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Blind Intensity Estimation from Shot-Noise Data
Rául E. Sequeira,Member, IEEE, and John A. Gubner,Member, IEEE

Abstract—The estimation of the intensity function of an inho-
mogeneous Poisson process is considered when the observable
data consists of sampled shot noise that results from passing
the Poisson process through an unknown linear time-invariant
system. The proposed method consists of first estimating a his-
togram of the underlying point process. The estimated histogram
is used to construct a kernel estimate of the intensity function.
An estimate of the unknown impulse response of the linear time-
invariant system is constructed via a regularized backsubstitution
of a discrete-time convolution with the estimated histogram.

I. INTRODUCTION

I N A VARIETY of physical applications, including direct-
detection optical communications systems and quantum-

limited imaging, the mathematical models involve inhomo-
geneous Poisson processes at some stage in the system [1],
[3], [10], [17], [27]. The main elements of these processes
are a collection of random events (occurrence times
or positions, depending on the application) and an intensity
function governing the statistics of the [27]. In these
applications, is the function of interest. Sincecan never be
directly observed, inference about it can only be made based
on observation of the or on functionals of the .
For example, in optical communications and quantum-limited
imaging, the data can be modeled by the random superposition

(1.1)

where is the impulse response, or point-spread function,
resulting from the finite bandwidth of the system. The random
process (1.1) is known asshot noise(filtered point process).

Two examples of 1-D shot-noise data are shown in Figs. 1
and 2. In Fig. 1, has a discontinuity at the origin, and hence,

has a discontinuity at each ; in Fig. 2, is continuous,
and hence, is also continuous.

In our prior paper [24], the problem of estimatingwas
addressed under the assumption that the impulse responseis
known. SinceE , this led to obtaining
an approximate solution to the noisy integral equation

(1.2)

where E is a zero-mean “noise” term. In
the present paper, we remove the assumption thatis known
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Fig. 1. Shot noisez(t) from Example 1.

Fig. 2. Shot noisez(t) from Example 2.

and address the joint estimation ofand based on discrete
samples of , say, , without making
any assumptions on the shape of. Our approach is to first
obtain an estimate of a histogram of the ; the estimate
of is then obtained as an approximate solution to a discrete
convolution equation, and that of is obtained as akernel
intensity estimatemodified for histogram data.

Blind deconvolution problems arise in a variety of contexts,
and there is a considerable literature on this subject, e.g., [4],
[6], [8], [12]–[16], [21], [23], [25], [28], [29]. Because these
references consider a different model from the one considered
here, the methods developed therein are not tailored for shot-
noise data. Therefore, we develop a new method for addressing
the blind deconvolution problem when the data can be modeled
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as shot noise (1.1). When is constant (the homogeneous
case), is a stationary process, and the estimation ofand
can then be addressed via spectral analysis; this special case
has been addressed, e.g., in [22] and [30].

This paper is organized as follows. In the next section, we
obtain an estimate of a histogram of the . We consider the
two cases and . A discrete version of the
problem is stated in Section II-C, and the estimate ofis then
obtained as an approximate solution to the resulting discrete
convolution equation. Numerical examples are presented in
Section II-C1. The estimate of is obtained in Section II-
D, and numerical examples are given in Section II-D3. The
results of Section II-D motivate an approach, other than the
one presented in [24], for estimating for the case when
is known; this is addressed in Section II-E. The conclusions
appear in Section III.

II. THE JOINT ESTIMATION OF AND

Our only explicit assumption about is that
for ; hence, the occurrence times are positive with
probability one. For , let denote the number of
that occur in the interval . Then, for ,

where . If , we take
for .

In this paper, we restrict our attention to two classes of
impulse response. We say an impulse responseis of class one
if it is causal, continuous on , and right continuous at 0
with ; without loss of generality, we take .
We say that is a class-two impulse response if it is the
integral of a class-one impulse response.

Our estimation of and will be based on samples of
, say, , where is the sampling

period. For class-one impulse responses, we assume that
is chosen small enough that the modulus of continuity

satisfies .
For a class-two impulse response, we assume that is
chosen small enough that , where is the
derivative of .

In order to estimate and , we also need to estimate the
impulse train . Because the data is sampled, what we estimate
is, as explained below, a histogram of the.

