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ABSTRACT Methods for image Super Resolution (SR) have started to benefit from the development

of perceptual quality predictors that are designed for super resolved images. However, extensive cross

dataset validation studies have not yet been performed on Image Quality Assessment (IQA) for super

resolved images. Moreover, powerful natural scene statistics-based approaches for IQA have not yet been

studied for SR. To address these issues, we introduced a new dataset of super-resolved images with

associated human quality scores. The dataset is based on the existing SupER dataset, which contains real

low-resolution images. This new dataset also has 7 SR algorithms at three magnification scales. We selected

optimal quality aware features to create two no-reference, (NR) opinion-distortion unaware (ODU) IQA

models. Using the same set of selected features, we also implemented two NR-IQA opinion/distortion

aware (ODA) models. The selection process identified paired-product (PP) features and those derived

from discrete cosine transform coefficients (DCT) as the most relevant for the quality prediction of SR

images. We conducted cross dataset validation for several state-of-the-art quality algorithms in four datasets,

including our new dataset. The conducted experiments indicate that our models achieved better than state-

of-the-art performance among the NR-IQA metrics. Our NR-IQA source code and the dataset are available

at https://github.com/juanpaberon/IQA_SR.

INDEX TERMS No-reference image quality assessment, super resolution, image database, feature selection.

I. INTRODUCTION

Image super-resolution (SR) refers to the construction of

a high-quality high-resolution (HR) image from multi-

ple (multiple-frame SR) or a single (single-image SR)

low-resolution (LR) input. In this article, we study both

single-image SR (SISR) and multiple-frame SR (MFSR)

models and in particular, methods for assessing the perceptual

qualities of the images that they produce. SISR techniques

exploit priors such as edges [1], gradients [2], [3], neigh-

boring interpolation [4], regression [5], patches [6]–[8], and

more recently, learned features extracted from deep neural

networks architectures [9]. MFSR methods fuse frames with

relative motion via interpolation [10], [11], iterative recon-

struction [12], [13] and deep learning [14]. Both types have
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advanced using deep learning, which drives some of the latest

and most successful SR algorithms [9], [15].

The relative performance of these algorithms have typi-

cally been evaluated using image quality assessment (IQA)

models such as peak signal to noise ratio (PSNR) and the

structural similarity index (SSIM) [9]. Previous works [16]

have shown that PSNR and SSIM do not accurately predict

perception of super-resolved image quality. Other models

such as the information fidelity criterion (IFC) [17] corre-

late better with human perception when evaluating super

resolved images. These algorithms are full reference (FR),

image quality assessment and require an original pristine

image, which can be impossible to obtain. By contrast, blind

image quality assessment (BIQA) algorithms do not require

an original image to assess quality. Previous BIQA models

for super-resolved images have relied on opinion-distortion

aware (ODA) image quality prediction models. Such models
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require training on database(s) of human rated distorted

images and associated human subjective opinion scores [18].

Although these prior NR models have proven effective in

assessing the quality of SR images against existing IQA

measures, they require a large amount of training samples,

along with associated human subjective scores on a vari-

ety of distortion types. Furthermore, they often have weak

generalization capability which hinders their application in

practice. By comparison, opinion-distortion unaware (ODU)

methods are not trained on samples of distortions, or on

human subjective scores, and therefore, have greater potential

for generalization. To the best of our knowledge, ODU BIQA

models have not been developed to evaluate the quality of

super-resolved images. This study aims to develop an ODU

BIQA method, based on an optimal feature selection pro-

cess, that can compete with ODA BIQA methods. In addi-

tion, we train ODA image quality prediction models using

the same optimal features selected and carry out a cross

dataset validation on four different datasets. These include,

a new dataset of super-resolved images that we built for this

work. The main contributions that we make are described

as follows. First, we propose an ODU BIQA model for

super-resolved IQA based on an optimal feature selection

process. Second, we carry out a cross dataset generaliza-

tion analysis comparing the proposed model with state-of-

the-art algorithms developed for super-resolved IQA. Third,

we develop a new dataset of SR images and conduct human

subject studies on these images.

This article is structured as follows: Section II describes

the datasets we use. Section III presents the processing

and feature models we deploy to analyze the quality of

super-resolved images, in addition to our method of select-

ing optimal perceptual quality features. Section IV develops

the ODA IQA models that are derived from the selected

perceptual quality features. Section V assesses the relative

performances of the proposed and state-of-the-art models and

discusses the results. Finally, Section VI presents concluding

remarks and suggestions for further work.

II. DATASETS

Previous research into SR IQA relies on datasets that employ

the popular bicubic down sampling of ground-truth high

resolution (HR) images to artificially generate corresponding

low resolution (LR) images [18], [19]. This strategy removes

natural sensor noise and other real-world characteristics. As a

result, single image SR algorithms trained on these interpo-

lated images struggle to generalize on natural images. Here,

we utilize four large benchmark IQA datasets: MY [18] and

QADS [19], which are based on simulated LR images, and

SupER [20], along with the new dataset that we created based

on real LR images.

Table 1 summarizes the subjective datasets and SR algo-

rithm types that we use. To limit the amount of content viewed

by human subjects (and while maintaining realistic use cases

and keeping the same number of scales across the datasets),

we only considered the magnification scales of 2, 3 and 4.

TABLE 1. Datasets for super-resolved images with associated human
scores.

Therefore, the MY dataset is tested with 810 super-resolved

images. The following section describes each of the datasets

used in this study in greater detail.

A. MY

Ma et al. [18] proposed a database of 1620 super resolved

images with associated human scores. In this article, we call

this database MY after the last names of the authors.

The super-resolved images derive from artificially created

low-resolution images, i.e., the low-resolution images come

from high-resolution images which were digitally blurred and

subsampled. The 30 original high-resolution images were

taken from the Berkeley segmentation dataset [21] and have

a resolution of 481 × 321 pixels. By reducing the original

resolution by factors of 1/2, 1/3, 1/4, 1/5, 1/6, and 1/8, they

produced a total of 180 low resolution images. Then, using

8 SR methods and bicubic interpolation, they produced the

1620 super resolved images. 50 human subjects participated

in their study which followed a multiple stimulus method-

ology. Each subject was presented with 10 images randomly

selected from the dataset. The subjects then scored the images

on a scale of 0 to 10.

FIGURE 1. MOS distribution of the MY database. (a) MOS obtained with
all scores from magnification scales 2, 3 and 4. (b) MOS obtained at
magnification scales 2, 3 and 4 after removing images super resolved by
Shan08. (c) MOS obtained at all magnification scales.

Our study only considered super-resolved images with

magnification scales of 2, 3 and 4, since all other datasets only

have images at these scales. Therefore, we only used 810 of

the 1620 images. Figures 1a and 1b show the distribution of
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the mean opinion scores (MOS) with and without the images

super resolved by the super resolution algorithm Shan08 [2],

which yielded low human scores.

Figure 2 depicts the average MOS per algorithm for the

magnification scales. Shan08 had the worst performance

at every scale and particularly in scale 3, which explains

the outliers presented in Figure 1a. On the MY dataset,

Dong11 obtained the best performance, followed by SRCNN.

FIGURE 2. Average MOS per algorithm and per magnification scale in the
MY study. For magnification scales 2, 3, 4, 5, 6 and 8, each score is the
average of the MOS values of the 30 images reconstructed by each of the
algorithms at that magnification scale. The group ‘‘Overall’’ is the average
MOS value for all 180 super-resolved images produced by that particular
algorithm.

B. QADS

Zhou et al [19] proposed a Quality Assessment Database for

SRIs (QADS) comprised of 980 super-resolved images with

associated human scores. The super resolved images came

from 20 reference images thas’s resolution was reduced by a

factor of k (k = 1/2, 1/3, 1/4) by bicubic down-sampling.

Thus, each SR algorithm returned the down-sampled image

to its original resolution. The database used 21 methods to

increase the resolution of the image: four interpolation-based

methods and 17 SR algorithms. The interpolation-based

methods can increase the resolutions by a factor of 2, 3 and 4.

Nonetheless, not all the SR algorithms can increase the reso-

lution by all three factors. Overall, 49 super resolved images

are obtained per reference image. A total of 100 subjects

participated in the study. The process used to obtain scores

was based on a direct comparison of two images. Each sub-

ject was presented with two super-resolved images and the

reference image of the same scene at the same time. They had

to decide which super-resolved image was the best quality,

or if the quality was the same (triple stimulus). Based on this

information, each super-resolved image received a human

score. However, the scores are only comparable between

super-resolved images that show the same scene.

C. SupER

Köhler et al [20] developed the Super-Resolution Erlangen

(SupER) database which provides images of 14 different

scenes at four different resolutions. All of the resolutions are

provided by camera hardware binning. The resolutions of the

images are 2040×1080, 1020×540, 680×360 and 510×270.
Images with a resolution of 2040 × 1080 are considered as

ground truth. To test MFSR, SupER provides sequences of

images under four different conditions: global motion, mixed

motion, local motion and photometric variation. The authors

evaluated a total of 18 SR methods: 10 MFSR and 8 SISR,

as well as bicubic and nearest-neighbor interpolation. They

also conducted a human study to obtain human scores for

3024 super resolved images. Their subjects were presented

with two images and had to decide which of the two was

better (double stimulus). They only compared images of the

same scene, the samemotion type and the samemagnification

scale. Therefore, the only difference between a pair of images

was the implemented SR method. To produce scores from

the comparisons, the authors utilized the Bradley Terry (B-T)

model [22]. However, as a consequence of comparing only

similar images (using the same scene, magnification scale and

motion type), the B-T model had to be adjusted for each set

of similar images. This implies that the comparison of two

scores was only possible if the two scores came from the

same B-Tmodel. In other words, if the scores were associated

with similar images. This is a significant difference to the

MY dataset. Sets of comparable images in SupER normally

include just 20 images, whereas the MY dataset can have up

to 1620 images.

