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Blind Intensity Estimation from Shot-Noise Data

Rall E. SequeiraMember, IEEE and John A. Gubnetyiember, IEEE

Abstract—The estimation of the intensity function of an inho- T T R . | j
mogeneous Poisson process is considered when the observablesp |- _
data consists of sampled shot noise that results from passing
the Poisson process through an unknown linear time-invariant 49 |- N
system. The proposed method consists of first estimating a his- |- |
togram of the underlying point process. The estimated histogram 3,
is used to construct a kernel estimate of the intensity function. -
An estimate of the unknown impulse response of the linear time- ,, |
invariant system is constructed via a regularized backsubstitution
of a discrete-time convolution with the estimated histogram. 0

|. INTRODUCTION o -

N A VARIETY of physical applications, including direct- |-

detection optical communications systems and quantum- - -
limited imaging, the mathematical models involve inhomo=*° |- | N
geneous Poisson processes at some stage in the system [1],,, o2 04 06 08 Lo
[3], [10], [17], [27]. The main elements of these processes
are a collection of random eventd, } (occurrence times
or positions, depending on the application) and an intensity
function A(-) governing the statistics of tHg, [27]. In these
applications A is the function of interest. Sincecan never be
directly observed, inference about it can only be made based- =
on observation of thgZ,} or on functionals of the{T,}.
For example, in optical communications and quantum-limitenéjp
imaging, the data can be modeled by the random superpositian -

2(t) =Y h(t-T,) (1.1) -

v 30

where 4 is the impulse response, or point-spread function,
resulting from the finite bandwidth of the system. The randorff |~
process (1.1) is known ahot noise(filtered point process). 4 i

Two examples of 1-D shot-noise data are shown in Figs. 1
and 2. In Fig. 1h has a discontinuity at the origin, and hence,’|” | | ; | L
z has a discontinuity at eachi,; in Fig. 2, 4 is continuous, 0.0 02 04 0.6 08 1.0
and hencez is also continuous. Fig. 2. Shot noise:(t) from Example 2.

In our prior paper [24], the problem of estimatingwas
addressed under the assumption that the impulse respdese
known. SinceE[z(t)] = [ h(t—7)A(7)dr, this led to obtaining
an approximate solution to the noisy integral equation

|
|

80

and address the joint estimation jofand A based on discrete
samples ofz, say, z(¢), 2(2¢0), .. ., 2(Kte), without making
any assumptions on the shapeafOur approach is to first
A(t) = /h(t — PIA(r)dr +u(t) (1.2) obtai_n an estima_lte of a histogram_ of thé, }; t_he estimgte
of h is then obtained as an approximate solution to a discrete
convolution equation, and that of is obtained as &ernel
intensity estimatenodified for histogram data.
Blind deconvolution problems arise in a variety of contexts,
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as shot noise (1.1). Wheh is constant (the homogeneousntensity estimate. We also explain holv can be used to
case),z is a stationary process, and the estimatiolh @nd X estimate) with the regularization approach of [24].
can then be addressed via spectral analysis; this special case

has been addressed, e.g., in [22] and [30]. A. The Estimate ok Whenh is of Class One
This paper is organized as follows. In the next section, we . .
: ; . : In this case, we writeh(¢t) = h(0)u(t) + hi(t), whereu
obtain an estimate of a histogram of t{i, }. We consider the is the unit step functionu(t) = 1 for t > 0 and u(#) = 0

two casgsh(O) >0 and h_(O) 0. A discrete version of the for ¢t < 0, and whereh; (¢) := h(t) — h(0)u(t); hence,h; is
problem is stated in Section II-C, and the estimaté & then : . .

. . . . .___causal and sincé;(0) = 0, h; is continuous. We can then
obtained as an approximate solution to the resulting discrete

. : ) rewrite z(t) as
convolution equation. Numerical examples are presented

Section [I-C1. The estimate of is obtained in Section II- Ne N

D, and numerical examples are given in Section 1I-D3. The 2(t) = Z h(O)u(t —T,) + Zhl(t -T,)

results of Section II-D motivate an approach, other than the v=1 v=1

one presented in [24], for estimatingfor the case wherk = h(0)Ny + y1(¢t) (2.1)

is known; this is addressed in Section II-E. The conclusions

appear in Section 1. where
N,

Il. THE JOINT ESTIMATION OF /i AND A ui() = m(t-T,) (2.2)

v=1

Our only explicit assumption about is that A(¢) = 0
for ¢ < 0; hence, the occurrence timé$ are positive with and can be viewed as shot noise with impulse respbnég.
probability one. Fort > 0, let NV, denote the number df;, Since h; is continuous, one might think of recovering the