Notation: Let . A vector in is denoted
. If is a function of time, then

denotes the vector of samples, i.e., . There
is one exception—the histogram—where

is the number of events from that occur in the
interval . If is a linear combination
of some linearly independent functions , we let

be the vector of coefficients
such that ; in this case, .

We are interested in estimating by a function
span ; our task, therefore, is to find its coordinate
vector . The estimate of will be expressed as a kernel

intensity estimate. We also explain how can be used to
estimate with the regularization approach of [24].

A. The Estimate of When is of Class One

In this case, we write , where
is the unit step function, for and
for , and where ; hence, is
causal and since is continuous. We can then
rewrite as

(2.1)

where

(2.2)

and can be viewed as shot noise with impulse response.
Since is continuous, one might think of recovering the

by finding the discontinuities of , i.e., by finding those
points where contains an impulse; however, since only
finitely many samples of are available, namely, the entries of

, this approach cannot be undertaken.
We proceed by taking differences, which are the discrete
analog of differentiation.

Consider the first and second differences

and

In this case, , and

Fig. 3 shows a plot of from Example 1 in Section II-
D3 below; the lower-level pattern corresponds to thosefor
which . If the random process in (2.2) satisfies
(A.1) in Appendix A, then

(2.3)

and the appear to be approximately on a lattice. Fig. 4
shows a plot of from Example 1; in this example, (A.1)
is true, and hence, the satisfy (2.3).

Observe now that if is an estimate of , then
would result from rounding to the nearest in-

tegral multiple of . This rounding operation can be expressed
as , where

gives the units for quantizing to the nearest integral
multiple of the quantum . Hence, if , can be
recovered from since , and
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Fig. 3. Example 1:d1(k).

Fig. 4. Example 1:d2(k).

for . This motivates our estimating
by

(2.4)

From (2.3), we see that if , for some , then
would result. The details on how to chooseappear

in Appendix A.

B. The Estimate of When Is of Class Two

In this case, can be written as for
some class-one function satisfying ; in
turn, we write , where

. We can then write

(2.5)

where

(2.6)

and can be viewed as shot noise with impulse response
. Since is continuous, one might think of re-

covering the by finding the discontinuities in , i.e.,

Fig. 5. Example 2:d1(k).

by finding those points where contains an impulse; this
approach cannot be undertaken since only a finite set of
samples from is available. We again proceed by taking
differences. Figs. 5 and 6 show the plots of and
from Example 2 in Section II-D3; the smooth trend below the

corresponds to , where

(2.7)

Notice that no pattern is apparent in these plots, in contrast
with Figs. 3 and 4, where . This makes the problem
of estimating more difficult now than in the case of Section
II-A. As explained in Appendix B

Our approach for obtaining is to first obtain , which is an
estimate of , and then take

(2.8)

where the quantum is now an estimate of ; notice
that is expected (we write to stress the
dependence of on ). The details for obtaining and
choosing a value for are given in Appendix B.

C. The Estimate of

Recall that we are interested in estimatingby

(2.9)

In this section, we find the coordinate vector. We first obtain
a discrete formulation of the problem; we useto denote the
discrete convolution operation

and we use to denote the lower-triangular matrix

...
...

Note that .
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Fig. 6. Example 2:d2(k) ands2(k) (smooth trend at the bottom).

At the beginning of Section II, we wrote the data as
and ; observe that if

the were integral multiples of , then
would hold. In view of (2.9), ; we now
obtain as a function of and . Notice that since the do
not occur on a lattice, it is not advisable to let
even if (here, denotes the pseudoinverse of the
matrix ). Instead, we proceed by obtaining aregularized
solution to

where ; we take

for some (to be selected in Appendix C), where
, and (this norm was introduced

to approximate the norm of ). An easy
calculation shows that

which is the solution to an system of equations.
1) Numerical Examples:In this section, we present numer-

ical examples of the estimation of the impulse responsefor
different and different . These examples are continued in
Section II-D3 below, where we address the estimation of the
intensity . The shot-noise data was obtained by generating

E independent random points
over with density and then
using (1.1) to obtain . We took samples of over

with to form the data vector.
We took span , where the are the

cubic B-splines [5] generated by the NAG [18] subroutine
E02BCF when there are four coincident knots at both end
points of and nine uniformly spaced internal knots at

.
In Examples 1–3, we used point-process data corresponding

to the high-variation shown later in Fig. 15 (dotted line). In
the first example, we considered a class-one impulse response

with a discontinuity at the origin; in Examples 2 and 3,

TABLE I
PARAMETERS FOR EXAMPLES 1–7

Fig. 7. Example 1:̂h(t) (solid line) andh(t) (dotted line). (High-variation
�.)

was a continuous class-two impulse response. The parameters
, and for each example are given in

Table I. (The significance of is explained in Appendix B,
and that of , , and is explained in Section II-D.)