D. SRIJ

We created the new dataset that we call the Super Resolu-

tion Image quality assessment Javeriana (SRIJ) Database,

by implementing 7 different SR methods: Dong11 [6],

SRCNN [5], SRGAN [23], Timo13 [4], Yang10 [7],

Yang13 [8]. We also included the bicubic method in order

to complement the MY dataset. This is because 5 of the 6 SR

methods have been tested on the MY dataset. We cropped

the low- and high-resolution SupER images (captured using

a hardware binning sensor) into 32 different scenes, as shown

in Figure 3. The patches were captured in such a way that for

the same scene the super resolved and reference images are

aligned. Five of the six SR methods and bicubic interpolation

yielded super-resolved images at three different magnifica-

tion scales (2, 3, 4), while SRGAN only produced magnifica-

tion scale 4. This yielded a total of 608 super-resolved images.

We conducted our human study following a similar pro-

cedure as described in [24], [25] and [26]. The set up was

a single stimulus categorical rating [27]. One image was

presented to each subject at a time in the middle of the screen,

as depicted in Figure 4. After five seconds, the option to

continue was shown, but the subjects could continue to view

the image for as long as needed. The observers scored the

image on a continuous sliding Likert quality bar with the

labels; ‘‘Bad,’’ ‘‘Poor,’’ ‘‘Fair,’’ ‘‘Good,’’ and ‘‘Excellent,’’ as

shown in Figure 5.

A total of 43 volunteers participated in the study. Each

of them had to score the quality of 640 images: 608 super
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FIGURE 3. Sample images from the SRIJ Database.

FIGURE 4. Exemplar viewed by the subjects.

FIGURE 5. Sliding rating bar used by the subjects.

resolved and 32 ground truth images. Written informed con-

sent was obtained from all subjects before the study. The

Ethics Committee at the Faculty of Engineering and Science

at Pontificia Universidad Javeriana issued an approval to

carry out this study. We followed a variant of the absolute cat-

egory rating with hidden references from ITU-T Rec. P.910,

in which the ground truth images used as references were

included in the study, but were not revealed to the subjects.

To minimize subject fatigue, each subject’s participation was

divided into three sessions of 213, 213, and 214 images.

At the beginning of each session, subjects were given a

practice test of 6 images which were selected to broadly

cover the quality spectrum. The images were randomly shuf-

fled, then displayed to each subject. The illumination levels

did not change significantly between sessions. In addition,

the Spyder5 PRO calibrated the display to an industry color

reference standard [28]. The procedure was implemented

with Matlab Psychophysics Toolbox [29].

After collecting the subjective data, we computed theMOS

values gathered as follows. Let dij be the score that subject i

has given to the image j. To compare the subjects’ scores,

they are centered around zero and normalized by the standard

deviation of each subject, by transforming dij into Z-scores

defined as

zij =
dij − µi

σi

where

µi =
1

n

n
∑

j=1
dij σi =

√

√

√

√

1

n− 1

n
∑

j=1
(dij − µi)2,

and n is the number of images evaluated per subject, which

in this case is 640.

We also performed a subject rejection procedure as indi-

cated in the ITU-R BT 500.11. A subject was rejected if

more than 5% of his or her scores are considered abnormal.

After applying this procedure, 7 of the 43 participants were

rejected.

The remaining Z-scores are in the range [-3,3]. They were

then linearly rescaled to [0,100] using

z′ij = 100
zij − 3

6
.

The final image subjective scores were calculated as

MOSj =
1

|M |
∑

i∈M
z′ij,

whereM is the set of indices of the remaining participants.

Figures 6a and 6b depict the distributions of the subjective

scores before and after rejection, showing a broad distribution

skewed towards smaller values. The highest values corre-

spond to the reference and the ×2 scaled images, while the

scores located around 40 correspond to the super resolved

images with a magnification scales 3 and 4. This attribute can

be seen more clearly in Figure 7 which showsMOS separated

according to themagnification scale.While theMOS allow us

to discriminate between themagnification scales well, there is

a larger separation between magnification scales 2 and 3 than

between 3 and 4. It is also worth noting, that even though
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FIGURE 6. MOS distribution. (a) MOS obtained before subject rejection.
(b) MOS obtained after subject rejection.

FIGURE 7. MOS obtained in the SRIJ study against the magnification
scale of the images. ‘‘GT’’ represents ground truth images while 2, 3 and
4 are the magnification scales. The x axis represents the index of the
image. Images with the same index were super resolved using the same
method and correspond to the same reference.

some participants assigned lower scores to the reference

image than to their corresponding super-resolved versions,

there is generally a strong separation of the MOS between

the reference and the super resolved images.

The MOS distributions presented in Figures 6a and 6b are

similar to the distribution presented shown in Figure 1c which

could imply that human subjects tended to prefer giving

lower scores to images. The MOS distributions displayed in

SRIJ has fewer images with high values, since we included

the reference images in the subjective study. Nevertheless,

after normalization of the SRIJ scores to the range 0-10,

we found that the standard deviation of the MOS is 1.67,

without including the reference images. Whereas the MOS

values from MY at magnification scales 2, 3 and 4 without

Shan08 have a standard deviation of 1.61.

In the sameway as the analysis presented in Figure 2 for the

MY study, we plotted the averageMOS in SRIJ per algorithm

according to the magnification scale in Figure 8. A clear

difference between the MOS at different scales of magnifica-

tion is also noticeable and the MOS across the evaluated SR

algorithms are also similar. Nevertheless, SRCNN achieved

the best MOS, on average, and at almost every magnification

scale. Although SupER and SRIJ share images, it is hard to

compare the human scores due to the different methodologies

used to collect the human scores. SupER human scores can

FIGURE 8. Average MOS across contents, per algorithm and magnification
scale obtained in the SRIJ study. For magnification scales 2, 3 and 4, each
score is the average of the MOS values for the 32 images produced by
each algorithm at that magnification scale. The group ‘‘Overall’’ is the
average MOS value of all the 96 super-resolved images produced by each
algorithm.

only be compared for images of the same scene, magnifica-

tion scale and movement type, while all scores are compara-

ble for SRIJ. Hence, only the MOS from the SRIJ and MY

datasets are comparable, because these studies followed the

same methodology.

III. ODU NR METRIC

Existing blind image quality assessment (BIQA) models for

evaluating SR algorithms are nearly all opinion-aware [18],

[30], [31]. They are generally learned regression models

trained on databases of images with associated human sub-

jective scores. To achieve best performance, opinion-aware

methods require large amounts of training samples with

associated human subjective scores, derived from a large

set of super-resolved images. The BIQA models learned by

opinion-aware methods often have weak generalization capa-

bility, which limits their usability in practice. By compari-

son, opinion-unaware methods do not need human subjective

scores for training, and thus have greater potential for good

generalization capability. This research aims to develop an

ODU BIQA quality prediction model based on a selection of

perceptual optimal features that can compete with (and per-

haps outperform) existing opinion-aware methods deployed

in the quality assessment of super-resolved images.

A. PERCEPTUAL FEATURES

It has been observed that natural images, under certain trans-

formations, such as bandpass processing, or the removal of

the lowest spatial frequency [32] strongly tend towards prob-

ability distributions that can be effectively captured using

several (but ultimately equivalent) parametric density mod-

els. The Generalized Gaussian Distribution (GGD) and the

Asymmetric Generalized Gaussian Distribution (AGGD) are

examples of such statistical models that have been widely

used in previous IQA studies [24], [26], [33], [34]. The GGD
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is defined as

f (x;α, σ ) = α

2βŴ(1/α)
exp

(

−
( |x|

β

)α)

(1)

where Ŵ(·) is the gamma function

Ŵ(a) =
∫ ∞

0

ta−1e−tdt a > 0, (2)

and

β = σ

√

Ŵ(1/α)

Ŵ(3/α)
. (3)

This model has two parameters: α controls the ‘‘shape’’ and

σ the standard deviation. The AGGD is defined

f (x; ν, σ 2
l , σ 2

r ) =











ν

(βl + βr )Ŵ(1/ν)
e−(−x/βl )ν x < 0

ν

(βl + βr )Ŵ(1/ν)
e−(−x/βr )ν x ≥ 0

(4)

where

βl = σl

√

Ŵ(1/ν)

Ŵ(3/ν)
, βr = σr

√

Ŵ(1/ν)

Ŵ(3/ν)
. (5)

The parameters in this model are ν, σl , and σr . These param-

eters are frequently interpreted as distortion-sensitive, and

other useful features can be derived from them, such as

β̂ = βr + βl

2
, η = (βr − βl)

Ŵ(2/ν)

Ŵ(1/ν)
. (6)

Moreover, the sample kurtosis and skewness can also be used

to describe the distortions found in an image [35].

We fitted the distribution models (1) and (4) to a variety of

bandpass coefficients obtained from the image, from which

the features are derived. The bandpass processing that is

applied to the image includes the following below.All of them

have been successfully used in IQA models:
• Mean Subtracted Contrast Normalized (MSCN) [36]

• Paired Products [36]

• Log-Derivative [37]

• Steerable Pyramid [38], [39]

• Discrete Cosine Transform (DCT) [18], [40]

• Sigma Map [35]

• Difference of Gaussian (DoG) of Sigma Map [35]

Furthermore, we also utilize features derived from a local

principal component analysis and include the principal com-

ponents as features. We, then describe each of these trans-

formations. In every case the luminance channel I (i, j) is

processed.

