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Abstract—We propose a fully unsupervised no reference image
quality assessment (IQA) model that is based on the hypoth-
esis that distorted images have latent characteristics that are
indicative of type of artifacts manifested by them, and that the
latent characteristics of distorted images differ from the latent
characteristics of ‘natural’ or ‘pristine’ images. These latent
characteristics are uncovered by applying a ‘topic model’ to
suitably chosen quality-aware visual words extracted from the
images. The difference between the probability of occurrence
of these latent characteristics in unseen images and latent
characteristics learned from a large number of pristine natural
images yields a quality measure. We show that this measure
correlates well with human difference mean opinion scores on
the LIVE IQA database [1].

Index Terms—Local artifact, image quality, topic model, pLSA,
distortions.

I. INTRODUCTION

The past decade has witnessed great advances in multimedia

technology, and a great variety of new devices for capture,

storage, compression, transmission, and display of audiovisual

stimuli have been developed. This has resulted in considerable

research in providing the best quality of experience (QoE) to

the end-users. While conventional QoE algorithms primarily

focus on optimizing throughput, buffer-lengths, and capacity

of delivery networks, perceptual optimization of multimedia

services is also fast gaining importance, especially in an era of

growing video traffic coupled with bandwidth paucity. These

perceptual approaches attempt to deliver the optimum QoE to

the end-user by utilizing objective measures of visual quality.

Full reference (FR) image quality algorithms require both

the distorted image and the pristine image, based on which

the quality of the distorted image is assessed1. No-reference

algorithms do not rely on the availability of pristine images.

Current state of art no-reference image quality assessment

algorithms can predict image quality without knowing the

type of distortion the images are afflicted with [3], [4], [5],

[6], [7], [8] . However, these algorithms do require auxiliary

information in the form of human opinion scores that are used

for learning regression-based models to predict the quality

of distorted images. Simulating different kinds of source and

channel distortions, and then obtaining human opinion scores

is an expensive and time consuming procedure. Further, these
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1By ‘pristine’, we mean an image that has not been subjected to any
distortions beyond those that normally occur during a quality photo shoot
under good conditions. However, no image is truly without distortions, which
casts some doubts on the basic assumptions of full reference algorithms [2].

methods are limited in application by the distortions they are

trained on. Towards this goal, we propose a fully unsupervised

image quality assessment model that requires no training on

human opinion scores. Our approach is based on the hypoth-

esis that distorted images have certain latent characteristics,

which we refer to as latent quality factors (LQFs) that differ

from the corresponding LQFs of ‘natural’ or ‘pristine’ images.

These LQFs are discovered by modeling images as distribu-

tions over representative ‘quality-aware’ visual words, where

the visual word vocabulary is formed by clustering ‘quality-

aware’ features that best describe local image distortions [3].

The model we use here, popularly known as probablistic

latent semantic analysis (pLSA), was first used to discover

meaningful topics that were latent in a large corpora of text

documents [9]. Sivic et al. [10] subsequently used this model

to discover latent object categories from real world images

by modeling the images as distributions over visual words in

a vocabulary formed by clustering local appearance features

such as SIFT features [11]. In our proposed approach, the

topics or LQFs discovered by the pLSA model correspond to

artifacts introduced by different kinds of distortions such as

‘blockiness’, ‘blurriness’, and ‘graininess’. Using the discov-

ered LQFs from pristine and distorted images, we propose a

new model of image quality. Our model is based on computing

how different the probability of occurrence of LQFs discovered

in an unseen image is when compared to the previously learned

LQFs from pristine images. We show that this quality measure

correlates reasonably well with difference mean opinion scores

(DMOS) on the LIVE IQA database [1].

II. PROPOSED APPROACH

A. Probabilistic Latent Semantic Analysis

We first briefly review the pLSA model of Hofmann [9].

Let us suppose that the corpus is a collection of N documents,

which in our case are the pristine and distorted images. The

visual vocabulary comprises of W visual words with the ith

word denoted by wi. The jth image Ij is assumed to comprise

of Wj words with the ith word denoted by wij . We further

assume that there are K LQFs that pervade the images in the

corpus, with the kth factor denoted by the indicator variable

zk. In other words, every image can be represented as a

distribution over K topics, with a latent topic zk associated

with every word wij in the image Ij . The joint probability

P(wij ,Ij ,zk) is best illustrated in Fig. 1.