that occur in the intervaf0,¢]. Then, fort > 0, T, by finding the discontinuities of, i.e., by finding those
N points wherez(¢) contains an impulse; however, since only
- finitely many samples of are available, namely, the entries of
2(t) = hMt—T,) = | h(t - d )
() Vz_:_l ( ) / (8= )e(r)dr z = [2(to),. .., 2(Ktp)], this approach cannot be undertaken.
We proceed by taking differences, which are the discrete
wherexz(t) := Y2 §(r — T,). If N, =0, we takez(r) = analog of differentiation.
z(r) =0for0 <7 < ¢ Consider the first and second differences
In this paper, we restrict our attention to two classes of 2(1) E=1
impulse response. We say an impulse resparisef class one di(k) := {z(k) —a(k-1), k>2,

if it is causal, continuous ofD, c0), and right continuous at 0 and
with A(0) # 0; without loss of generality, we taki(0) > 0.
i i ifiti d1(1)7 k=1,
We say thath is a class-two impulse response if it is the do(k) :=
. . di(k)—di(k-1), k>2
integral of a class-one impulse response.
Our estimation ofh and A will be based c_>nK samples_ of In this cased; (1) = h(0)x(1) + 1 (to), and
z, say, z(kto), k = 1,..., K, wherety > 0 is the sampling
period. For class-one impulse responggesve assume that  d, (k) = h(0)x(k) + y1(kto) — y1((k = Dto), k>2.
to is chosen small enough that the modulus of continuity
w(h;to) := maxy>o |h(t+to)—h(t)| satisfiesv(h; to) < h(0). Fig. 3 shows a plot ofl; (k) from Example 1 in Section II-
For a class-two impulse responge we assume that, is D3 below; the lower-level pattern corresponds to thbser
chosen small enough that(h;to) < h(0), whereh is the whichx(k) = 0. If the random procesg, (¢) in (2.2) satisfies

derivative of A. (A.1) in Appendix A, then

In order to estimaté: and A, we also need to estimate the
impulse trainz. Because the data is sampled, what we estimate (%) ~ {h(())x(l), k=1, (2.3)
is, as explained below, a histogram of ttig. h(O)(x(k) —x(k—1)), k=2

Notation: Let T := Kto. A vector in IR is denoted
r := [r(1),...,r(K)]. If » is a function of time, therr
denotes the vector of samples, i.e(k) := r(kto). There
is one exception—the histogram—where x(k) := Ny, —
N@—1)t, is the number of events from that occur in the
interval I, := ((k — 1)to, kto]. If r is a linear combination

and thed. (k) appear to be approximately on a lattice. Fig. 4
shows a plot ofl, (%) from Example 1; in this example, (A.1)
is true, and hence, thé,(k) satisfy (2.3).

Observe now that iff = ~(0) is an estimate oh(0), then
h(0)x(1) would result from roundinglz(1) to the nearest in-
tegral multiple ofg. This rounding operation can be expressed

of some linearly independent functions,...,by,, we let
r = [r(1),...,7(M)] € IR™ be the vector of coefficients as q(q(d2(1)), where
such that = S°Y_ 7(m)b,,,; in this caser = [by,..., by]r. Qq(r) :==[r/q+05], relR.

We are interested in estimating by a functionh € @Q,(r) gives the units for quantizing to the nearest integral
spar{b,, M_,; our task, therefore, is to find its coordinatemultiple of the quantum. Hence, if¢ ~ h(0), x can be
vector h. The estimate ofA will be expressed as a kernelrecovered fromd, since x(1) = Q,(d»(1)), and x(k) =
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by finding those points wherg(t) contains an impulse; this
approach cannot be undertaken since only a finite set of
samples fromz is available. We again proceed by taking
differences. Figs. 5 and 6 show the plotsdaf k) and d. (k)
from Example 2 in Section II-D3; the smooth trend below the
d»(k) corresponds ta.(k), where

Sg(t) = yg(t) — 2y2(t — to) + yg(t — 2t0). (27)
Notice that no pattern is apparent in these plots, in contrast
with Figs. 3 and 4, wheré(0) > 0. This makes the problem
of estimatingx more difficult now than in the case of Section
lI-A. As explained in Appendix B

da(k) — so(k) € [0,t0h1 (0)(x(k — 1) + x(k))).

Our approach for obtaining is to first obtains,, which is an
estimate ofss, and then take

X(k) = Qq(d2(k) — 52()) (2.8)

Qq(d2(k))+x(k—1) for k > 2. This motivates our estimating where the quantuny is now an estimate ofyh;(0); notice

x by

max{Q,(da(k)) +%X(k - 1),0}, k>2.

(k) = {Qq(dQ(l))’ =L (24

From (2.3), we see that if =~ h(0)/n, for somen € IN, then
% = nx would result. The details on how to choog@appear

in Appendix A.