1) MSCN

Following the works presented [36] and [33], we define the

local weighted luminance mean and spread as:

µ(i, j)=
K
∑

k=−K

K
∑

l=−K
ωk,lI (i− k, j− l), (7)

σ (i, j)=

√

√

√

√

K
∑

k=−K

K
∑

l=−K
ωk,l

(

I (i−k, j−l)−µ(i, j)
)2

, (8)

whereω is a 2D circular-symmetrical Gaussian filter sampled

out to 3 standard deviations. In our implementation, we used

K = 3. The MSCN coefficients are then defined as

Î (i, j) = I (i, j)− µ(i, j)

σ (i, j)+ C , (9)

where C = 1 is a constant that prevents instabilities.

An AGGDmodel is fitted to the MSCN coefficients to calcu-

late the first two features (ν, β̂) which will be called f1 and f2,

respectively.

As a way of capturing asymmetries in shape, we also fit the

density (1) to the negative and positive MSCN coefficients.

Let (αl, ζl) and (αr , ζr ) be the parameters yielded after the

fitting for the negative and positive MSCN, respectively,

where αl , αr are the shape parameters, and ζl , ζr are the

standard deviations. Then, we define the asymmetry features

f3 = αr − αl; f4 = ζr − ζl . (10)

Finally, two additional features f5 and f6 are defined as the

sample kurtosis and the skewness of the MSCN coefficients.

Thereafter, we will refer to features derived from the MSCN

coefficients as fi, i = 1, . . . , 4.

2) PAIRED PRODUCTS

Paired products of MSCN coefficients are a way of capturing

the correlations between them [34], [36]. If Î (i, j) is thematrix

of MSCN coefficients, then the paired products’ coefficients

are defined as

H (i, j) = Î (i, j)Î (i, j+ 1)

V (i, j) = Î (i, j)Î (i+ 1, j)

D1(i, j) = Î (i, j)Î (i+ 1, j+ 1)

D2(i, j) = Î (i, j)Î (i+ 1, j− 1) (11)

corresponding to the horizontal (H ), vertical (V ), and two

diagonal (D1 and D2) directions. Each of these four sets of

coefficients is fitted with an AGGD. Let (νR, ηR, σRl , σRr ) be

the parameter (ν, η, σl, σr ) estimate related to the set of paired

product coefficients R ∈ {H ,V , D1,D2}. Thus 16 more

quality-aware features are obtained, which we group into four

sets:

P1 = {νH , νV , νD1, νD2},
P2 = {ηH , ηV , ηD1, ηD2},
P3 = {σHl , σVl , σD1l , σD2l },
P4 = {σHr , σVr , σD1r , σD2r }.

From here on, we will refer to the features in the sets Pi as PP

(Paired Product) features.
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3) LOG-DERIVATIVE COEFFICIENTS

Other useful quality sensitive features may be derived from

the MSCN coefficients Î (i, j) [24], [26], [37]. Let

J (i, j) = log(|Î (i, j)| + G), (12)

where G = 0.1. Therefore, the directional Log-Derivative

coefficients are defined as:

PD1 = J (i, j+ 1)− J (i, j)
PD2 = J (i+ 1, j)− J (i, j)
PD3 = J (i+ 1, j+ 1)− J (i, j)
PD4 = J (i+ 1, j− 1)− J (i, j)
PD5 = J (i− 1, j)+ J (i+ 1, j)

− J (i, j− 1)− J (i, j+ 1)

PD6 = J (i, j)+ J (i+ 1, j+ 1)

− J (i, j+ 1)− J (i+ 1, j)

PD7 = J (i− 1, j− 1)+ J (i+ 1, j+ 1)

− J (i− 1, j+ 1)− J (i+ 1, j− 1). (13)

An AGGD is fitted to each PDi. Let (ν
R, β̂R) be the param-

eters (ν, β̂) estimated from each set of Log-Derivative coef-

ficients R ∈ {PD1, . . . ,PD7}. Hence, 14 features are esti-

mated, which we arranged in two feature sets:

PLD1 = {νPD1 , . . . , νPD7}
PLD2 = {β̂PD1 , . . . , β̂PD7}

We will collectively refer to the sets PLDi as PLD.

4) DISCRETE COSINE TRANSFORM COEFFICIENTS

The discrete cosine transform (DCT) was implemented fol-

lowing the work of Ma et al [18], which was applied to

patches of 7 by 7 pixels. From each transformed patch P

three features are calculated. A GGD curve is fitted to the

coefficient ofP to obtain the parameter αP which is the shape

parameter of (1). The standard deviation σP and the mean

value µP of P are used to obtain the normalized deviation

σ̂P = σP

µP
.

FIGURE 9. Division of the patch in three sections as indicated in
Ma et al [18].

The patch is then divided into three sections as indicated

in Figure 9, and from each section the normalized deviation

σ̂i, i = 1, 2, 3 is calculated to obtain a final patch feature

6P as the variance of the set {σ̂1, σ̂2, σ̂3}. Thus, from patch

P three values are obtained: (αP , σ̂P , 6P ). Consider the set

{P1, . . . ,Pn} of all the possible patches that can be obtained

for the images. Therefore, three lists can be created by feature

type

l1 = [αP1 , . . . , αPn ],

l2 = [σ̂P1 , . . . , σ̂Pn ],

l3 = [6P1 , . . . , 6Pn ],

which are then sorted. Let dc1, dc2 and dc3 be themean values

of the highest tenth percentile of l1, l2, and l3; dc4, dc5 and

dc6 be the mean values of the lowest tenth percentile; and dc7,

dc8 and dc9 be their mean values, respectively. We refer to the

features dci as DCT features.

5) SIGMA MAP

The sigma map derives from the coefficients obtained in (8).

In [35] the sample kurtosis, skewness and mean of this map

were used as features to train a regressor to predict picture

quality scores. We denote these features as sm1, sm2 and sm3,

and collectively refer to them as SM hereafter.

6) DoG OF SIGMA MAP

The sigma map is further transformed by applying a Dif-

ference of Gaussians (DoG) filter, to produce another map

denoted as DoGsigma. The DoG filter is defined as

DoG = 1√
2π

(

1

σ1
e

−(x2+y2)
2σ2

1 − 1

σ2
e

−(x2+y2)
2σ2

2

)

,

where σ2 = 1.5σ1, σ1 = 1.16 and where we use a window

size of 7 by 7 pixels as defined in [35]. The MSCN coef-

ficients are extracted from DoGsigma to obtain four features

g1, . . . , g4. These are the shape parameter of GGD (1) fitted

to the histogram of DoGsigma, as well as the standard devia-

tion, kurtosis and skewness of DoGsigma, respectively.

The MSCN coefficients of DoGsigma are then also calcu-

lated, to obtain two additional features g5 and g6 that are

kurtosis and the skewness respectively. The g1, . . . , g6 are

referred to as DoG features.

7) STEERABLE PYRAMID COEFFICIENTS

Steerable Pyramid decompositions [41] have previously been

implemented in IQAmodels [18], [24], [26], [42], and resem-

ble the decomposition that occurs in area V1 of the visual

cortex [43].

In [26] and [24] the authors suggested using six orienta-

tions of θ (θ ∈ {0◦, 30◦, 60◦, 90◦, 120◦, 150◦}), yielding six

bandsDi i = 1, . . . , 6. Let (νDi , β̂Di ) be the parameters (ν, β̂)

obtained after fitting the AGGD model (4) to the histogram

ofDi. Hence, 12 features are obtained, which are grouped into

two sets:

SP1 = {νD1 , . . . , νD6}
SP2 = {β̂D1 , . . . , β̂D6}.
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TABLE 2. Feature summary of MSCN, Paired Products (PP), Log-Derivatives (PLD), Steerable Pyramid (SP and W), Discrete Cosine Transform (DCT),
Principal Component Analysis (PCA), Sigma Map (SM), Difference of Gaussians of Sigma Map (DoG). The variables in the Feature Sets column that are in
lower case are taken as unitary sets while the variables in capital letters are sets with more than one feature. The second and fourth columns refer to the
number of features and sets calculated at the original resolution, whereas, the last two columns refer to the total number of sets and features in all the
scales.

The features in the sets SPi will be refered to as SP (Steerable

Pyramid) features.

Additionally, Ma et al [18] suggested the use of other

features that result from a steerable pyramid decomposi-

tion. They suggested using six orientations of θ (θ ∈
{0◦, 30◦, 60◦, 90◦, 120◦, 150◦}), but computed at two scales

(original size and half resolution), thereby obtaining 12 sub

bands. On the histogram of each sub band i, a GGD model

is fitted to obtain 12 features that will be denoted by asi and

correspond to the parameter shape, i = 1, . . . , 12. The sub

bands that correspond to the same orientation are concate-

nated, in order to compute their histograms. A GGDmodel is

fitted to the histograms obtaining six new shape parameters

(one per orientation), yielding six new features which will be

denoted by aci.