The conditional probability of observing a word wij given

an image Ij is is obtained by marginalizing over the latent fac-

tors zk i.e. P (wij |Ij) =
∑K

k=1
P (zk|Ij)P (wij |zk). The LQFs
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Fig. 1. Graphical representation of the pLSA model.

that pervade the collection of images, and their probabilities

given an image, can be inferred by finding the model that best

explains the probability distribution of the visual words in the

images. This is the maximum likelihood estimate of the model

parameters, which can be computed using the expectation-

maximization (EM) algorithm described in [9]. The model-

fitting procedure yields the image specific topic distributions

P (z|I), and the topic specific word distributions P (w|z). The

pLSA framework uses the ‘bag of words’ approach as the

spatial arrangement of word occurrences is not taken into

account.

B. Quality-Aware Features

While we do not use perceptually relevant human scores

to train our model, we do rely on natural scene statistic

(NSS) features to capture perceptually relevant scene prop-

erties. Specifically, we use the NSS features introduced in

the Referenceless Image Spatial QUality Evaluator Engine

(RISQUEE) [3] to compute features over every image patch.

The principle behind RISQUEE feature design is that natural

images obey specific regular statistical properties, which are

disrupted by the presence of distortions [12]. Quantifying such

deviations from regularity of natural scene statistics is quite

useful for assessing the perceptual quality of images [3], [13],

[4], [5], [7], [8]. As shown in [3], [13], [4], [5], [7], [8], such

characterization is sufficient not only to quantify naturalness,

but also to identify the distortions the images are afflicted

with. The RISQUEE NSS features naturally blend into the

topic modeling framework where the inferred topics emerge

out as LQFs that are characteristic of ‘pristineness’ and of the

artifacts induced by different distortions.

The RISQUEE features represent statistics of normalized

luminance coefficients of images [3]. The RISQUEE features

also utilize a model for pair-wise products of neighboring

(normalized) luminance values. The RISQUEE feature vector

computed over each patch is a 36-dimensional vector.

C. Construction of Visual Vocabulary

The approach we take to build the visual word vocabulary

is similar to that described by Sivic et al. [10], the key

and crucial difference being the choice of features used to

construct the visual vocabulary - quality based [3] vs local

appearance based [11]. The visual words are formed by

clustering features computed from multiple patches across

all the images in the collection. Each image is divided into

overlapping patches of size 64×64, with an overlap of 8×8

between neighboring patches, and local RISQUEE features are

computed over each patch. We did not observe a significant

difference in performance when the patch size was changed to

32×32, with an overlap of 8×8 between neighboring patches.

Feature vectors from all patches across all images are clustered

into W = 400 visual words using the k-means clustering

algorithm with the squared euclidean distance metric. Again,

we observed that 400 visual words were sufficient and no

improvement in performance was obtained when the visual

word count was increased to 1000. This is followed by vector

quantization, where every patch is assigned to the nearest

cluster center. This yields an empirical distribution over the

visual words. Note that the use of visual words has been

recently explored for assessing image quality by Ye and

Doerman [14]. However, in their approach, visual words were

formed using Gabor based local appearance descriptors as

opposed to using ‘quality-aware’ visual words. Also, Ye and

Doerman used a supervised approach that involved training

with DMOS scores, while our approach is based on pLSA,

which is a completely unsupervised topic model.

D. Image Quality Inference

The topic specific word distribution P (w|z) learned from

an existing collection of images comprising of both pristine

and distorted images via the model-fitting procedure (EM)

is used to infer the latent quality factors in a new image

not contained in the collection. When a new image Inew is

observed, the mixing coefficients of the latent quality factors

P (zk|Inew) can be computed using the ‘fold-in’ heuristic

described in [9]. Essentially, for the new image Inew, the

empirical visual word distribution i.e. P (w|Inew) is first

computed. Then, the topic mixing coefficients P (z|Inew)
are sought such that the Kullback-Leibler divergence be-

tween the empirical visual word distribution P (w|Inew) and

P (w|Inew) =
∑K

k=1
P (zk|Inew)P (w|zk) is minimized. The

mixing coefficients P (z|Inew) are again estimated by running

EM, but this time only the mixing coefficients are updated,

while P (w|z) estimated during the model fitting procedure is

held fixed.

The vector of estimated topic mixing coefficients of the new

image Inew (i.e. the estimated P (z|Inew)) is now compared to

the vector of the estimated topic mixing coefficients of each

pristine image in the existing collection. The topic mixing

coefficients of the pristine images in the existing collection are

obtained during the model fitting procedure that was carried

out to learn the topic-specific word distribution P (w|z). The

comparison is done by computing the dot product between

the two vectors. The average dot product computed across

all pristine images in the existing collection is indicative of

the image quality. Mathematically, this can be represented as

Q(Inew) = 1/Np

∑Np

n=1
P (z|Inew)

′P (z|In), where Q(Inew)
is the inferred quality of the new image, ′ is the transpose
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operator, and In is the nth pristine image in the existing

collection, which comprises of Np pristine images. Due to the

linearity of the dot product, we can write this as Q(Inew) =

P (z|Inew)
′(1/Np

∑Np

n=1
P (z|In)). This expression intuitively

suggests that our quality measure can be seen as an estimate

of a measure of disruption relative to an ‘anchor’ point learned

from pristine images, where the ‘anchor’ refers to the average

topic mixing coefficients of the pristine images given by

1/Np

∑Np

n=1
P (z|In).