B. The Estimate a& Whenh Is of Class Two

In this case,h can be written ash(t fo hy(r
some class-one functioky sat|sfy|ngh1( ) > w(hl,to);

turn, we writehi(7) = h1(0)u(r) + ha(7), wherehy(r) =

hi(7) — h1(0)u(r). We can then write

Ny
=Y MO -yt -T)+w) @5
v=1
where
Ne  ot—T,
= 2::1 /0 ho(7)dr (2.6)

and can be viewed as shot noise with impulse response
fo ho(7)dr. Since hy is continuous, one might think of re-
covering the7, by finding the discontinuities ir(¢), i.e.,

Ydr for

that x|,/, ~ nx|, is expected (we writex|, to stress the
dependence ok on ¢). The details for obtainings, and
choosing a value foy are given in Appendix B.

C. The Estimate ok
Recall that we are interested in estimatiadpy

M
=3 itm 29)

In this section, we find the coordinate vectorwe first obtain
a discrete formulation of the problem; we us¢o denote the
discrete convolution operation

(p * a)( Zp

and we usée.(p) to denote the lower-trianguldt x K matrix
p(1)

(k—f+1), k=1,....K

L(p) == : -
p(K) -+ p(1)
Note thatp * q = L(p)q.
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] e | I— TABLE |
016 = PARAMETERS FOR EXAMPLES 1-7
0.14

Example A 71 q 1] 3 w ¢ o
1 800 1002 800 0 3.714(-2) -
. . 2 800 2.012(—3) 2456(—2) 931 Y881 3.327(—2) - -
008 e N 3 800 6.255(—1) 1.478(-2) 919 7568 3.714(-2) -
. “ . . . PR 4 )

5

012— °

0.10

480 1004 180 0 5.265(=2 10 1.398(—6)
480 1.253(—3) 2.912(—2) 502 1449 5.265(-2) 10 9.265(~7)
6 480 4.004(—4) 1.756(—=2) 302 1581 5.265(—2) 5.6(-2) 2.269(—4)
7 50 - 1.002 50 0 3327(-2) 10 1.884(—6)
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Fig. 6. Example 2d2(k) ands2 (k) (smooth trend at the bottom). 04r

0.2

At the beginning of Section II, we wrote the data:4s) = 0
[ h(t=r)z(r)dr andz(r) := 3"0*, 6(7 =T, ); observe that if -2
the T, were integral multiples ofp, thenz = x+h = L(x)h  ,,_
would hold. In view of (2.9),h = [by,...,ba]h; we now
obtainh as a function ot andk. Notice that since thd, do
not occur on a lattice, it is not advisable to let~ L(x)iz %[ | | ‘ L]

-0.6

even ifx = x (here, L(x)" denotes the pseudoinverse of the 00 02 04 06 08 10
malltrlx L( )) Instead, we proceed by obtainingegularized Fig. 7. Example 1fz(t) (solid line) andh(t) (dotted line). (High-variation
solution to A)

zZ = L()A()I‘I)A(* [bl,...,b]w]ﬁ:Vﬁ
was a continuous class-two impulse response. The parameters
A, r1, g, |IX|l1, B, w, ¢, anda for each example are given in
ﬁ = argmin{||z - VZH% +/3||£||129} Table I. (The significance of; is explained in Appendix B,
relRM and that ofw, ¢, and« is explained in Section 1I-D.)
for some 3 > 0 (to be selected in Appendix C), where Example 1:We begin with a class-one impulse respohse
\l7||3, := 7’ Er, andE,,, , := b, b, (this norm was introduced With & jump at the origim(t) = exp(—3t) cos(5t), t = 0.
to approximate the.2 norm of7 _ Ei\j—l r(m)b,y). An easy The shot noise data for this example was shown earlier in
calculation shows that B Fig. 1. We obtaineck following the procedure in Section II-
R A. The first and second differencely and d, were shown
h=V'V+BE)"V'z earlier in Figs. 3 and 4. The estimateis shown in Fig. 7

which is the solution to ad/ x M system of equations. ~ 2long with the functionr. .

1) Numerical Examplesin this section, we present numer- EXample 2:We now consider the continuous class-two
ical examples of the estimation of the impulse respdnger Impulse response(t) = exp(—3t) sin(5xt), ¢ > 0. The shot-
different » and different\. These examples are continued ifoise data for this example was shown earlier in Fig. 2. We
Section 11-D3 below, where we address the estimation of ti§stimatedk as explained in Section II-B. The differencds
mtensny)\ The shot-noise data was obtained by generati§dd: were shown earlier in Figs. 5 and 6. The estinaie

fo T)dr = E[Ny] independent random points, shown in Fig. 8 along w!th the functioh. . .
over [0 T] [0 1] with density A\(7)/A, 7 € [0,1] and then Example 3: In the previous example, the factgn(5xt) in
using (1.1) to obtair:. We took X = 512 samples ofz over h(t) causedh to have a lot of oscillation. In this example,
[0, 1] with £, = 1/512 to form the data vectoe. we changedsin(57t) to sin(3wt); the reduced oscillation

