complementary features that collectively perform
well at predicting image quality blindly, over a wide range of
distortion types. In Table II, we demonstrate the complemen-
tarity of the features in terms of correlation with DMOS on the
entire LIVE IQA database of images (with all distortion types
mixed together). The low correlations between each individual
feature and subjective DMOS across all distortion types points
up the need to combine the complementary features in a
manner that reliably enables distortion-agnostic quality score
prediction. The manner in which we combine the features to
predict blind image quality scores is discussed in Section IV.

F. Multiscale Feature Extraction

It is well understood that images are naturally multiscale
[4], [20], and that the early visual system involves decompo-
sitions over scales [19]. Successful FR-IQA algorithms have
exploited this fact to create natural multiscale measurements
of image quality [2], [4]. Toward this end, we implement the
BLIINDS-II concept over multiple scales in a simple way.
Specifically, the NSS-based DCT features are extracted from
5 × 5, overlapping blocks in the image. The feature extraction
is repeated after low-pass filtering the image and subsampling
it by a factor of 2 as shown in Fig. 9. Prior to downsampling,
the image is filtered by a rotationally symmetric discrete 3×

3 Gaussian filter kernel depicted in Fig. 10. At each scale, the
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Fig. 10. Gaussian kernel used prior to downsampling.

overlap between neighboring blocks is two pixels. This defines
a multiscale feature extraction approach. Multiscale feature
extraction and processing generally improves performance
when dealing with changes in the image resolution, distance
from the image display to the observer, or variations in the
acuity of the observer’s visual system. In BLIINDS-II, feature
extraction over multiple scales makes it possible to capture
variations in the degree of distortion over scales.

IV. PREDICTION MODEL

We have found that a simple probabilistic predictive model
is adequate for training the features used in BLIINDS-II. The
prediction model is the only element of BLIINDS-II that
carries over from BLIINDS-I. The efficacy of this simple
predictor demonstrates the effectiveness of the NSS-based
features used by BLIINDS-II to predict image quality. Let
X i = [x1, x2, ..., xm] be the vector of features extracted from
the image, where i is the index of the image being assessed,
and m be the number of pooled features that are extracted.
Additionally, let DMOSi be the subjective DMOS associated
with the image i . We model the distribution of the pair
(X i , DMOSi ).

The probabilistic model is trained on a subset of the LIVE
IQA database, which includes DMOS scores, to determine the
parameters of the probabilistic model by distribution fitting.
The multivariate GGD model in (5) is used to model the data.
Parameter estimation only requires the mean and covariance
of the empirical data from the test set. The probabilistic
model P(X, DMOS) is applied by fitting (5) to the empir-
ical data of the training set. Specifically, once the quantity
(x − µ)T �−1(x − µ) is estimated from the sample data,
parameter estimation of the GGD model in (5) is performed
using the fast method in [34]. A full analysis of the method is
found in [34]. The distribution fitting (P(X, DMOS)) on the
training data is only a fast intermediate step toward DMOS
prediction. The end goal is not to fit the sample data of
the training set as accurately as possible to the prediction
model. Instead, the aim is to achieve high correlations between
predicted and subjective DMOS using this prediction model.
We show in Section V that a large number of images are not
needed to train the model in order to predict DMOS accurately.
The training and test sets are completely content-independent,
in the sense that no two images of the same scene are present
in both sets. The probabilistic model is then used to per-
form prediction by maximizing the quantity P(DMOSi |X i ).
This is equivalent to maximizing the joint distribution
P(X, DMOS) of X and DMOS since P(X, DMOS) =

P(DMOS|X)p(X).