Example 1: We begin with a class-one impulse response
with a jump at the origin .
The shot noise data for this example was shown earlier in
Fig. 1. We obtained following the procedure in Section II-
A. The first and second differences and were shown
earlier in Figs. 3 and 4. The estimateis shown in Fig. 7
along with the function .

Example 2: We now consider the continuous class-two
impulse response . The shot-
noise data for this example was shown earlier in Fig. 2. We
estimated as explained in Section II-B. The differences
and were shown earlier in Figs. 5 and 6. The estimateis
shown in Fig. 8 along with the function.

Example 3: In the previous example, the factor in
caused to have a lot of oscillation. In this example,

we changed to ; the reduced oscillation
allowed us to get a better estimate of. We took

(class-two ). The estimate is
shown in Fig. 9 along with . To gain a general sense of the
behavior of the estimates to varying the shot-noise data, the
estimates of obtained from five realizations of with

are shown in Fig. 10. Observe that these
estimates show all the features in, where some have minor
oscillations near the tail, and that only one of the estimates
is over smoothed.
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Fig. 8. Example 2:̂h(t) (solid line) andh(t) (dotted line). (High-variation
�.)

Fig. 9. Example 3:̂h(t) (solid line) andh(t) (dotted line). (High-variation
�.)

In Examples 4–6 below, the point-process data corresponds
to the medium-variation, two-peak shown later in Fig. 21
(dotted line). We considered the same impulse responsesas
in the previous examples to compare the method of estimating

to varying (i.e., to varying the number of random points
as well as their distribution). The shot-noise data is not

shown. The relevant parameters are summarized in Table I.
Example 4: In this case, ,

as in Example 1. The estimate is shown in Fig. 11, along
with the impulse response. This looks very similar to the
one shown in Fig. 7, i.e., varying had little effect on the
quality of the estimate.

Example 5: In this case, ,
as in Example 2. The function and the estimate are shown
in Fig. 12. Comparing this estimate with the one shown in
Fig. 8, we see that a better estimate ofresulted when was
higher.

Example 6: Here, , as in
Example 3. The estimate is shown in Fig. 13 along with .
This , like that in the previous example, shows a spurious
oscillation near the tail, which is not present in the estimate
obtained in Example 3.

Fig. 10. Example 3: The estimates ofh obtained from different realizations
of z(t). (High-variation�.)

Fig. 11. Example 4:̂h(t) (solid line) andh(t) (dotted line). (Two-peak�.)

D. The Estimate of

We now obtain the estimateof the intensity ; we consider
a kernel intensity estimatemodified for histogram data. For
the purpose of comparison, we also consider a version of the
approach presented in [24], which is useful for the case where

is small.
1) The Kernel-Estimate Approach:If were avail-

able, a natural approach for estimatingwould be to write
the estimate as a kernel intensity estimate. A modification
of this method is carried out below to handle histogram data.

Recall that , and let . A kernel intensity
estimate of is a function of the form

where thekernel is usually a symmetric probability density
function, and is the kernel width.

Note that when integrates to one, .

However, the true intensity satisfies
E . Hence, if the particular Poisson-process realization we
are dealing with contains a number of points that is much
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Fig. 12. Example 5:̂h(t) (solid line) andh(t) (dotted line). (Two-peak�.)

different from the expected number of points, the intensity
estimate will lie above or below the true intensity.

A common optimality criterion for choosing and , in
the context of density estimation, is to minimize themean
integrated squared error(MISE) E . On the basis
of this criterion, there is a large amount of flexibility in the
choice of , but the choice of is a delicate matter [26].
Given , a popular method for choosing is least-squares
cross-validation[26], which consists of choosing as the
minimizer of

where denotes the convolution of with itself. is
an unbiased estimate ofE , i.e., of the part of
the MISE involving .