We took /. € spar{b,, }13_,, where theb,, are theM = 13 allowed us to get a better estimate bf We took /(t) =
cubic B-splines [5] generated by the NAG [18] subroutinexp(—3t)sin(3xt), t > 0 (class-twoh). The estimate’ is
E02BCF when there are four coincident knots at both esiown in Fig. 9 along witth. To gain a general sense of the
points of [0,1] and nine uniformly spaced internal knots abehavior of the estimates to varying the shot-noise data, the
0.1,...,0.9. estimates ofh obtained from five realizations of(t) with

In Examples 1-3, we used point-process data correspondiig = A = 800 are shown in Fig. 10. Observe that these
to the high-variationx shown later in Fig. 15 (dotted line). In estimates show all the features/in where some have minor
the first example, we considered a class-one impulse respooseillations near the tail, and that only one of the estimates
h with a discontinuity at the origin; in Examples 2 and/3, is over smoothed.

whereV := [X * by,...,X x by]; we take
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. 9. Example 3h(t) (solid line) andh(t) (dotted line). (High-variation Fig. 11. Example 4fz(t) (solid line) andh(¢) (dotted line). (Two-peald.)

A)

In Examples 4-6 below, the point-process data corresporids 1€ Estimate oA
to the medium-variation, two-peak shown later in Fig. 21  We now obtain the estimateof the intensity\; we consider
(dotted line). We considered the same impulse respohses a kernel intensity estimatenodified for histogram data. For
in the previous examples to compare the method of estimatithg purpose of comparison, we also consider a version of the
h to varying A (i.e., to varying the number of random pointsapproach presented in [24], which is useful for the case where
T, as well as their distribution). The shot-noise data is ndt is small.
shown. The relevant parameters are summarized in Table I. 1) The Kernel-Estimate ApproacHf {T,,}f,\;Tl were avail-
Example 4: In this caseh(t) = exp(—3t) cos(57t), ¢ > 0, able, a natural approach for estimatingwould be to write
as in Example 1. The estimafeis shown in Fig. 11, along the estimate\ as a kernel intensity estimate. A modification
with the impulse response This & looks very similar to the of this method is carried out below to handle histogram data.
one shown in Fig. 7, i.e., varying had little effect on the  Recall thatl’ := K¢, and letn := Nr. A kernel intensity
quality of the estimate. estimate of) is a function of the form

Example 5: In this caseh(t) = exp(—3t) sin(5nt), t > 0, n
as in Example 2. The functioh and the estimaté are shown A7) =w™! Z n((r =T,)/w), 0<7<T
in Fig. 12. Comparing this estimate with the one shown in =1
Fig. 8, we see that a better estimatehafesulted when\ was

higher. where thekernelr is usually a symmetric probability density

Example 6: Here, h(t) = exp(—3t)sin(3wt), ¢+ > 0, as in function, andw > 0 is thekernel width
Example 3. The estimati is shown in Fig. 13 along with. ~ Note that wheny integrates to one,[”_ A(r)dr = n.
This h, like that in the previous example, shows a spurioudowever, the true intensith satisfiestT Am)dr = A =
oscillation near the tail, which is not present in the estimat{/N7]. Hence, if the particular Poisson-process realization we
obtained in Example 3. are dealing with contains a number of points that is much
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Fig. 12. Example 5?1,(t) (solid line) andh(t) (dotted line). (Two-peak.)  Fig. 13. Example Gﬁ,(t) (solid line) andh(t) (dotted line). (Two-peal.)

different from the expected number of points, the intensity, . ! T T I
estimate\ will lie above or below the true intensity.

A common optimality criterion for choosing and w, in 19
the context of density estimation, is to minimize threean o5 i
integrated squared errofMISE) E[[(A — A)?]. On the basis oo
of this criterion, there is a large amount of flexibility in the™”
choice of 5, but the choice ofw is a delicate matter [26]. 050
Given n, a popular method for choosing is least-squares
cross-validation[26], which consists of choosing as the

0 = -

-1.00 —

minimizer of 1501 N
R A 2,00 |- _

Rw) = —— 3 3" a®(T, - 1) w) L

v=1p=1 -
2 ~ T _T B0m N ! ! i
" a(n—Dw Z Z (L = 1,)/w) 1e-03 1e02 16-01 16400 o401
v=1 p=1 ~
pFV Fig. 14. R(w) for Example 1.

where?® denotes the convolution of with itself. Z(w) is
an unbiased estimate E[I(S\Q - 25\)\)], i.e., of the part of €nd points. To this end, and to account for the data being
the MISE involving A histogram data (as opposed to exact data), we modify slightly

Since neithem nor {7, }"_, is available, we use insteadthe approach taken in [9]: Onae is chosen, we take

the estimates: := [|x[|; and the histogrank, and we choose K
w as the minimizer of A7) = w? Z x(E){n((r = kto)/w) + n((T + kto) /w)
K K k=1
N 1 o
R(w) = —— ; ;—:1 (k)%()n D ((k = O)to/w) +0((r — 2T + kto) /w) } (2.10)