TABLE III

MEDIAN SROCC CORRELATIONS FOR 1000 ITERATIONS OF

RANDOMLY CHOSEN TRAIN AND TEST SETS (SUBJECTIVE DMOS

VERSUS PREDICTED DMOS). COMPARISON FOR MULTIPLE

SCALES OF FEATURE EXTRACTION

LIVE subset
BLIINDS-II BLIINDS-II BLIINDS-II

One scale Two scales Three scales

JPEG2000 0.9313 0.9533 0.9506
JPEG 0.9294 0.9403 0.9419
White noise 0.9753 0.9772 0.9783
GBlur 0.9417 0.9509 0.9435
Fast fading 0.88555 0.8657 0.8622
ALL 0.8973 0.8980 0.9202

TABLE IV

MEDIAN LCC CORRELATIONS FOR 1000 ITERATIONS OF

RANDOMLY CHOSEN TRAIN AND TEST SETS (SUBJECTIVE DMOS

VERSUS PREDICTED DMOS). COMPARISON FOR MULTIPLE

SCALES OF FEATURE EXTRACTION

LIVE subset
BLIINDS-II BLIINDS-II BLIINDS-II

One scale Two scales Three scales

JPEG2000 0.9550 0.9571 0.9630
JPEG 0.9664 0.9781 0.9793
White noise 0.9804 0.9833 0.9854
GBlur 0.9300 0.9450 0.9481
Fast fading 0.8500 0.8701 0.8636
ALL 0.8919 0.9091 0.9232

Since a user might be interested in applying BLIINDS-II
to images suffering distortions other than those used here,
the question arises regarding how large the training set would
need to be to produce accurate DMOS predictions on the new
distortions. Generally, this question is difficult or impossible
to answer since it would likely rely on the type and number
of the distortions as well as their ranges of perceptual severity
or visibility. From a purely “surface fitting” perspective, in
order to accurately fit the GGD model to sample data one
would need the number of points in the training set to be
on the order of the number of unknown parameters in the
probabilistic model [34]. In our case, this constraint is easily
satisfied.

V. EXPERIMENTS AND RESULTS

BLIINDS-II was rigorously tested on the LIVE IQA data-
base [43] which contains 29 reference images, each impaired
by many levels of five distortion types: JPEG2000, JPEG,
white noise, Gaussian blur, and fast-fading channel distortions
(simulated by JPEG2000 compression followed by channel bit
errors.). The total number of distorted images (excluding the
29 reference images) is 779.

The DCT computation was applied to 5 × 5 blocks with
a 2-pixel overlap between the blocks. Multiple train–test
sequences were run. In each, the image database was subdi-
vided into distinct training and test sets (completely content-
separate). In each train–test sequence, 80% of the LIVE IQA
database content was chosen for training, and the remaining
20% for testing. Specifically, each training set contained
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Fig. 11. Plot of median SROCC between predicted and subjective DMOS
scores (on all distortions) as a function of the percentage of the content used
for training.

TABLE V

MEDIAN SROCC CORRELATIONS FOR 1000 ITERATIONS OF RANDOMLY

CHOSEN TRAIN AND TEST SETS (SUBJECTIVE DMOS VERSUS

PREDICTED DMOS) ON THE LIVE IQA DATABASE

LIVE subset BIQI DIIVINE
BLIINDS-II BLIINDS-II

(SVM) (Prob.)

JPEG2000 0.8557 0.9319 0.9285 0.9506
JPEG 0.7858 0.9483 0.9422 0.9419
White noise 0.9715 0.9821 0.9691 0.9783
GBlur 0.9107 0.9210 0.9231 0.9435
Fast fading 0.7625 0.8714 0.8893 0.8622
ALL 0.8190 0.9116 0.9306 0.9202

images derived from 23 reference images, while each test set
contained the images derived from the remaining 6 reference
images. One thousand randomly chosen training and test sets
were obtained, and the prediction of the quality scores was
run over the 1000 iterations.

The model based-features were extracted over three scales.
The total number of features per scale is 8 (4 features,
2 pooling methods/feature). These eight pooled features are:
1) the lowest 10th percentile of the shape parameter γ ; 2) the
mean of the shape parameter γ ; 3) the highest 10th percentile
of the coefficient of frequency variation ζ ; 4) the mean (100th
percentile) of the coefficient of frequency variation ζ ; 5) the
highest 10th percentile of the energy subband ratio measure
Rn ; 6) the mean of the energy subband ratio measure; 7) the
highest 10th percentile of the orientation feature (which is the
variance of ζ across the three orientations); and 8) the mean
of the orientation feature.