The windowed structural correlation [42], [44] defined

as

p = 2σxy + C
σ 2
x + σ 2

y + C

is also calculated between the high pass band and each of the

sub bands as well as between sub bands. In our implemen-

tation, we used a 15 × 15 gaussian window with σ = 1.5

as in [18]. σxy is the cross-covariance between windowed

regions, σx σy are the windowed standard deviations, and C

is a constant for stabilization. Since there are 12 sub bands,

p is calculated between the high pass band and each of the

sub bands obtaining 12 features Phbi, i = 1, . . . , 12. Further-

more, since there are six sub bands, we can obtain 15 values

of p corresponding to each possible correlation between sub

bands, which we refer to as Psbi, i = 1, . . . , 15.

These 45 features are clustered into four sets:

W1 = {as1, . . . , as12}
W2 = {ac1, . . . , ac6}
W3 = {Phb1, . . . ,Phb12}
W4 = {Psb1, . . . ,Psb15}.

We will collectively refer to these features as W.

8) PRINCIPAL COMPONENT ANALYSIS COEFFICIENTS

Ma et al [18] and Yeganeh et al [45] proposed the application

of Principal Component Analysis (PCA) for super resolved

image quality assessment. We followed the procedure in [18]

by dividing the image into 5 × 5 patches, and creating a

25 elements column vector per patch. These vector compose

a matrix that’s singular values are extracted, yielding 25 fea-

tures. We will refer to this set of 25 features PC as PCA.

9) SUMMARY OF FEATURES

All features except DoG and W were calculated at three dif-

ferent scales (original, half resolution and quarter resolution),

yielding a total of 306 features. These scales are different than

the magnification scales for the SR algorithms. During sub-

sequent analysis, we grouped the features into sets according

to the type of features calculated, yielding 91 sets of features.

Table 2 summarizes the features and sets of features per scale

and overall.

B. OPINION-DISTORTION-UNAWARE IMAGE

QUALITY ANALYZER

Natural images obey certain invariant statistics that are mod-

ified by distortions [46]. The natural images become ‘‘less

natural’’ when they become distorted, which is reflected in

the behavior of their statistics. This phenomenon is used by

BIQAmetrics such as NIQE and IL-NIQE, which extract sets

of local features from an image, then fit the feature vectors

to a multivariate Gaussian (MVG) model. The quality of

a test image is then predicted as the distance between its

MVG model and the MVG model learned from a corpus

of pristine naturalistic images. Following the work in [47],

the pristine set that we used was made up of 170 images from

BSD200 [21], 29 images fromLIVE IQA [48], and 90 images

from the pristine set of IL-NIQE [34].

The image features that we used are the ones presented in

section III-A. The quality of a test image is predicted by the

standardized Euclidean distance between its features and the

MVG model learned from the corpus of pristine naturalistic

143208 VOLUME 8, 2020



J. Beron et al.: Blind IQA for SR via Optimal Feature Selection

images:

Q(x) =

√

√

√

√

n
∑

i=1

(xi − µi)
2

c2i
, (14)

where µ = (µ1, µ2, . . . , µn) and (c1, c2, . . . , cn) are the

mean and variance of each feature of the same type of the

pristine set, n is the number of features, which in this case is

n = 306, and x = (x1, x2, . . . , xn) are the features extracted

from the image that’s perceptual quality is to be predicted.

C. PERCEPTUAL FEATURE SELECTION ALGORITHM

The collected features were selected because they have

previously been successfully used for IQA. However, not

all the 306 features are necessarily sensitive to distortions

present in super resolved images. Additionally, it is uncertain

which features are more predictive of the quality of super

resolved images. Therefore, we deployed a process of feature

selection.

Consider any dataset of n images with associated human

scores. Let (Xi, yi) be a tuple where Xi is the vector of

extracted features and yi the associated human score for the

image i. To select the optimal perceptual features, we defined

families of features that’s elements are not separated during

the selection process. These families are the feature sets

f1, . . . f6,P1, . . . ,P4, . . . and so on which are defined in

section III-A and presented in Table 2. Let 2 be the set of

families of features. For 8 ⊆ 2, define Q8 as in (14), with

the condition that Xi is reduced to only features that are in

the family of features within 8. Therefore, by evaluating the

image i in Q8, the predicted scores ŷi are obtained. Define

the function

c(8) = cp(Ŷ8,Y ), (15)

where Ŷ8 and Y are the lists of predicted scores and human

scores of the n images in the dataset, respectively, and cp
is the function that returns the Pearson correlation coeffi-

cient (PCC) obtained from two ordered lists. Let P2 be the

set of all subsets of 2 without the empty set. Thus our

optimization process is defined as:
max
8∈P2

c(8). (16)

Algorithm 1 presents the optimal feature selection proce-

dure used to determine the most representative perceptual

quality features. It is based on the sequential forward floating

search (SFFS) from Pudil et al [49] which returns the optimal

subset of a set of features Ŵ at each possible size for the

subset. This is, if |Ŵ| = n, therefore, SFFS returns a sequence

of sets (γi)
n−1
i=1 , where γi ⊂ Ŵ and |γi| = i. The optimization

is defined by a cost function c that depends on a combination

of features from 2. We have used SFFS previously in [47],

with the difference that in this work our set of features

Ŵ = 2 is made of families of features. We used families

of features, since some features should not be separated in

the selection procedure. If they are kept together, the gen-

eralization capacity of the new model will be increased.

Algorithm 1 Perceptual Feature Selection Algorithm

Require: hScores, iFeats.

(featSets, correlations)← sffs(iFeats, hScores)

(bestCorrelation, bIndex)← max(correlations)

dCorrelations← dev(correlations)
sIndex ← {bIndex}
if |dCorrelations(bIndex)| < 10−4 then
index ← bIndex

while index + 1 ≤ 91 do

index ← index + 1

if |dCorrelations(index)| < 10−4 then
add index to sIndex

else

break

end if

end while

index ← bIndex

while index − 1 ≥ 1 do

index ← index − 1

if |dCorrelations(index)| < 10−4 then
add index to sIndex

else

break

end if

end while

end if

{j = 2, 3, 4}

hScoresSR← GetScoresSR(hScores)

hScoresSRj← hScoresSR from the magnification scale j

perfm← Vector of length(sIndex) elements

for i = 1 to i = length(sIndex) do

mScores← EvalMetric(iFeats, featSets(sIndex(i))

mScoresSR← GetScoresSR(mScores)

mScoresSRj←mScoresSR from the magnification scale

j

pj← corr(mScoresSRj,hScoresSRj)

perfm(i)← joinCorr(p2,p3,p4)

end for

(bPerfm, index)← max(perfm)

return featSets(sIndex(index))

The families of features selected by SFFS at each possible

feature vector size are represented by the variable featSets.

Additionally the PCC for each combination is returned in the

variable correlations.

By using MY and SRIJ, we obtained different featSets

which we call Q1 and Q2, respectively. Figure 10 shows the

correlations obtained in each case, where we observed an

interval in which PCC has a small variation. In both cases,

the elements of featSets that gave the best performance are

located in stable correlation region, hence the selection of the

element from featSets that provides the maximum correlation

is ambiguous.
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FIGURE 10. Pearson correlation coefficient for the best performing group
of sets of features per feature set size. Q1 was evaluated on the MY
dataset, while Q2 was evaluated on the SRIJ dataset. The values indicated
on each curve correspond to the maximum correlation.

To obtain the final feature selection, we defined a no vari-

ation interval on the curves in Figure 10. This is the set of

points near the maximum where the numerical derivative is

less than 10−4. The derivative was estimated as

d[n] = p[n+ 1]− p[n− 1]

2
,

where n is the size of the group and p[n] is the PCC obtained

for the best performing group of size n. The no variation

interval is represented in Algorithm 1 by sIndex, which corre-

sponds to the indices of the combination of feature sets whose

performance belong to the no variation interval. The function

dev returns the numerical derivative of the correlations and

the function max returns the greatest value, and the index of

the greatest value.

For Q1, combinations of 15 to 47 elements were located

in the no variation interval. For Q2, combinations of 12 to

33 elements were considered in the no variation interval. Each

of these groups, with almost the same performance, were

considered as a SR IQA model M . The selection process

within the no variation interval was based on the performance

of a model applied to images having the same magnification

scale. However, MY and SRIJ datasets were not designed

for accurate comparisons between images of similar quality.

Hence, instead of predicting the quality of images, we pre-

dicted the performance of SR algorithms. We averaged all the

scores given to the super resolved images built with the same

SR algorithm and magnification scale (as explained below in

detail).

Let I and J be the sets of indices corresponding to an SR

algorithm and magnification scale respectively. Set �ij with

i ∈ I and j ∈ J corresponds to the set of super resolved images

that come from the SR algorithm i and their magnification

scale is j. Regarding the MY dataset, if only magnification

scales 2, 3 and 4 are used, then there will be 27 sets �ij,

while in SRIJ there will be 19. Let the set of human scores

and model scores on the images of the set �ij be denoted �h
ij

and �m
ij respectively. Thus, the human score Hij and model

score Mij associated with the set �ij are defined as

Hij =
1

|�ij|







∑

x∈�h
ij

x






, Mij =

1

|�ij|







∑

x∈�m
ij

x






.

Here�h
ij and�m

ij correspond to hScores andmScores in Algo-

rithm 1. The process of obtaining Hij or Mij is accomplished

in Algorithm 1 with the function GetScoresSR. Hij and Mij

are represented by the variables hScoresSR and mScoresSR,

respectively.