0 K K for 7 € [0,T]. The end point corrections consist of appending
- %KDk — Dto/w). symmetrical versions ok to X, the symmetry being with
(A — Dw kz_:_l ;::1 (Ryx(En(( Jio/w) respect to either end point. The firgt) term in the expression
Fk for A is the usual term; the second and third ones correspond,

In spite of the similarity betwee® and R, this method of respectlvE.Iy, to COI’I’ECtIOTS @tand att. _ qi
choosingw should be used with caution when dealing with ReMark: In our examplesy; is symmetric and integrates

discretized data: see [26, pp. 51 and 52] for details. A typicE;ﬂTOAne' Hence, the kernel intensity estimate in (2.10) satisfies

R(w) curve is shown in Fig. 14. Jo A(m)dr = Soi_ %(k) = ||%]|1. However, the true intensity
Kernel estimates are known to behave poorly near tHeSﬂtiSfieSfoT A7)dr = A = E[Ng]. Therefore, if||x||; is

boundaries of the data interval if the underlying intensity anuch different from the expected number of poim,sj\ will

density is not zero at the boundaries. Since we have data olidyabove or below the true intensity, see, e.g., Figs. 18 and

over the interval[0, 7], and we are interested in estimatingdl9.

A(r) for 7 € [0,7], we need to make some boundary 2) The Regularization ApproachWWe now consider obtain-

adjustments to improve the quality of the estimate near tivgy X with a version of the method presented in [24]. The
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Fig. 16.
(dotted line).

estimate without end corrections (dotted line).

—

estimate is of the form 1200 L

M’
Z 3\ 1100
where theB,, are linearly independent functions; our task |s
to obtain the coordinate vectar(we use the underbar notation”
to denote a vector in eithdR™ or IR™'; it should be clear s |-
from the context what is meant).

The first step for obtaining is to choose values for the pair ™
of regularization parametersand« in [24]. To choose:, we
examine a plot of eitheF;(-),i = 1,3, of [24, Section VI]
and then takex = F;(¢). In our numerical examples below, 5%
we examinel’; (). Sinceh is not known, we substitute our OOF ‘
estimateh in place ofk in the equations involving.. Hence, ' * ' L
we can expect results that are comparable with those in [24] 0 02 04 06 o8 H
if h is close toh. Fig. 19. Example 3 (continued): Kernel estimaté) (solid line) andA(t)

As in [24], let A € RM’ denote the right-hand side of [24,(dotted line).

Eq (2 3)]; to obtain\, we scale as follows. Recall that :=
fo 7)dr, and now, letA := fo T)dr. Slnce||x||1 = Nr
is the natural estimate of, we take)\ = |I%[|:. A /fo T)dr
so thatA = [|%]|;.

1000 —

Typically, a larger number of data samples will be required
for the joint estimation of. and A than for estimating. whenh
is known. The matrixX of [24, Section V] is of sizek x K; for
computational tractability in the numerical examples below,
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{ I T process data corresponded to the high-variatioshown in
Fig. 15 (dotted line); here\(t) = 200sin((10¢t—0.5)7)+800,
- ¢t >0, and A = &800.

Example 1 (Continued)A plot of R(.) was shown earlier
in Fig. 14. The kernel estimatg is shown in Fig. 15 along
-Iwith the function\. To see the importance of the end cor-
rections for kernel estimates, Fig. 16 shows the two kernel
estimates corresponding o = 0.03714, with (solid line)
and without (dotted line) end corrections. Fig. 17 shows the
kernel estimates ok obtained from five realizations of the

~ ~  shot noisex(¢) with N; = A = 800. These estimates all show
the main features im. In each case||x||; = 800 resulted.
The corresponding estimatéswere all very close to that in

1200 —

1100 -

1000 —

900 —

800 -

700

600 —

500 — —i

40— | [ | , ] Fig. 7 and are not shown.
0.00 02 0.4 06 08 1.0 Example 2 (Continued)The kernel estimaté is shown in
Fig. 20. Example 3: Kernel estimates bfobtained from different realiza- Fig. 18 along with the function\. SinAce our estimate oA,
tions of =(t). |IX||1 is too high, so is our estimaté. (Recall the remark
following (2.10).)
| o | ; ; Example 3 (Continued)The kernel estimat@ is shown in
1900 = | Fig. 19 along with the intensity\. Fig. 20 shows the kernel
900 1 _| estimates ofA corresponding to the five realizations of
from which resulted the estimates bfshown in Fig. 10. The
8001 7| corresponding|x||; ranged from 688 to 983.

In the next examples, the kernel estimate Jois called
Mker, Whereas the estimate obtained via the regularization
-| approach of Section II-D2 is calleijeg. The latter is expressed
as a linear combination of thédf’ = 21 cubic B-splines
] generated by the NAG subroutine EO2BCF when there are four

- coincident knots at both end points [8f 1] and 17 uniformly
spaced internal knots #@t1,0.15,...,0.85,0.9.