Since neither nor is available, we use instead
the estimates and the histogram , and we choose

as the minimizer of

In spite of the similarity between and , this method of
choosing should be used with caution when dealing with
discretized data; see [26, pp. 51 and 52] for details. A typical

curve is shown in Fig. 14.
Kernel estimates are known to behave poorly near the

boundaries of the data interval if the underlying intensity or
density is not zero at the boundaries. Since we have data only
over the interval , and we are interested in estimating

for , we need to make some boundary
adjustments to improve the quality of the estimate near the

Fig. 13. Example 6:̂h(t) (solid line) andh(t) (dotted line). (Two-peak�.)

Fig. 14. ~
R(w) for Example 1.

end points. To this end, and to account for the data being
histogram data (as opposed to exact data), we modify slightly
the approach taken in [9]: Once is chosen, we take

(2.10)

for . The end point corrections consist of appending
symmetrical versions of to , the symmetry being with
respect to either end point. The first term in the expression
for is the usual term; the second and third ones correspond,
respectively, to corrections at and at .

Remark: In our examples, is symmetric and integrates
to one. Hence, the kernel intensity estimate in (2.10) satisfies

. However, the true intensity

satisfies E . Therefore, if is
much different from the expected number of points will
lie above or below the true intensity; see, e.g., Figs. 18 and
19.

2) The Regularization Approach:We now consider obtain-
ing with a version of the method presented in [24]. The
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Fig. 15. Example 1 (continued): Kernel estimate�̂(t) (solid line) and�(t)
(dotted line).

Fig. 16. Example 1 (continued):̂�(t) from Fig. 15 (solid line) and the kernel
estimate without end corrections (dotted line).

estimate is of the form

where the are linearly independent functions; our task is
to obtain the coordinate vector(we use the underbar notation
to denote a vector in either or ; it should be clear
from the context what is meant).

The first step for obtaining is to choose values for the pair
of regularization parametersand in [24]. To choose , we
examine a plot of either of [24, Section VI]
and then take . In our numerical examples below,
we examine . Since is not known, we substitute our
estimate in place of in the equations involving . Hence,
we can expect results that are comparable with those in [24]
if is close to .

As in [24], let denote the right-hand side of [24,
Eq. (2.3)]; to obtain , we scale as follows. Recall that

, and now, let . Since

is the natural estimate of, we take
so that .

Fig. 17. Example 1 (continued): Kernel estimates of� obtained from dif-
ferent realizations ofz(t).

Fig. 18. Example 2 (continued): Kernel estimate�̂(t) (solid line) and�(t)
(dotted line).

Fig. 19. Example 3 (continued): Kernel estimate�̂(t) (solid line) and�(t)
(dotted line).

Typically, a larger number of data samples will be required
for the joint estimation of and than for estimating when
is known. The matrix of [24, Section V] is of size ; for
computational tractability in the numerical examples below,
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Fig. 20. Example 3: Kernel estimates of� obtained from different realiza-
tions of z(t).

Fig. 21. Example 4:̂�reg(t) (solid line), �̂ker(t) (dashed line), and�(t)
(dotted line).

once and are obtained, we use only a few data samples
for obtaining .

3) Numerical Examples:We now continue the numerical
examples in Section II-C1; we obtain the estimate of
corresponding to the different pairs considered there.
The first three examples illustrate the kernel-estimate approach
of Section II-D1; the next four illustrate also the approach
from [24] adapted in the previous section. Even though the
kernel-estimate approach is conceptually simpler and requires
fewer computations than the regularization approach, our last
example shows that when the number of is small (low-
intensity ), the former approach may not be as effective as
the latter one.

To obtain a kernel estimate of, we need to choose a
kernel ; for computational convenience, we use the standard
normal density ; in this case,

. The kernel width is chosen
to minimize , as explained in Section II-D1.

The relevant parameters for these examples are summarized
in Table I. We now continue Examples 1–3, in which the point-

process data corresponded to the high-variationshown in
Fig. 15 (dotted line); here,

, and .
Example 1 (Continued):A plot of was shown earlier

in Fig. 14. The kernel estimate is shown in Fig. 15 along
with the function . To see the importance of the end cor-
rections for kernel estimates, Fig. 16 shows the two kernel
estimates corresponding to , with (solid line)
and without (dotted line) end corrections. Fig. 17 shows the
kernel estimates of obtained from five realizations of the
shot noise with . These estimates all show
the main features in . In each case, resulted.
The corresponding estimateswere all very close to that in
Fig. 7 and are not shown.