We report quality score prediction results for features
extracted at one scale only (8 features), over two scales
(16 features, 8 features per scale), and over three scales
(24 features, 8 per scale). Linear correlation coefficient (LCC)
scores (on a logistic fitted function of the predicted DMOS
using BLIINDS-II and subjective DMOS scores) as well
as SROCC scores between the predicted DMOS scores and

TABLE VI

MEDIAN LCC CORRELATIONS FOR 1000 ITERATIONS OF TRAIN AND

TEST SETS (SUBJECTIVE DMOS VERSUS PREDICTED DMOS) ON THE

LIVE IQA DATABASE

LIVE subset BIQI DIIVINE
BLIINDS-II BLIINDS-II

(SVM) (Prob.)

JPEG2000 0.8086 0.9220 0.9348 0.9630
JPEG 0.9011 0.9210 0.9676 0.9793
White noise 0.9538 0.9880 0.9799 0.9854
GBlur 0.8293 0.9230 0.9381 0.9481
Fast fading 0.7328 0.8680 0.8955 0.8636
ALL 0.8205 0.9170 0.9302 0.9232

TABLE VII

MEDIAN SROCC AND LCC CORRELATIONS FOR 1000 ITERATIONS OF

RANDOMLY CHOSEN TRAIN AND TEST SETS (SUBJECTIVE DMOS

VERSUS PREDICTED DMOS) ON THE LIVE IQA DATABASE

SROCC LCC

LIVE subset SSIM PSNR SSIM PSNR

JPEG2000 0.9496 0.8658 0.9401 0.8640
JPEG 0.9664 0.8889 0.9416 0.8860
White noise 0.9644 0.9791 0.9791 0.9788
GBlur 0.9315 0.7887 0.8910 0.7823
Fast fading 0.9415 0.8986 0.9428 0.8876
ALL 0.9180 0.8669 0.9003 0.8630

the subjective DMOS scores of the LIVE IQA database are
computed for each of the 1000 iterations. The comparison of
prediction results for 1 scale, 2 scale, and 3 scale feature
extraction is shown in Tables III and IV. We found that no
significant gain in performance was obtained beyond the third
scale of feature extraction.

To show that the approach is not heavily dependent on
the training set, we performed the following analysis. We
varied the percentage of the train/test splits from 90% of the
content used for training and (the remaining) 10% used for
testing, to only 10% of the content used for training and (the
remaining) 90% for testing. The SROCC (between predicted
and subjective DMOS score on all distortions in the database
mixed together) was observed to increase with the size of the
training set, but the drop in the correlations when the training
set was reduced in size was not significant. The results are
shown in Fig. 11. Notice that an SROCC of 0.85 is obtained
when using only 30% of the content for training, and that the
knee of the curve occurs at roughly 20%. This shows that our
reported results are not tainted by overtraining or overfitting
to the training data.

The remainder of this section: 1) compares BLIINDS-II
with other full-reference and no-reference approaches; 2) stud-
ies its robustness against various distortion types; 3) addresses
database independence; and 4) analyzes its computational
complexity.

A. Statistical Comparison With Full-Reference and

No-Reference Approaches

For comparison purposes, we also trained a radial basis
function-kernel regression SVM, based on the implementation
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Fig. 12. Predicted versus subjective DMOS on the JPEG2000 database
subset.

Fig. 13. Predicted versus subjective DMOS on the JPEG database subset.

in [46], and performed quality prediction utilizing this more
complex model as well. We also compared BLIINDS-II to
the recent SVM-based NR-IQA algorithms BIQI [15] and
DIIVINE [17], the full-reference PSNR, and the state-of-the-
art FR-IQA SSIM index.