The PCC at magnification scale j can be calculated

between Hij and Mij, with j fixed. Since there are three ele-

ments in J that correspond to the three magnification scales

(2, 3, and 4), then three PCC values are calculated on each

model. To obtain a single correlation coefficient from a list

of correlation coefficients {pk : k = 1, . . . , K̄ ∈ N}, it was
suggested in [50] to apply the following transformation to

each pk :

p̂k = 0.5 ln

(

1+ pk
1− pk

)

, (17)

then obtain the mean value p̄ of {p̂k : k = 1, . . . , K̄ ∈ N}.
Therefore, the representative correlation coefficient will be

given by the inverse of (17) on p̄:

P̄ = e2p̄ − 1

e2p̄ + 1
. (18)

The correlations at each scale j are represented by pj in

Algorithm 1, and the function joinCorr yields P̄, which is

saved in the vector perfm. This vector logs the performances

of the combinations on the no variation interval. Finally, from

perfmwe identify the combination attaining the highest com-

bined correlation value. ForQ1, a combination of 17 elements

was selected, corresponding to 45 features, while for Q2 a

combination of 33 elements was selected, corresponding to

73 features.

The simplest approach to feature selection is testing the

performance of every subset of features, which is computa-

tionally impractical. As the features are previously calculated

and our predictor does not require training, then approaches

such as sequential forward search and sequential backward

search are possible. However, these approaches suffer from

the ‘‘nesting effect’’ which is solved by the SFFS proposed

by Pudil et al [49].

Other works have also explored feature selection for BIQA

[51], [52]. They analyzed each feature individually by train-

ing a model and determining its performance with differ-

ent metrics such as Spearman rank correlation coefficient

(SRCC), PCC, rootmean square error andKendall correlation

coefficient. Even though this approach is successful at detect-

ing the best features for image quality prediction, it cannot

detect features that complement each other. Additionally,

since our ODU model does not require training, it is possible

that the contribution to the final score of the selected features

is not appropriately distributed. Therefore it is necessary to

143210 VOLUME 8, 2020



J. Beron et al.: Blind IQA for SR via Optimal Feature Selection

assess the performance of the sets of features instead of only

individual features.

D. SELECTED PERCEPTUAL FEATURES

Tables 3 and 4 tabulate the features selected for Q1 and Q2.

These features (along with the function (14), and the pristine

set defined in section III-B) define twoODUNR-IQAmodels

which we will call Q1ODU and Q2ODU, respectively. We also

implemented the overall modelQODU which uses all 306 fea-

tures and the same function and pristine set.

TABLE 3. Selected sets of features used in Q1.

TABLE 4. Selected sets of features used in Q2.

AlthoughQ1 andQ2 were optimally selected to predict the

quality of super-resolved images under the definition given

in III-B, it is hard to determine which of the feature sets

within Q1 and Q2 are the most relevant to the SR image

quality prediction task. In addition, it is possible that some

features sets were not selected because they resemble another

combination of feature sets.

To identify the feature types that achieve the best perfor-

mances we applied the SFFS procedure to each type of feature

and recorded the highest attained PCC as shown in Figure 11.

These results indicate that PP and DCT provide the highest

performance in image quality assessment. However, the infor-

mation contained in a particular type of feature can also

be obtained with the correct combination of other types of

features. In order to find the features that’s distortion sensi-

tivity is irreplaceable, we again applied the SFFS procedure

and recorded the highest PCC. However, this time removing

one feature type from the selection options. The results seen

in Figure 12 show that removing the PP features to measure

the distortions found in the MY and SRIJ databases produced

FIGURE 11. Highest PCC achieved with SFFS using only one type of
feature set.

FIGURE 12. Highest PCC achieved while dropping one type of feature set.
The dashed lines indicate the reference performance achieved by
considering all types of feature sets.

the largest performance loss. While, in the case of the QADS

database, the DCT features were the ones that produced the

largest performance loss.

The images created by SR algorithms may be impaired by

one or several artifacts that depend on the content of the image

and the type of SR algorithm. Therefore, the search for a par-

ticular type of feature able to represent the level of distortion

is a challenging task. We have found that the best approach is

to have a selected group of different features. However, our

results show that DCT is able to provide relevant informa-

tion to predict the quality of a super resolved image. DCT

preserves high frequency details and it is based on a local

image analysis [18]. Furthermore, it presents excellent spar-

sity properties in images such as energy packing efficiency,

rate distortion, residual correlations, and variance distribu-

tion [53]. As it provides such compact space representations,

distortions from up-scaling/SR are more likely to stand out.

In addition, PP features model unnatural spatial dependencies

which are common artifacts produced by SR algorithms.
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An effective SR algorithm should be capable of recreating the

natural correlations that exist between neighboring pixels and

PP feature capture this local correlation [35], [54].We believe

that local analysis and the ability to model high frequency

components and unnatural spatial dependencies provide rich

SR distortion information that is not given by less relevant

features, rendering the DCT and PP features irreplaceable.

IV. ODA NR METRIC DESIGN

A common practice in IQA algorithm design is to learn

a regression model on a group of perceptual quality fea-

tures [18], [35], [36]. Two common regression techniques

used in BIQA are random forest regression (RFR) and support

vector regression (SVR). Ma et al [18] used RFR and a two

stage regression model to learn their super resolved image

qualifier. We applied the same RFR procedure to produce

an ODA quality analyzer from our selected features. From

the features selected in Q1 and Q2, we produced two models

called Q1ODA and Q2ODA, respectively. By using all 306 fea-

tures we obtained a third model, QODA.

V. PERFORMANCE COMPARISON

To assess the importance of our feature selection procedure

we compared the performance of QODU, Q1ODU and Q2ODU,

with models using the same definition (14), but with features

selected using methods from [51]. We implemented three

methods, the main difference of which is the correlation coef-

ficient used to determine the quality of the features selected.

These selection procedures evaluate the performance of each

feature. This is achieved by defining the model using just one

feature, then, predicting and calculating a correlation coeffi-

cient between the predictions and the human scores. Hence,

the feature that’s correlation coefficient is above average is

selected.

The correlation coefficients for the selection methods are

PCC and SRCC. The metrics Qp, Qs and Qps rely on features

selected using PCC and SRCC, and a combination of PCC

and SRCC respectively. Algorithms 1, 2 and 5 from [51]

were implemented for this work. Tables 5 and 6 depict the

correlation coefficients obtained across the datasets. These

results show that our feature selection method provides a

better combination of features.

TABLE 5. Cross-Dataset evaluation with SRCC.

While human scores given to any image in the MY and

SRIJ datasets can be used to compare with any other image,

TABLE 6. Cross-Dataset evaluation with PCC.

the procedure is different for QADS and SupER, because the

human score of an image can not be compared with any other

image. The human scores associated with images in QADS

are only comparable if the images are extracted from the

same scene. On the other hand, scores in SupER are only

comparable if the images come from the same scene, have

the same magnification scale and motion type. This implies

that the correlation coefficients can only be calculated from

groups of scores that are comparable. QADS has 20 groups

of 49 images as there are 20 different scenes. However, one of

the scenes is not a natural image, therefore it was not included

in the analysis. SupER has 126 groups of 20 images with

comparable scores, since there are 3 magnification scales,

14 images and 3motion types were used in this study.We then

calculated 19 and 126 correlation coefficients from QADS

and SupER respectively and obtained a single correlation

coefficient using (17) and (18).

The performance obtained by the newly designed met-

rics were compared with the performances of state-of-

the-art quality prediction models. We tested NIQE [33] and

IL-NIQE [34] (which are NR ODU metrics), MY [18],

PI [55] and FRIQUEE [35] (which are NR ODA) and also

MS-SSIM [56], FSIM [57], SSIM, VIF [38], IFC [17], and

STD [19] (which are FR metrics). We included FR mod-

els because some of them (IFC and VIF) have provided

good performances on image quality prediction in previous

super-resolved IQA problems [16], [20]. MY, PI and STD

were specifically designed to predict human scores of super

resolved images. In all the tests with NIQE and IL-NIQE,

we used the pristine set defined in section III-B. We carried

out some initial tests following the same procedure as in

Ma et al [18]. 80 % of the dataset was utilized for training

and the remaining 20% was used for testing. This cross

validation was applied to the MY dataset and SRIJ, in which

648 and 486 randomly selected images were used for training

and the remaining 162 and 122 images were designated for

testing, respectively. In all cases, we kept the image content

in the training and testing sets separate. We conducted 250 of

these random iterations and in each iteration, SRCC and

PCC were calculated against the human scores. To compare

the performance of all the ODA metrics, we also calculated

the correlation coefficients between the scores predicted by

the models, that do not require training, and human scores.

Table 7 tabulates the median values of the obtained correla-

tions for all iterations.

143212 VOLUME 8, 2020



J. Beron et al.: Blind IQA for SR via Optimal Feature Selection

TABLE 7. Correlation coefficients obtained when training with a random
80% of the dataset and testing with the remaining 20%. The process was
repeated 250 times and the median results are tabulated below. The
values in bold and underlined, identify the algorithm that achieved the
best and second-best scores respectively.

TABLE 8. Cross-Dataset evaluation with Spearman rank correlation
coefficients. The evaluation dataset is indicated on the top of the
columns. The dataset used for training is indicated in parenthesis. The
values in bold and underlined indicate the models obtaining the best and
second-best scores, respectively.