Example 2 (Continued):The kernel estimate is shown in
Fig. 18 along with the function . Since our estimate of ,

is too high, so is our estimate. (Recall the remark
following (2.10).)

Example 3 (Continued):The kernel estimate is shown in
Fig. 19 along with the intensity . Fig. 20 shows the kernel
estimates of corresponding to the five realizations of
from which resulted the estimates ofshown in Fig. 10. The
corresponding ranged from 688 to 983.

In the next examples, the kernel estimate ofis called
, whereas the estimate obtained via the regularization

approach of Section II-D2 is called . The latter is expressed
as a linear combination of the cubic B-splines
generated by the NAG subroutine E02BCF when there are four
coincident knots at both end points of and 17 uniformly
spaced internal knots at .

Since is too large for the numerical computations
in Section II-D2, we usedonly the 64 data samples obtained
by subsampling every units to plot the

-curve (not shown) as in [24] to choose the pair .
The original 512 data samples were used for obtaining.

Example 4 (Continued):Recall that in this example, had
a jump at the origin and that a very good estimatewas
obtained; and were shown in Fig. 11. The two estimates

(solid line) and (dashed line) are shown in Fig. 21,
along with the intensity (dotted line). The two methods for
estimating gave comparable results, but behaves better
near the end points, and it shows better the two peaks of.

Example 5 (Continued):The estimate in this case was
shown earlier in Fig. 12 (solid line). The two estimates
(solid line) and (dashed line) are shown in Fig. 22 along
with the intensity (dotted line). Again, the two estimates
look similar, but behaves better near the end points.

Example 6 (Continued):The estimate in this example
was shown earlier in Fig. 13 (solid line). Fig. 23 shows the
estimates (solid line) and (dashed line) as well as
the intensity (dotted line). In this case, still behaves
better than near the end points, but it is oversmooth when
compared with .

The next example shows that the regularization approach
can be more effective than the kernel-estimate approach when
the number of is small. The relevant parameters for this
example appear in Table I.
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Fig. 22. Example 5:̂�reg(t) (solid line), �̂ker(t) (dashed line), and�(t)
(dotted line).

Fig. 23. Example 6:̂�reg(t) (solid line), �̂ker(t) (dashed line), and�(t)
(dotted line).

Example 7: We considered the low-variation, low-intensity
shown in Fig. 24 (dotted line); here

and . We took . Fig. 24 shows
the two estimates of, (solid line) and (dashed line),
and Fig. 25 shows the estimate. In this example, is a
good estimate of , whereas shows too much oscillation.

E. A Kernel Estimate of When Is Known

The results above suggest another approach to the problem
considered in [24] of estimating when is known. Since

is known, it should be easy to obtain a good estimate of
the histogram , and can then be obtained as a kernel
estimate. To this end, recall that ; we let
be the approximate solution, over , to (since

is known, no estimate is involved) obtained by “back
substitution,” as explained at the end of Section II-C; this is
our estimate of . For given kernel , we minimize , with

Fig. 24. Example 7:̂�reg(t) (solid line), �̂ker(t) (dashed line), and�(t)
(dotted line).

Fig. 25. Example 7:̂h(t) (solid line) andh(t) (dotted line).

substituted in place of , as explained in Section II-D1, to
choose the kernel width and thus obtain .

III. CONCLUSION

We have addressed the problem of jointly estimating the
intensity of an inhomogeneous Poisson process and the
system’s impulse responsewhen the data are samples from
the shot noise (1.1).

Making only some general assumptions on, we exploited
the structure of the data to obtain the estimate of the
histogram of the underlying point process. The estimate
was then obtained so that . We obtained very good
estimates of when , in spite of having a lot of
oscillation. Examples 1 and 4 are two representative examples.
When , the problem of estimating becomes harder.
In Examples 2 and 3, good estimateswere obtained; in
Examples 5 and 6, the estimatesare fairly good, showing
only some spurious oscillations near the tail.