‘ SinceK = 512 is too large for the numerical computations
200 1 ‘ | _— in Section 1I-D2, we usednly the 64 data samples obtained
0.0 02 0.4 06 08 1.0 by subsamplingz every 8k units £ = 1,...,64 to plot the
Py (-)-curve (not shown) as in [24] to choose the pairc).
The original 512 data samples were used for obtairing

Example 4 (Continued)Recall that in this examplé;, had
a jump at the origin and that a very good estimatavas
oncex and i are obtained, we use only a few data Samp'@btalned h and h were shown in Fig. 11. The two estimates
for obtaining A. Areg (sOlid line) and}y., (dashed line) are shown in Fig. 21,

3) Numerical ExamplesWe now continue the numerical along with the intensityA (dotted line). The two methods for
examples in Section 1I-C1; we obtain the estimate Jof estimating) gave comparable results, biy., behaves better
corresponding to the different paifg, A) considered there. near the end points, and it shows better the two peaks of
The first three examples illustrate the kernel-estimate approaclExample 5 (Continued)The estimateh in this case was
of Section 1I-D1; the next four illustrate also the approacshown earlier in Fig. 12 (solid line). The two estimaﬁasg
from [24] adapted in the previous section. Even though tigolid line) and\.., (dashed line) are shown in Fig. 22 along
kernel-estimate approach is conceptually simpler and requikegh the intensity A (dotted line). Again, the two estimates
fewer computations than the regularization approach, our lésbk similar, but5\reg behaves better near the end points.

600 —

500

400 —

Fig. 21. Example 4}cq(t) (solid line), Axe:(t) (dashed line), and\(t)
(dotted line).

example shows that when the number&f is small (low- Example 6 (Continued)The estimate), in this example
intensity ), the former approach may not be as effective agsas shown earlier in Fig. 13 (solid line). Fig. 23 shows the
the latter one. estimatesh,., (solid line) and\y, (dashed line) as well as

To obtain a kernel estimate of, we need to choose athe intensity A (dotted line). In this caseS\reg still behaves
kerneln; for computational convenience, we use the standap@tter than\,.: near the end points, but it is oversmooth when
normal densityn(r) = (2r)~Y/?exp(—72/2); in this case, compared With);.

@ (1) = (47)~Y2 exp(—72/4). The kernel width is chosen The next example shows that the regularization approach
to minimize R(-), as explained in Section 1I-D1. can be more effective than the kernel-estimate approach when
The relevant parameters for these examples are summaritesl number off;,, is small. The relevant parameters for this

in Table I. We now continue Examples 1-3, in which the poinexample appear in Table I.
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1000

900 1~

429

180

160 — '.' ". =

700 [~
600 —
500
400 |-

300 —

200 - o -
| | | A . ! t,[ | \ | !

00 02 04 0.6 08 1.0 00 02 0.4 06 08 10
Fig. 22. Example 5Areq(t) (solid line), Axer(¢) (dashed line), anch(t)  Fig. 24. Example 7:Apeq(t) (solid line), Ao, (f) (dashed line), anch(t)
(dotted line). (dotted line).

- T | - I i I f
1000 |- < 10 4

0.9 —

0.8 —

800 —
0.7 —

700 — 06

05
500 041
03

400 (= e
- 0.2 -

300 —

200 — 0.0
| | 1 J | 1 1 | : { |

0.0 0.2 0.4 0.6 0.8 1.0 0.0 02 04 0.6 0.8 1.0

Fig. 23. Example Gf\reg(t) (solid line), ;\ke,ﬂ(t) (dashed line), anc\(t) Fig. 25. Example 7ﬁ(t) (solid line) andh(t) (dotted line).

(dotted line).

X substituted in place o%, as explained in Section 1I-D1, to
Example 7: We considered the low-variation, low-intensitychoose the kernel widthy and thus obtainh.
A shown in Fig. 24 (dotted line); here

I1l. CONCLUSION

We have addressed the problem of jointly estimating the

and A = 50. We tookh(t) = exp(—3t), t > 0. Fig. 24 shows intensity A(-) of an inhomogeneous Poisson process and the
the two estimates of, xreg (solid line) anc—lj\ker (dashed line), system’s impulse respongewhen the data are samples from

and Fig. 25 shows the estimake In this example Aeq iS @ th?\AsE_Ot n0|Te (1.1). | i loited
good estimate of\, whereas\y.; shows too much oscillation. axing only some general assump |onle_nNe exploite
the structure of the data to obtain the estimat& of the