The results indicate that QODA achieved the best perfor-

mance. QODA is a NR ODA model that utilizes all fea-

tures. Tables 8 and 9 tabulate the SRCC and PCC results

of the cross-dataset validation, in which we trained each

model on either the MY or SRIJ dataset, then tested on the

other datasets. FRIQUEE was only evaluated on the QUADS

dataset because it relies on color features, while the SRIJ

and SUPER datasets contain only grey level images. Fur-

thermore, since we trained FRIQUEE on the MY dataset,

we excluded it from the test datasets. We observe that even

TABLE 9. Cross-Dataset evaluation with Pearson correlation coefficients.
The evaluation dataset is indicated on the top of the columns The dataset
used for training is indicated in parenthesis. The values in bold and
underlined indicate the best and second best scores, respectively.

though FRIQUEE relies on 560 features, the proposedmodels

(Q1ODA trained on the MY dataset and Q1ODA and Q2ODA
both trained on SRIJ) outperform FRIQUEE. The state-of-

the-art and deep learning-based picture quality prediction

model WaDIQaM-NR, developed by Bosse et al [58], was

included in the cross-dataset validation. SinceWaDIQaM-NR

requires long training times, this quality predictor is only

studied in the cross-dataset evaluation. For this implemen-

tation, we fine-tuned the last two layers of the architecture

based on the scores of either the MY or SRIJ datasets.

We utilized a dropout rate 0.5 as used in [58] and we

augmented the size of the datasets by flipping the images

horizontally. Despite the fine-tuning process and the out-

standing results of this quality predictor on the major

synthetic-distortion picture-quality databases, the prediction

accuracies obtained were not competitive against traditional

methods. This was partly because there was not enough data

to train it adequately [59], [60].

Q1ODU obtained the second-best SRCC and PCC when

tested on MY which could be misleading, because the fea-

tures that it uses were selected using the human scores from

the MY dataset. Nevertheless, the third best SRCC and PCC

were achieved byQ2ODA andQ2ODU , respectively. Similarly,

Q2ODU obtained almost the best SRCC and PCC when tested

on SRIJ, while Q1ODA was the second best. On the other

hand, when tested on the QADS and SupER datasets, the best

results were obtained by the FR-IQA models, while Q1ODA
had the best performance among the NR-IQA models when

tested in QADS. SupER is a particularly hard dataset, espe-

cially for NR-IQA models which achieved very low SRCC

and PCC scores on it.
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Apart from STD, the FR-IQA models achieved poor per-

formance when tested on MY and SRIJ. However, on QADS

and SupER they had the most competitive scores. One main

difference among the datasets is that the human scores in

QADS and SupER can only be used to compare images

of the same scene. Therefore, we calculated the SRCC and

PCC between predicted scores and human scores of images

from the same scene on MY and SRIJ datasets. This fol-

lowed the same procedure as QADS and SupER for testing

the relevance of image content on the prediction of image

quality. Since MY has 9 SR algorithms (using the magni-

fication scales 2, 3 and 4), per scene there are 27 human

scores and predicted scores to obtain the correlation coef-

ficients. SRIJ has 7 SR algorithms, 6 of which were used

to produce images at magnification scales 2, 3 and 4. For

SRGAN, only the magnification scale 4 was applied. Thus,

there are 19 human and predicted scores to calculate cor-

relation coefficients. To determine whether changes in the

values of SRCC and PCC are affected by the number of

collected scores, we randomly selected 27 images from the

MY dataset, and maintained the proportions of the magnifi-

cation scales by randomly selecting 9 images per scale. This

process was conducted 1000 times. The median correlation

coefficients were calculated for each iteration. A similar pro-

cedurewas performed on the SRIJ database. Tables 10 and 11

show an increase in performance of almost all the mod-

els in both datasets. Nonetheless, the increase was greater

for the FR-IQA models on the MY dataset, allowing them

to achieve competitive scores, unlike the low performance

shown in Tables 8 and 9.

TABLE 10. SRCC results obtained when selecting images randomly or
only within the same scene.

Köhler et al [20] noted that the performances of models

tested on SupER at different magnification scales differed,

hence we evaluated the models across scales and found a

similar trend as [20]. NR-IQA models had a stronger per-

formance at magnification scales 2 and 3 while the FR-IQA

models obtained the best performance at magnification scale

TABLE 11. PCC outcomes calculated when selecting images randomly or
only within the same scene.

TABLE 12. Cross-Dataset evaluation using the Spearman Rank
Correlation Coefficient on SupER. The magnification scale is indicated on
the top and the column ‘‘Overall’’ contains the scores obtained using the
whole dataset.

4. We decided to keep the sign on the correlation coefficients

from Tables 12 and 13 to show that it was common to see that

for some sets of images, the sign of the correlation coefficient

was the opposite of that expected. For example, FSIM and

SSIM are supposed to provide positive correlation coeffi-

cients, but on images with magnification scale 2, the average

value was negative. We found that the only models that

had a strong performance at every magnification scale were

VIF and STD, while the third best model, IFC, encountered

problems at the magnification scale 2.

Achieving good performance in SupER remains a difficult

challenge for SR IQA. One reason for the low performances

on this database is that the main factor related to the strength
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TABLE 13. Cross-Dataset evaluation using the Pearson Correlation
Coefficient on SupER. The magnification scale is indicated on the top and
the column ‘‘Overall’’ contains the scores obtained using the whole
dataset.

of the distortion noted by human subjects is the magnification

scale. This can be observed in Figures 2 and 8. The different

type of SR algorithm is a secondary factor that also affects

the quality. This issue is important since in the case of the

SupER database, the only difference between comparable

scores is the type of SR algorithm. This implies that the

quality predictor must have high sensitivity to detect small

changes in quality.

To determine the statistical significance of the results,

we began by randomly selecting 80% of the predicted scores

from each dataset, then calculating the correlation coeffi-

cients against the human scores. FromMY and SRIJ, 648 and

487 images were randomly selected, respectively. From

QADS, 15 of the 19 groups were randomly selected, and from

SupER, 101 of the 126 groups were randomly selected. For

models that required training, the scores came from a differ-

ent dataset. For example, if we selected predicted scores from

MY, then the models were trained on SRIJ. We performed

this process 10000 times, and obtained 10000 PCC. Using

these values, we conducted a Kruskal-Wallis test, in which

the null hypothesis was: the median correlation for the (row)

algorithm is equal to the median correlation for the (column)

algorithmwith a confidence of 99%. Tables 14, 15, 16 and 17

show the results of the Kruskall-Wallis tests conducted

on MY, SRIJ, QADS and SupER, respectively.

As with the previous results, STD achieved the best per-

formance, but among the NR models the performance of the

proposed methods in this study achieved the best results.

Table 14 indicates that Q1ODU attained the best performance,

while Q2ODU was in second place. Table 15 shows that the

best results were obtained byQ2ODU, whileQ1ODU produced

the second-best results. Q1ODA and Q2ODU were statistically

superior when tested on QADS and SupER, respectively.

TABLE 14. Statistical significance test results on MY dataset using the Pearson Correlation Coefficient.

TABLE 15. Statistical significance test results on SRIJ using the Pearson Correlation Coefficient.
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TABLE 16. Statistical significance test results on QADS using the Pearson Correlation Coefficient.

TABLE 17. Statistical significance test results on SupER using the Pearson Correlation Coefficient.

The improvement in performance of Q1ODU and Q2ODU
in comparison to NIQE and IL-NIQE shows that using

SR-specific features is important. However, blindly adding

many features to try to remedy performance is not correct

either. This is shown by the performance of QODU, which

uses all 306 features. The results presented in Table 7 show

that QODA had the highest performance, which disagrees

with the results depicted in Tables 8 and 9, implying a lack

of generalization by the model. Under cross-dataset valida-

tion, we found that our metrics Q1ODA and Q2ODA obtained

the best results among the ODA NR models. MY, PI and

FRIQUEE share features with Q1ODA and Q2ODA, since MY

and PI useDCT features and FRIQUEE usesPP features. The

selection procedure in this study grouped the best features

derived from DCT and PP (in addition to some complemen-

tary features) to create models with better than state of the art

performance under a cross-dataset validation set up.

VI. CONCLUSION

Two sets of 45 and 73 perceptual quality-aware features

were selected from a group of 306 features to create two

NR-IQAmetrics based on theworking principle of NIQE [33]

and IL-NIQE [34]. IL-NIQE and NIQE are models built on

feature sets that have been selected for distortions which are

different to the impairments possibly presented in the out-

comes of SR algorithms. In addition, any perceptual feature

set is not a guarantee of good SR quality prediction as shown

by the performances of IL-NIQE and NIQE. They deploy

feature sets that provide lower performance than the out-

comes of our proposed models. This makes it necessary to

select a particular set of features specific to SR distortions.

Nonetheless, the approach of simply adding new features

to satisfy a possible lack of perceptual quality prediction

performance is not efficacious. This is shown by the lower

performance ofQODU, which uses all 306 features. In conclu-

sion, our contribution is a formal and optimal feature selec-

tion procedure that selects the best feature set for predicting

the perceptual quality of SR images. We showed the capa-

bility of image quality prediction using these selected fea-

tures, by creating two NR-IQA models based on a two-stage

regression model proposed by Ma et al [18]. These pro-

posed new IQAmodels achieved state-of-the-art performance

as assessed by a cross dataset validation on four different

datasets: MY, QADS, SupER, and our new dataset, SRIJ.

We found that the performance of the IQA models could be

greatly improved when tested on the MY dataset, by only

comparing images from the same scene, as was achieved in

SupER andQADS. In this case, all the different types of mod-

els increased their performance. Nevertheless, the NR-IQA

models and most of the FR-IQA models performed poorly

on SupER. This was possibly the result of the small differ-

ences in distortion between the images. Achieving competi-

tive performance on SupER is a challenging goal for future

research.