In Examples 1–6, we considered the kernel-estimate ap-
proach for obtaining . We obtained satisfactory estimates of

for a reasonable amount of computation. In Examples 4–6,
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we also considered a version of the regularization approach
introduced in [24]; good estimates of were obtained in
Examples 4 and 5, but the estimate obtained in Example
6 is oversmooth when compared with the other two. These
estimates behaved better near the end points than the corre-
sponding kernel estimates.

The kernel-estimate approach of Section II-D1 suggested
a similar approach to the problem of estimatingwhen is
known. Even though this approach is conceptually simpler and
requires fewer computations than the regularization approach
presented in [24], its performance was poor when the number
of random points was small (cf. Example 7). Furthermore,
one does not expect the kernel-estimate method to be effective
when the number of available data samples is small when
compared with the detail in .

A. Measurement Noise

In a more general scenario, measurement noise would be
present in the system; hence, the available data samples would
be of the form , where the are i.i.d. Gaussian
random variables with mean 0 and variance. Because of
the dependence of on (cf. (2.4) and (2.8)), the proposed
method for obtaining may not work if is large. In fact, by
taking successive differences, the contribution of theterms
on the is equivalent to that of a random variable with
variance . Even if this is the case, we have obtained results
comparable with those presented here for the case wherehas
a jump at the origin when ; the quality of the
estimates deteriorated when . Similarly, we have
obtained good results for the case whenis continuous at the
origin when ; the quality of the estimates
deteriorated when .

We are now investigating the following approach to over-
come this limitation: Since the are uncorrelated and are
statistically independent of the random points, one can
preprocess the measured data in an attempt to recover the
shot noise data and then follow the procedure in this paper
for estimating and . If is known, then theunbiased risk
methodcan be used for this purpose [19]; if is not known,
then thegeneralized cross-validation methodis appropriate [7].

APPENDIX A
THE ESTIMATE OF WHEN IS OF CLASS ONE

Recall from (2.1) that ; then

and for

The condition implies that is a slowly
varying process when compared with , and we expect
to be able to recover under rather general conditions on,

, and . To continue the analysis, write

and for

We assume that

(A.1)

for ; in this case, (2.3) holds. A careful analysis of (A.1)
is carried out below.

For , let

The following result is the key to our method for choosing:
Proposition A.1: For and

. Furthermore, if , where
is the greatest common divisor of the , and . In

the vicinity of , is a linear function of .
Proof: Observe that rounds to the nearest inte-

ger; hence, . Since ,

Therefore, , and the first assertion of
the proposition follows from the linearity of and the
fact that for each . To prove the second one,
write , where , and take

for any . If ;
otherwise

and the second assertion follows by adding theterms. To
show the third one, it suffices to show that as a function
of , is linear in the vicinity of -points satisfying

since those of the form satisfy
simultaneously for each , and the

superposition of linear terms is also linear. To this end,
observe that

for ; moreover, is piecewise linear
(as a function of ) with discontinuities at and only at

for , and any -point of the form
lies strictly between adjacent discontinuities.

Recall (2.3); if we neglect the terms in , then
for some . Let denote the

greatest common divisor of the , and let .
From Proposition A.1, it follows that for
small , that if for ,
and that is linear in the vicinity of .
See, e.g., Fig. 26. To choose a value for, we plot to
identify graphically the intervals over which crosses
the constant and is a linear function of ; we then
choose as the abscissa over the right-most such interval for
which . We expect this approach to give

, and thus, , but the chances of
are slim. Fig. 26 shows from Example 1 in Section
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Fig. 26. Example 1:Sq(jd2j) (solid line) andits limiting valuekd2k1
(dotted line).

II-D3 along with its limiting value . It is clear from
the plot that for and
that is linear in the vicinity of those -points. These
observations led us to choose .

Comments on Assumption A.1:Previously, we imposed the
deterministic condition . We also assumed
that (A.1) holds for ; this condition, however, involves
random variables and requires some justification. To this end,
let denote the event (A.1). What we want is that (2.3) hold
with probability close to one, for thenP . This

will be indeed the case ifP .
Let

where is defined in (2.2); this allows the rewriting of
more compactly as . As we pointed
out in Section II-A, can be viewed as shot noise with
impulse response ; similarly, can be viewed as shot
noise with impulse response

. Let E and E ;
since [20, eq. (16-84)]

and

we can expectP to be large if both and
are small when . Heuristically, is times the
second derivative of ; therefore, if that derivative is “well
behaved,” we can expect to be small if is small and,
consequently,P to be large.