) histogramx of the underlying point process. The estimate

E. A Kernel Estimate ok When/, Is Known was then obtained so that~ % = h. We obtained very good
The results above suggest another approach to the problestimates ofh when ~(0) > 0, in spite of & having a lot of

considered in [24] of estimating when i is known. Since oscillation. Examples 1 and 4 are two representative examples.
h is known, it should be easy to obtain a good estimate ¥henh(0) = 0, the problem of estimating becomes harder.
the histogramx, and ) can then be obtained as a kerneln Examples 2 and 3, good estimat2swere obtained; in
estimate. To this end, recall that(k) := h(kty); we letx Examples 5 and 6, the estimatksare fairly good, showing
be the approximate solution, overe IN®, toz = hxr (since only some spurious oscillations near the tail.
h is known, no estimatd is involved) obtained by “back In Examples 1-6, we considered the kernel-estimate ap-
substitution,” as explained at the end of Section 1I-C; this jgroach for obtaining\. We obtained satisfactory estimates of
our estimate ok. For given kerneh, we minimizeR(-), with for a reasonable amount of computation. In Examples 4-6,

A(t) = 50sin((2(1 — £)® = 0.5)7) +14-20.7, >0
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we also considered a version of the regularization approaahd for & > 2
introduced in [24]; good estimates of were obtained in o
Examples 4 and 5, but the estimate obtained in Example d2(k) := dy(k) — da(k — 1)
6 is oversmooth when compared with the other two. These = h(0)(x(k) —x(k — 1))
estimates behaved better near the end points than the corre- + y1(kto) — 251 ((k — 1)to) + 1 ((k — 2)to).
sponding kernel estimates.
The kernel-estimate approach of Section 1I-D1 suggest¥{f assume that
a similar approach to the problem of estimatihgvhen . is ly1(kto) — 2y1((k — 1)to) + y1((k — 2)t0)| < h(0) (A1)
known. Even though this approach is conceptually simpler and
requires fewer computations than the regularization approdeti £ > 1; in this case, (2.3) holds. A careful analysis of (A.1)
presented in [24], its performance was poor when the numbgrcarried out below.
of random point«, was small (cf. Example 7). Furthermore, For p € IR¥, let
one does not expect the kernel-estimate method to be effective K
when the nqmber of av_ai_lable data samples is small when S,(p) := Zqu(p(k))_
compared with the detail in. b1

The following result is the key to our method for choosifg
Proposition A.1: For » € IR andg > 0, lim, .o S,(rx) =
In a more general scenario, measurement noise would /Ajf||;. Furthermore,S,(rx) = r||x||1 if ¢ = |r|no/n, where

present in the system; hence, the available data samples watgds the greatest common divisor of tis€k), andn € IN. In

be of the formz(kty) + €x, Where theg;, are i.i.d. Gaussian the vicinity of |r|ng/n, S,(rx) is a linear function of.
random variables with mean 0 and variance Because of Proof: Observe that),(r) roundsr to the nearest inte-
the dependence of ond, (cf. (2.4) and (2.8)), the proposedger; hence|Q,(r) — | < 1/2. SinceQ,(r) = Q1(r/q),
method for obtainingk may not work ifo2 is large. In fact, by

taking successive differences, the contribution ofg¢heéerms |4Qq(r) = 7| = ql@u(r/a) = 7/al < a/2.

on thed(k) is equivalent to that of a random variable WithTherefore,limq_,o qQ,(r) = r, and the first assertion of

variance6o?. Even if this is the case, we have obtained resulfge proposition follows from the linearity ofim and the

comparable with those presented here for the case wheas 3¢t that x(k) > 0 for eachk. To prove the second one,

a jump at the origin whew < 0.06R(0); the quality of the \yrite x(k) = nxno, Whereny, := x(k)/no € Z4, and take

estimates deteriorated when> 0.08/(0). Similarly, we have , — Irlno/n for any n € IN. If ng = 0, qQ,(rx(k)) = O;

obtained good results for the case whigeis continuous at the gtherwise

origin wheng < 0.025t9h;(0); the quality of the estimates

deteriorated whew > 0.06t0h1(0). qQq(rx(k)) = |rlno/nrnino(n/lr|no) + 0.5]

We are now investigating the following approach to over- = ragnoe = rx(k)

come this limitation: Since the, are uncorrelated and are . .
statistically independent of the random poirts, one can and the second assertion follows by adding Kigerms. To

preprocess the measured data in an attempt to recover $H@W the third one, it suffices to show that as a function
shot noise data and then follow the procedure in this pagdr ¢ ¢@q(r) is linear in the vicinity ofg-points satisfying
for estimatingh and . If o is known, then theinbiased risk 9@q(r) = r since those of the forny = [r|no/n satisfy
methodcan be used for this purpose [19];dfis not known, Q@«(rx(k)) = rx(k) simultaneously for eacft, and the

then thegeneralized cross-validation methisdappropriate [7]. superposition ofK linear terms is also linear. To this end,
observe thayQ,(r) = r & Q(r) =r/g o r/g e 7 &

q = |r|/m for m € IN; moreovergQ,(r) is piecewise linear
(as a function ofg > 0) with discontinuities at and only at
q = 2|r|/(2m = 1) for m € IN, and anyg-point of the form