143216 VOLUME 8, 2020



J. Beron et al.: Blind IQA for SR via Optimal Feature Selection

ACKNOWLEDGMENT

The authors would also like to thank theNVIDIACorporation

for the donation of a TITAN XP GPU used in these experi-

ments. We would also like to acknowledge the grant provided

by Comision Fulbright Colombia to fund the Visiting Scholar

Scholarship granted to H.D.B.-R.

REFERENCES

[1] J. Sun, Z. Xu, andH.-Y. Shum, ‘‘Image super-resolution using gradient pro-

file prior,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2008,

pp. 1–8.

[2] L. Shan, F. Liu, L. Wang, and Y. Ji, ‘‘Predictive group handover scheme

with channel borrowing for mobile relay systems,’’ in Proc. Int. Wireless

Commun. Mobile Comput. Conf., Aug. 2008, pp. 153–158.

[3] K. In Kim and Y. Kwon, ‘‘Single-image super-resolution using sparse

regression and natural image prior,’’ IEEE Trans. Pattern Anal. Mach.

Intell., vol. 32, no. 6, pp. 1127–1133, Jun. 2010.

[4] R. Timofte, V. De, and L. V. Gool, ‘‘Anchored neighborhood regression for

fast example-based super-resolution,’’ in Proc. IEEE Int. Conf. Comput.

Vis., Dec. 2013, pp. 1920–1927.

[5] C. Dong, C. C. Loy, K. He, and X. Tang, ‘‘Learning a deep convolu-

tional network for image super-resolution,’’ in Computer Vision—ECCV,

D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, Eds. Cham, Switzerland:

Springer, 2014, pp. 184–199.

[6] W. Dong, L. Zhang, G. Shi, and X. Wu, ‘‘Image deblurring and super-

resolution by adaptive sparse domain selection and adaptive regular-

ization,’’ IEEE Trans. Image Process., vol. 20, no. 7, pp. 1838–1857,

Jul. 2011.

[7] J. Yang, J. Wright, T. S. Huang, and Y. Ma, ‘‘Image super-resolution

via sparse representation,’’ IEEE Trans. Image Process., vol. 19, no. 11,

pp. 2861–2873, Nov. 2010.

[8] C.-Y. Yang and M.-H. Yang, ‘‘Fast direct super-resolution by simple func-

tions,’’ in Proc. IEEE Int. Conf. Comput. Vis., Dec. 2013, pp. 561–568.

[9] R. Timofte, S. Gu, J. Wu, L. Van Gool, L. Zhang, and M. Yang, ‘‘NTIRE

2018 challenge on single image super-resolution: Methods and results,’’

in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. Workshops

(CVPRW), Jun. 2018, pp. 965–996.

[10] M. Batz, A. Eichenseer, and A. Kaup, ‘‘Multi-image super-resolution using

a dual weighting scheme based on Voronoi tessellation,’’ in Proc. IEEE Int.

Conf. Image Process. (ICIP), Sep. 2016, pp. 2822–2826.

[11] H. Takeda, S. Farsiu, and P. Milanfar, ‘‘Kernel regression for image pro-

cessing and reconstruction,’’ IEEE Trans. Image Process., vol. 16, no. 2,

pp. 349–366, Feb. 2007.

[12] T. Kohler, X. Huang, F. Schebesch, A. Aichert, A. Maier, and J. Hornegger,

‘‘Robust multiframe super-resolution employing iteratively re-weighted

minimization,’’ IEEE Trans. Comput. Imag., vol. 2, no. 1, pp. 42–58,

Mar. 2016.

[13] C. Liu and D. Sun, ‘‘On Bayesian adaptive video super resolution,’’ IEEE

Trans. Pattern Anal. Mach. Intell., vol. 36, no. 2, pp. 346–360, Feb. 2014.

[14] A. Kappeler, S. Yoo, Q. Dai, and A. K. Katsaggelos, ‘‘Video super-

resolution with convolutional neural networks,’’ IEEE Trans. Comput.

Imag., vol. 2, no. 2, pp. 109–122, Jun. 2016.

[15] S. Nah, R. Timofte, S. Gu, S. Baik, S.-I. Hong, G. Moon, S. Son, and

K. M. Lee, ‘‘NTIRE 2019 challenge on video super-resolution: Methods

and results,’’ in Proc. CVPR Workshops, 2019.

[16] C.-Y. Yang, C. Ma, and M.-H. Yang, ‘‘Single-image super-resolution:

A benchmark,’’ inComputer Vision—ECCV, D. Fleet, T. Pajdla, B. Schiele,

and T. Tuytelaars, Eds. Cham, Switzerland: Springer, 2014, pp. 372–386.

[17] H. R. Sheikh, A. C. Bovik, and G. de Veciana, ‘‘An information fidelity

criterion for image quality assessment using natural scene statistics,’’ IEEE

Trans. Image Process., vol. 14, no. 12, pp. 2117–2128, Dec. 2005.

[18] C. Ma, C.-Y. Yang, X. Yang, and M.-H. Yang, ‘‘Learning a no-reference

quality metric for single-image super-resolution,’’ Comput. Vis. Image

Understand., vol. 158, pp. 1–16, May 2017.

[19] F. Zhou, R. Yao, B. Liu, and G. Qiu, ‘‘Visual quality assessment for super-

resolved images: Database and method,’’ IEEE Trans. Image Process.,

vol. 28, no. 7, pp. 3528–3541, Jul. 2019.

[20] T. Köhler, M. Batz, F. Naderi, A. Kaup, A. Maier, and C. Riess, ‘‘Toward

bridging the simulated-to-real gap: Benchmarking super-resolution on real

data,’’ IEEE Trans. Pattern Anal. Mach. Intell., early access, May 16, 2019,

doi: 10.1109/TPAMI.2019.2917037.

[21] D. Martin, C. Fowlkes, D. Tal, and J. Malik, ‘‘A database of human

segmented natural images and its application to evaluating segmentation

algorithms and measuring ecological statistics,’’ in Proc. 8th IEEE Int.

Conf. Comput. Vis. (ICCV), vol. 2, Jul. 2001, pp. 416–423.

[22] W.-S. Lai, J.-B. Huang, Z. Hu, N. Ahuja, and M.-H. Yang, ‘‘A comparative

study for single image blind deblurring,’’ in Proc. IEEE Conf. Comput. Vis.

Pattern Recognit. (CVPR), Jun. 2016, pp. 1701–1709.

[23] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta,

A. Aitken, A. Tejani, J. Totz, Z. Wang, and W. Shi, ‘‘Photo-realistic

single image super-resolution using a generative adversarial network,’’

in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017,

pp. 105–114.

[24] D. E. Moreno-Villamarin, H. D. Benitez-Restrepo, and A. C. Bovik, ‘‘Pre-

dicting the quality of fused long wave infrared and visible light images,’’

IEEE Trans. Image Process., vol. 26, no. 7, pp. 3479–3491, Jul. 2017.

[25] K. Seshadrinathan, R. Soundararajan, A. C. Bovik, and L. K. Cormack,

‘‘Study of subjective and objective quality assessment of video,’’ IEEE

Trans. Image Process., vol. 19, no. 6, pp. 1427–1441, Jun. 2010.

[26] T. R. Goodall, A. C. Bovik, and N. G. Paulter, ‘‘Tasking on natural statistics

of infrared images,’’ IEEE Trans. Image Process., vol. 25, no. 1, pp. 65–79,

Jan. 2016.

[27] R. K. Mantiuk, A. Tomaszewska, and R. Mantiuk, ‘‘Comparison of four

subjectivemethods for image quality assessment,’’Comput. Graph. Forum,

vol. 31, no. 8, pp. 2478–2491, Dec. 2012.

[28] Datacolor. Datacolor Spyder5 Family. Accessed: Nov. 8, 2019. [Online].

Available: http://www.datacolor.com/photography-design/product-

overview/spyder5-family/#spyder5pro

[29] D. H. Brainard, ‘‘The psychophysics toolbox,’’ Spatial Vis., vol. 10, no. 4,

pp. 433–436, 1997.

[30] Y. Fang, C. Zhang, W. Yang, J. Liu, and Z. Guo, ‘‘Blind visual

quality assessment for image super-resolution by convolutional neural

network,’’ Multimedia Tools Appl., vol. 77, no. 22, pp. 29829–29846,

Nov. 2018.

[31] B. Bare, K. Li, B. Yan, B. Feng, and C. Yao, ‘‘A deep learning based

no-reference image quality assessment model for single-image super-

resolution,’’ in Proc. IEEE Int. Conf. Acoust., Speech Signal Process.

(ICASSP), Apr. 2018, pp. 1223–1227.

[32] D. L. Ruderman, ‘‘The statistics of natural images,’’ Network-Comp Neu-

ral, vol. 5, no. 4, pp. 517–548, 1994.

[33] A. Mittal, R. Soundararajan, and A. C. Bovik, ‘‘Making a ‘completely

blind’ image quality analyzer,’’ IEEE Signal Process. Lett., vol. 20, no. 3,

pp. 209–212, Mar. 2013.

[34] L. Zhang, L. Zhang, and A. C. Bovik, ‘‘A feature-enriched completely

blind image quality evaluator,’’ IEEE Trans. Image Process., vol. 24, no. 8,

pp. 2579–2591, Aug. 2015.

[35] D. Ghadiyaram and A. C. Bovik, ‘‘Perceptual quality prediction on authen-

tically distorted images using a bag of features approach,’’ J. Vis., vol. 17,

no. 1, p. 32, Jan. 2017.