The SROCC and LCC results2 are shown in Tables V–VII.
Tables V and VI compare the SROCC and the LCC results
between the four NR-IQA methods (recent SVM-based
NR-IQA algorithms BIQI and DIIVINE, BLIINDS-II with the
SVM prediction model, and BLIINDS-II with the probabilistic
prediction model), respectively. Table VII reports the SROCC
and LCC results of PSNR and SSIM (the implementation in
[47]3), both of which are full-reference algorithms that require
the presence of a reference image to perform quality score
prediction on a test image.

The two prediction models (probabilistic and SVM) used
in BLIINDS-II perform very similarly, with slightly higher
correlation for the probabilistic prediction model on the
individual distortion subsets (JPEG2000, JPEG, white noise,
Gaussian blur, and fast-fading channel distortions) than on
the entire dataset. The SVM prediction model only slightly
outperforms the simple probabilistic prediction on the entire
LIVE IQA database. With either prediction model, BLIINDS-
II outperforms BIQI [15] and the full-reference PSNR mea-
sure. BLIINDS-II also slightly outperforms DIIVINE (on all
distortions mixed together) and approaches the performance
of the reliable full-reference SSIM index.

2Algorithms were trained and tested on individual distortions and on all
distortions mixed together.

3Using default C1 and C2 parameters.

Fig. 14. Predicted versus subjective DMOS on the white noise database
subset.

Fig. 15. Predicted versus subjective DMOS on the Gaussian blur database
subset.

Fig. 16. Predicted versus subjective DMOS on the fast-fading channel
distortions database subset.

Scatter plots (for each of the distortion sets as well as
for the entire LIVE IQA Database) of the predicted DMOS
using BLIINDS-II versus subjective DMOS on the test sets
are shown in Figs. 12–17. These exhibit nice properties: a
nearly linear relationship against DMOS, tight clustering, and
a roughly uniform density along each axis.

To visualize the statistical significance of the comparison,
we show box plots of the distribution of the SROCC and
LCC values for each of the 1000 experimental trials. The
plots are shown in Figs. 18 and 19, respectively. We report
the standard deviation of the SROCC and LCC results on the
1000 trials for each algorithm in Table VIII. Obviously, the
lower the standard deviation with a higher median SROCC, the
better the performance. The plots show that SSIM, DIIVINE,
and BLIINDS-II are not statistically significantly different in
performance (knowing they are designed for different appli-
cation domains).
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Fig. 17. Predicted versus subjective DMOS on the entire LIVE IQA database.

Fig. 18. Box plot of SROCC distributions of the algorithms over 1000 trials
for algorithm comparison on the LIVE IQA database.

B. Robustness Against Distortion Types

A limitation of algorithms that require training is that
they are applicable to the set of distortions present in the
training phase of the algorithm, i.e., they suffer the limi-
tation of regression techniques. BLIINDS-II was shown to
correlate highly with human subjective judgments of quality
on images distorted by several common types of distortions
available in the LIVE IQA database, namely JPEG, JPEG2000,
blur, additive while Gaussian noise, and fast-fading channel
distortions.

It is however, possible for a trained IQA algorithm to
encounter distortions for which it has not been trained.
BLIINDS-II can be safely applied to images affected by
distortion types that have been included in the training phase
of the algorithm (JPEG2000, JPEG, white noise, and blur).
Of course, we cannot claim that the algorithm will perform as
well on distortions it has not encountered since the algorithm
requires training.

However, to study how robust the performance of BLIINDS-
II is when assessing distortions it has not encountered before,
we performed the following experiment. We trained the algo-
rithm on all but one distortion. Specifically, we left out the
JPEG2000 distorted images from the training set, and mixed
the other distortions together in the training set. We then tested
on the JPEG2000 subset. We repeated this for each of the other
distortion subsets (JPEG, white noise, Gaussian blur, and fast-
fading channel distortions). To make the problem even more
difficult, we split the database according to both content (80%

Fig. 19. Box plot of LCC distributions of the algorithms over 1000 trials
for algorithm comparison on the LIVE IQA database.