III. EXPERIMENTS AND RESULTS

We have conducted our analysis of LQFs and image quality

inference on the LIVE IQA database [1], which contains

29 reference images and 5 distortion types - JPEG, JPEG

2000 (JP2K), Blur, White Noise and Fast Fading (FF). We

performed a 1000-fold validation experiment on the LIVE IQA

database [1], where in, in each run of the experiment, we

randomly select 6 reference images and their associated dis-

torted versions for performance evaluation, and 23 (different)

reference images and their associated distorted versions for

learning the LQFs. This ensures that the 2 sets are completely

disjoint and they neither share content, nor do they share

specific distortion severities. The EM model-fitting procedure

in pLSA is sensitive to the choice of the initial parameters,

which are selected at random. To ensure convergence to

the best model during the learning process, we ran EM 20

times, with each EM run initialized with different parameters

chosen randomly. We then picked the model that yielded the

highest log likelihood score. For the analysis of the LQFs, we

experimented by fixing the number of factors (topics) to 3 and

6. For image quality inference, we fixed the number of LQFs

to 3.

A. Analysis of Latent Quality Factors

We analyzed the LQFs that were learned from the pristine

and distorted image set. Fig. 2 illustrates examples of image

patches assigned to each discovered LQF when the number

of latent factors was fixed to 3. As can be seen from the

figure, the image patches that are representative of each LQF

are clearly different. For example, one set of patches appear

to be afflicted with distortions that decrease the energy of the

pristine signal (at the same scale or in the same band) due

to a low-pass operation such as Gaussian blur or JP2K, while

another set of patches seemingly belong to a set of distortions

that increase the energy of the pristine signal such as white

noise or JPEG blocking. Likewise, pristine image patches are

all assigned to one quality factor. When the number of LQFs

is increased to 6, image patches that correspond to white noise

and JPEG blocking artifacts are assigned to different LQFs as

illustrated by Fig. 3. Also, pristine patches begin to separate

out into different topics.

B. Image Quality Inference

Table I and Table II lists the median values of the

Spearman rank ordered correlation coefficient (SROCC) and

linear correlation coefficient (LCC), respectively, for our new,

completely unsupervised quality assessment measure based on

LQFs over 1000 trials . For comparison, we also show the

SROCC and LCC for the peak signal to noise ratio (PSNR)

metric, which is a full reference IQA metric . The results in

Table I and Table II clearly show that the proposed quality

measure correlates reasonably well with human perception.

Although this early model does not yet compete with full

reference IQA models and IQA models that are trained on

DMOS scores, these results are very promising considering

that this is a fully unsupervised approach and there is no

training using DMOS scores.

IV. CONCLUSION AND FUTURE WORK

We presented a completely novel way of determining per-

ceptual image quality based on applying a topic model on

image patches represented in a suitable quality-aware space,

and then examining the topic distributions for each image.

This method is competely unsupervised, and obviates the

manually intensive process of obtaining DMOS scores. The

resulting image quality model can be visualized as a measure

of disruption relative to an ‘anchor’ point learned from pristine

images. We have shown that our quality model correlates

reasonably well with DMOS scores on the LIVE IQA database

[1]. Our future work will be focused on gaining a better

understanding of the interplay between the number of topics

and inferred image quality and experimenting with a more

sophisticated topic model such as Latent Dirichlet Allocation

[15].
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JP2k JPEG WN Blur FF All
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TABLE I
MEDIAN SPEARMAN’S RANK ORDERED CORRELATION COEFFICIENT (SROCC) ACROSS 1000 TRAIN-TEST EXPERIMENTS ON THE LIVE IQA DATABASE.
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Proposed Approach 0.863 0.901 0.878 0.787 0.812 0.800

TABLE II
MEDIAN LINEAR CORRELATION COEFFICIENT (LCC) ACROSS 1000 TRAIN-TEST EXPERIMENTS ON THE LIVE IQA DATABASE.

Fig. 2. Examples of image patches assigned to three LQFs discovered by the pLSA model.

Fig. 3. Examples of image patches assigned to six LQFs discovered by the pLSA model.
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