[36] A. Mittal, A. K. Moorthy, and A. C. Bovik, ‘‘Blind/Referenceless image

spatial quality evaluator,’’ in Proc. Conf. Rec. 45th Asilomar Conf. Signals,

Syst. Comput. (ASILOMAR), Nov. 2011, pp. 723–727.

[37] Y. Zhang and D. M. Chandler, ‘‘An algorithm for no-reference image

quality assessment based on log-derivative statistics of natural scenes,’’

in Image Quality and System Performance X, vol. 8653, P. D. Burns

and S. Triantaphillidou, Eds. Bellingham, WA, USA: SPIE, Feb. 2013,

pp. 156–165, doi: 10.1117/12.2001342.

[38] H. R. Sheikh and A. C. Bovik, ‘‘Image information and visual

quality,’’ IEEE Trans. Image Process., vol. 15, no. 2, pp. 430–444,

Feb. 2006.

[39] R. Soundararajan and A. C. Bovik, ‘‘Video quality assessment by reduced

reference spatio-temporal entropic differencing,’’ IEEE Trans. Circuits

Syst. Video Technol., vol. 23, no. 4, pp. 684–694, Apr. 2013.

[40] M. A. Saad, A. C. Bovik, and C. Charrier, ‘‘DCT statistics model-based

blind image quality assessment,’’ in Proc. 18th IEEE Int. Conf. Image

Process., Sep. 2011, pp. 3093–3096.

[41] E. P. Simoncelli, W. T. Freeman, E. H. Adelson, and D. J. Heeger,

‘‘Shiftable multiscale transforms,’’ IEEE Trans. Inf. Theory, vol. 38, no. 2,

pp. 587–607, Mar. 1992.

[42] A. K. Moorthy and A. C. Bovik, ‘‘Blind image quality assessment: From

natural scene statistics to perceptual quality,’’ IEEE Trans. Image Process.,

vol. 20, no. 12, pp. 3350–3364, Dec. 2011.

[43] B. A. Olshausen and D. J. Field, ‘‘How close are we to understanding V1?’’

Neural Comput., vol. 17, no. 8, pp. 1665–1699, Aug. 2005.

VOLUME 8, 2020 143217

http://dx.doi.org/10.1109/TPAMI.2019.2917037
http://dx.doi.org/10.1117/12.2001342


J. Beron et al.: Blind IQA for SR via Optimal Feature Selection

[44] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli,

‘‘Image quality assessment: From error visibility to structural

similarity,’’ IEEE Trans. Image Process., vol. 13, no. 4, pp. 600–612,

Apr. 2004.

[45] H. Yeganeh, M. Rostami, and Z. Wang, ‘‘Objective quality

assessment for image super-resolution: A natural scene statistics

approach,’’ in Proc. 19th IEEE Int. Conf. Image Process., Sep. 2012,

pp. 1481–1484.

[46] A. K. Moorthy and A. C. Bovik, ‘‘Statistics of natural image distortions,’’

in Proc. IEEE Int. Conf. Acoust., Speech Signal Process., Mar. 2010,

pp. 962–965.

[47] J. Beron, H. D. B. Restrepo, and A. C. Bovik, ‘‘Optimal feature selection

for blind super-resolution image quality evaluation,’’ in Proc. ICASSP -

IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), May 2019,

pp. 1842–1846.

[48] H. R. Sheikh, Z. Wang, L. Cormack, and A. C. Bovik. Live Image Quality

Assessment Database Release 2. Accessed: Oct. 10, 2018. [Online]. Avail-

able: http://live.ece.utexas.edu/research/quality

[49] P. Pudil, J. Novovičová, and J. Kittler, ‘‘Floating search methods in fea-

ture selection,’’ Pattern Recognit. Lett., vol. 15, no. 11, pp. 1119–1125,

Nov. 1994.

[50] D. M. Corey, W. P. Dunlap, and M. J. Burke, ‘‘Averaging correlations:

Expected values and bias in combined Pearson rs and fisher’s z trans-

formations,’’ J. Gen. Psychol., vol. 125, no. 3, pp. 245–261, 1998, doi:

10.1080/00221309809595548.

[51] I. F. Nizami, M. Majid, and K. Khurshid, ‘‘New feature selection algo-

rithms for no-reference image quality assessment,’’ Int. J. Speech Technol.,

vol. 48, no. 10, pp. 3482–3501, Oct. 2018.

[52] I. F. Nizami, M. Majid, W. Manzoor, K. Khurshid, and B. Jeon,

‘‘Distortion-specific feature selection algorithm for universal blind image

quality assessment,’’ EURASIP J. Image Video Process., vol. 2019, no. 1,

p. 19, Jan. 2019.

[53] K. R. Rao and P. Yip,Discrete Cosine Transform: Algorithms, Advantages,

Applications. Boston, MA, USA: Academic, 1990.

[54] A. C. Bovik, ‘‘Automatic prediction of perceptual image and video qual-

ity,’’ Proc. IEEE, vol. 101, no. 9, pp. 2008–2024, Sep. 2013.

[55] Y. Blau, R. Mechrez, R. Timofte, T. Michaeli, and L. Zelnik-Manor, ‘‘2018

PIRM challenge on perceptual image super-resolution,’’ in Proc. ECCV

Workshops, 2018, pp. 334–355.

[56] Z. Wang, E. P. Simoncelli, and A. C. Bovik, ‘‘Multiscale structural simi-

larity for image quality assessment,’’ in Proc. 37th Asilomar Conf. Signals,

Syst. Comput., vol. 2, Nov. 2003, pp. 1398–1402.

[57] L. Zhang, L. Zhang, X. Mou, and D. Zhang, ‘‘FSIM: A feature similarity

index for image quality assessment,’’ IEEE Trans. Image Process., vol. 20,

no. 8, pp. 2378–2386, Aug. 2011.

[58] S. Bosse, D. Maniry, K.-R. Müller, T. Wiegand, and W. Samek, ‘‘Deep

neural networks for no-reference and full-reference image quality assess-

ment,’’ IEEE Trans. Image Process., vol. 27, no. 1, pp. 206–219,

Jan. 2018.

[59] J. Kim, H. Zeng, D. Ghadiyaram, S. Lee, L. Zhang, and

A. C. Bovik, ‘‘Deep convolutional neural models for picture-quality

prediction: Challenges and solutions to data-driven image quality

assessment,’’ IEEE Signal Process. Mag., vol. 34, no. 6, pp. 130–141,

Nov. 2017.

[60] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, ‘‘The unrea-

sonable effectiveness of deep features as a perceptual metric,’’ in Proc.

IEEE/CVF Conf. Comput. Vis. Pattern Recognit., pp. 586–595, vol. 34,

no. 6, Jun. 2018.

JUAN BERON (Student Member, IEEE) received

the B.S. degree (Hons.) in electronics engineer-

ing for his undergraduate project and academic

performance from Pontificia Universidad Javeri-

ana, Cali, Colombia, in 2019. His main research

interests include computer vision, image and video

processing, and image quality assessment.

HERNAN DARIO BENITEZ-RESTREPO (Mem-

ber, IEEE) received the B.S. degree in electronics

engineering from Pontificia Universidad Javeri-

ana, Cali, Colombia, in 2002, and the Ph.D. degree

in electrical engineering from the Universidad del

Valle, Cali, in 2008. Since 2008, he has been with

the Department of Electronics and Computing,

Pontificia Universidad Javeriana Seccional Cali.

Since 2010, he has been an Adjunct Professor with

the Laboratory of Computer Vision and Systems,

Université Laval, Quebec City, Canada. His main research interests encom-

pass image and video quality assessment, infrared vision, and digital signal

processing. He has been a member of the Scientific Editorial Board of the

Quantitative Infrared Thermography Journal, since 2014. He is a member

of SPIE. In 2011, he received the Merit Scholarship for short-term research

from the Ministére de l’Education, du Québec to pursue research on infrared

vision with the Laboratory of Computer Vision and Systems, Université

Laval. He was a recipient of a Fulbright Visiting Researcher Scholarship

to carry out research on video quality assessment with the Laboratory of

Image and Video Engineering (LIVE), The University of Texas at Austin,

in 2019. He was a Chair of the Colombia’s IEEE SIGNAL PROCESSING, from

2012 to 2017.

ALAN C. BOVIK (Fellow, IEEE) is currently a

Cockrell Family Regents Endowed Chair Profes-

sor with The University of Texas at Austin. His

research interests include image processing, dig-

ital television, digital streaming video, and visual

perception. Hewas a recipient of the 2019 Progress

Medal from the Royal Photographic Society,

the 2019 IEEE Fourier Award, the 2017 Edwin H.

Land Medal from the Optical Society of America,

the 2015 Primetime Emmy Award for Outstanding

Achievement in Engineering Development from the Television Academy,

and the Norbert Wiener Society Award and the Karl Friedrich Gauss Edu-

cation Award from the IEEE Signal Processing Society. A perennial Web of

Science Group Highly-Cited Researcher, he has also received about ten best

journal paper awards, including the 2016 IEEE Signal Processing Society

Sustained Impact Award. His recent books include The Essential Guides to

Image and Video Processing. He co-founded and was the longest-serving

Editor-in-Chief of the IEEE TRANSACTIONS ON IMAGE PROCESSING and cre-

ated/chaired the IEEE International Conference on Image Processing which

was first held in Austin, TX, USA, in 1994.

143218 VOLUME 8, 2020

http://dx.doi.org/10.1080/00221309809595548