0 1 2 3 4 5 6 7
0

10

20

30

40

50

60

70

80

90

100

Subjective MOS

P
re

d
ic

te
d

 D
M

O
S

Fig. 20. Predicted DMOS versus subjective MOS on the TID2008 database.

for training, 20% for testing). The resulting SROCCs on each
of the distortion types (which were not used for training, but
were left out for testing) and which are completely content-
independent from the training sets are shown in Table IX. The
results are the median SROCC obtained over 1000 iterations
of random train/test splits. Notice that, despite the split in train
and test sets, the SROCC correlations obtained were still high
on all distortion categories except white noise which is very
different from the other distortions.

C. Database Independence

To study whether the algorithm is database dependent,
we tested BLIINDS-II (and the top performing full-reference
SSIM index) on a portion of the TID2008 image database [44].
The database contains a large number of distortions, many of
which pertain to color distortions (which is not dealt with in
this paper). We tested on the mixture of commonly occurring
distortions present in the TID2008 database: JPEG2000, JPEG,
Gaussian noise, and blur.

We trained BLIINDS-II on the LIVE IQA database, and
tested it on the same distortions in the TID2008 database. We
report SROCC results in Table X. The SROCC of BLIINDS-II
dropped because of the differences in the simulated distortions
present in the databases. However, the correlations are still
consistently high. A scatter plot of the predicted MOS scores
on the TID2008 database as a function of the subjective MOS
scores of the database are shown in Fig. 20.
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TABLE VIII

STANDARD DEVIATION OF SROCC AND LCC CORRELATIONS FOR 1000 ITERATIONS OF RANDOMLY CHOSEN TRAIN AND

TEST SETS (SUBJECTIVE DMOS VERSUS PREDICTED DMOS) ON THE LIVE IQA DATABASE

SROCC STD LCC STD

PSNR SSIM BIQI DIIVINE BLIINDS-II BLIINDS-II PSNR SSIM BIQI DIIVINE BLIINDS-II BLIINDS-II
SVM Prob. model SVM Prob. model

0.0491 0.0231 0.0745 0.0600 0.0497 0.0279 0.0560 0.1417 0.0676 0.0201 0.0454 0.0279

TABLE IX

MEDIAN SROCC CORRELATIONS ON EACH OF THE LIVE IQA

DATABASE DISTORTION SUBSETS LEFT OUT OF THE TRAINING

PHASE AND USED FOR TESTING, AND USING 80%/20% TRAIN/

TEST SPLITS OVER 1000 ITERATIONS. THIS DEMONSTRATES

THE ALGORITHM’S ROBUSTNESS RELATIVE TO DISTORTIONS

IT HAS NOT BEEN TRAINED ON, AS WELL AS LACK OF

ROBUSTNESS IF THE “UNTRAINED” DISTORTION IS

VERY DIFFERENT FROM THOSE IT WAS TRAINED ON

JPEG2000 JPEG White noise GBlur Fast fading

0.9034 0.8971 0.1000 0.8514 0.8573

TABLE X

SROCC RESULTS OBTAINED BY TRAINING ON THE

LIVE IQA DATABASE AND TESTING ON TID2008

PSNR SSIM
BLIINDS-II BLIINDS-II

(SVM) (Prob.)
JPEG2000 0.8250 0.9603 0.9157 0.9147
JPEG 0.8760 0.9354 0.8901 0.8889
White noise 0.9230 0.8168 0.6600 0.6956
GBlur 0.9342 0.9544 0.8500 0.8572
All 0.8700 0.9016 0.8442 0.8542