APPENDIX B
THE ESTIMATE OF WHEN IS OF CLASS TWO

Recall (2.5) and (2.6); observe that the sum on the right-
hand side of (2.5) is a superposition of ramps with slope

originating at the . Recall that (the case

is similar), and recall that ;
then

where

(B.1)

Recall (2.7); in this case, , and for ,

Even though is integer valued and is continuous, the
presence of the -terms makes it difficult to recover from

. Were it not for these terms, we could introduce the obvious
vector of third differences and mimic the procedure in Section
II-A to recover : If the were equal to 0, a plot of

would look like a plot of in Section II-A. As
explained in Section II-B, our approach, instead, is to obtain
an estimate of and then use (2.8) to get. This approach
can lead to even if and because

(B.2)

For , though, the term affects and
in a complementary way so that on average, its effect gets
canceled. To be more explicit, observe that since

In general, we expect , and hence,
; in particular, recalling (B.1),
whenever .

Let denote again the greatest common divisor of the
. Recalling Proposition A.1, we have

for small . As a function of , is
still piecewise linear, but because of the-terms, neither do
the discontinuities occur necessarily at

, nor does the function take on the limiting value
at those points. This situation renders the estimation

of harder than it was to estimate in Section II-A.
Furthermore, only the estimate is available and not .

From the discussion in Appendix A, it follows that a plot
of should look like a “noisy” version of the
curve in Fig. 26. Given , can be readily obtained from
(2.8) for each . Suppose that is at hand; to choose a
value for , we first plot to identify graphically a
plausible interval for : We look for an interval whose lower
and higher endpoints correspond, respectively, to approximate
global minimum and global maximum around the limiting
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Fig. 27. Example 2:Sq(d2 � ŝ2) (solid line) and its limiting value
kd2 � ŝ2k1 (dotted line).

value (cf. Fig. 26). Inside this interval, we choose
to minimize thead hoc“consistency cost”

The definition of is motivated by
for small and by (2.8): We expect
.

Fig. 27, which corresponds to Example 2 in Section II-C1,
shows the plot of along with its limiting value

. This plot shows the difficulty of choosingnow
that . The curve is not as “clean” as is

in Fig. 26, and there does not appear to be a pattern
of points at which the curve hits the limiting
value . The curve in Fig. 27 suggests looking for

in the plausible interval ; the minimizer of
over this interval is .

We now estimate . From (B.2), it follows that
, with equality if ; the condition

implies
. The smooth trend shown in Fig. 6

corresponds to from Example 2. It turns out that a
slight modification of the discretemorphological openingof

by a “smooth” structuring vector is a convenient way
for obtaining (see [11, ch. 4]—Figs. 4.15 and 4.16 in
particular). The morphological opening consists of performing
a morphological erosion, or Minkowski difference, followed
by a morphological dilation, or Minkowski sum (see also
[11, Figs. 4.12 and 4.13]). To this end, we consider

, ; the width and the scale
are chosen below. We first perform

(were it not for the constraint , this would be
a morphological erosion), and then, take

Fig. 28. Example 2:̂s2(k).

(were it not for the constraint , this
would be a morphological dilation). The modification in the
morphological opening was done to improve the result near
the end points. The width and the scale are chosen
to achieve a good tradeoff between a small and a
small . For the numerical examples in
Section II-D3, we set and chose to minimize the
max-jump in . There is one exception (Example 2), where
a local minimum in the max-jump, with a much smaller value
of , was chosen. Fig. 28 shows from Example 2
(cf. Fig. 6).

APPENDIX C
CHOOSING

To compute , we first need to obtain ; for each ,
is then obtained as an approximate solution to
viewed as a function of. One can then ask whetherwould
result from “solving” over ; this is the key
to our approach for choosing. Recall that
and that is a lower-triangular matrix. Suppose that
is at hand, and let vary as varies; for each , let

, and let . We let
denote the approximate solution to obtained by
“back substitution,” and for ,

If , we let for . Of course, we would
like a for which is true; we choose as the smallest
minimizer of .
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