D. Algorithm Complexity

Let m × k be the image dimension, and let n × n be the
dimension of the blocks from which the model-based features
are extracted (in our algorithm n = 5). Then the computational
complexity of the algorithm is of the order of m × k/n2 ×

n2logn = m × k × logn. The computational complexity is
determined by computation of the DCT transforms and of
parameter estimation of the generalized Gaussian model. Fast
algorithms exist for DCT computation. These are of the order
O(n2logn) [48], where n is the dimension of the block (i.e.,
the block is n × n). Parameter estimation of the generalized
Gaussian is of the order of computing moments of the data
within each block (O(n2)), and of numerically estimating the
shape parameter γ . From empirical data of natural scenes, it
is observed that 0 < γ < K . We set K = 10, since γ was
observed to be <<10. The interval [0, K ] was partitioned
in steps of size ǫ, and the parameter γ was determined
by solving an inverse function by numerically sweeping the
interval [0, K ] in increments of size ǫ [34]. The complexity of
such an operation is on the order O(log(1/ǫ)). ǫ was chosen
to be 0.001, and hence log(1/ǫ) << min(m, k).

The algorithm is also highly parallelizable because one
can perform computations on the image blocks in parallel. A

further computational advantage can be attained by bypassing
DCT computation when DCT coefficients are readily available
from an encoder. We envision that the BLIINDS-II approach
may also be extendable to scenarios involving DCT-like trans-
forms such as the H.264 integer transforms.

VI. CONCLUSION

We have described a natural scene statistic model-based
approach to the no-reference/blind IQA problem. The new
NR-IQA model uses a small number of computationally con-
venient DCT-domain features. The BLIINDS-II algorithm can
be easily trained to achieve excellent predictive performance
using a simple probabilistic prediction model. The method
correlates highly with human visual judgments of quality.
BLIINDS-II and the recent no-reference DIIVINE have sim-
ilar prediction performance results. Both algorithms have
limitations. The main limitation of these types of “learning
based” algorithms is that they require training to learn the
prediction parameters (i.e., they suffer regression limitations).
Consequently, if these algorithms are trained on a subset (of all
possible) image distortions, then these algorithms are expected
to perform well on the distortions they have encountered
during training, or on distortions that affect images in a similar
manner to the ones encountered during training. We leave the
design of effective no-reference methods that are completely
nonreliant on training as challenging future work.

There are significant design differences between DIIVINE
and BLIINDS-II. DIIVINE uses a dense complex represen-
tation of images in the wavelet domain and extracts a large
number of features to train two stages of the algorithm: 1) a
nonlinear SVM training for classification and 2) a nonlinear
SRV training for regression within each class. Given M

assumed distortions, DIIVINE requires M distortion-specific
quality assessment engines to be trained and applied. Hence,
DIIVINE does not directly accomplish multidistortion QA.
Instead, it computes a probability-weighted linear combination
of single-distortion QA predictions. BLIINDS-II adopts a
much simpler representation. It uses a lower dimensional
feature space and a simpler single-stage (Bayesian prediction-
based) framework operating in a more sparsely sampled DCT
domain. There is only one QA engine in BLIINDS-II that does
the multi-distorion QA. Thus, the feature-DMOS relationship
is much simpler in BLIINDS-II.

In addition, the DIIVINE index and the BLIINDS index
target essentially different application domains. The DIIVINE
index, by a two-stage strategy, enables the identification of
distortions afflicting the image. This is not only valuable for
accomplishing directed quality assessment but also for iden-
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tifying image distortions to be repaired. This is accomplished
at considerable computational expense using a much larger
feature set and sophisticated learning mechanisms. By com-
parison, the BLIINDS index is designed to achieve the speed
and performance required by a quality assessment algorithm
operating in a high speed video network. It accomplishes this
via a simple one-stage QA process using a small number of
NSS features that are easily computed from a small (subsam-
pled) number of fast DCT coefficients, using a very simple
probabilistic classifier.

In the future, we envision NSS-based QA algorithms that
use spatiotemporal features for video-QA and NSS-depth
features for stereo-QA. These may efficiently operate in the
DCT domain like BLIINDS-II.
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