A. Measurement Noise

APPENDIX A
THE ESTIMATE OF x WHEN h IS OF CLASS ONE

Recall from (2.1) thak(t) = h(0)NV;: 4+ 41 (¢); then q = |r|/m lies strictly between adjacent discontinuities. [J
Recall (2.3); if we neglect the; terms inds(k), then
dy(1) = 2(1) = h(0)x(1) + y1(to) |da(k)| = h(0)ny for somen, € Z.. Let no denote the

greatest common divisor of the,, and let|ds|(k) := |d2(k)|.
From Proposition A.1, it follows thab,(|ds|) ~ ||d2l|, for
= a(k) — 2k — 1) smallg, that ([da)) = [dals if g = h(@)no/n for n € N,

and that is linear in the vicinity ofq = no/n.
= MO)x(k) + pi(kto) = w1 (k= 1)to). See, e.g.,qéi|g.2|2)6. To choose a value(jgwe %IotSq((|Zl;|J)/to
The conditionk(0) 3> w(h;to) implies thaty, (¢) is a slowly dentify graphically the intervals over which, (|d|) crosses
varying process when compared wit0)XV,, and we expect the constant|dy[|, and is a linear function of; we then
to be able to recovex under rather general conditions &) chooseq as the abscissa over the right-most such interval for

h, and \. To continue the analysis, write which Sy(|dz|) = [|d2||.. We expect this approach to give
q = h(0)ng, and thusx = x/ng, but the chances oiy # 1
do(1) :=d1(1) = R(0)x(1) + y1(to) are slim. Fig. 26 shows(|d»|) from Example 1 in Section

and fork > 2

dy (k)
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Fig. 26. Example 1:5,(|dz|) (solid line) andits limiting value||dz||:
(dotted line).

[I-D3 along with its limiting value||d||;. It is clear from
the plot thatS,(|da|) ~ ||da|| for ¢ = 1/n, n € IN and
that S,(|d2|) is linear in the vicinity of those-points. These
observations led us to chooge= 1.002.

431
h1(0) < 0 is similar), and recall thal; = ((k — 1)¢o, kto;
then

dl(/{}) = tOhl(O)N(k—l)tg + v+ yg(/{}to) - yg((/{} - 1)t0)
where

Vg = hl(O) Z (/{}to - T,,) € (O,tohl(O)X(/{J)].

v:T, el

(B.1)

Recall (2.7); in this casels(1) = 11 +s2(1), and fork > 2,
dg(/{i) = tohl(O)X(/{J — 1) — Vg—1 +V + SQ(/{}).

Even thoughx is integer valued andj; is continuous, the
presence of they-terms makes it difficult to recovex from

d->. Were it not for these terms, we could introduce the obvious
vector of third differences and mimic the procedure in Section
II-A to recover x: If the 1, were equal to 0, a plot of
S, (]ds]) would look like a plot ofS,(|d2|) in Section II-A. As
explained in Section 1I-B, our approach, instead, is to obtain
an estimate, of s, and then use (2.8) to g&t This approach
can lead tax # x even ifs; = s; andg = toh1(0) because

dg(/{i) - SQ(k) = tohl(O)X(/{; - 1) — UVp—1 + Vg

Comments on Assumption A.Previously, we imposed the
deterministic conditionk(0) > w(h;to). We also assumed
that (A.1) holds fork > 1; this condition, however, involves
random variables and requires some justification. To this erfthr £ < K, though, the termy;, affectsd,(k) andda(k + 1)
let U denote the event (A.1). What we want is that (2.3) holth a complementary way so that on average, its effect gets

€ [0, toh1 (0)(x(k — 1) +x(k))]. (B.2)

with probability close to one, for theR(X = x) =~ 1. This
will be indeed the case iP( ., Uk) ~ 1.
Let
Sl(t) = yl(t) — 2 (t - to) + yl(t - 2t0)

wherey; is defined in (2.2); this allows the rewriting &f;,
more compactly a#/;, = {|s1(kto)| < h(0)}. As we pointed

out in Section Il-A,y;(¢) can be viewed as shot noise with
impulse responsg; (¢); similarly, s;(t) can be viewed as shot

noise with impulse responsét) := hy (t)—2hy (t—to)+hy (t—
2to). Let p1(¢) := E[s1(t)] ando2(t) := E[|s1(t) — s (8)|%];
since [20, eq. (16-84)]
/t A(T)r(t — T)dr,

0

pa(t)
and

t

o2(t) —/ M)t = 7)|dr
0

we can expecP(U) to be large if bothyuy(t) and o%(t)
are small whent = kto. Heuristically, r is 2 times the
second derivative oh; therefore, if that derivative is “well
behaved,” we can expest(¢) to be small iftg is small and,
consequentlyP(U;,) to be large.

APPENDIX B
THE ESTIMATE OF x WHEN A IS OoF CLASS TwO

canceled. To be more explicit, observe that sirbgk) —
SQ(k) Z 0

K

lda = solls = > _(da(k) — sa(k))

k=1
K
=1 + Z{tohl(())x(k - 1) — vt + i}
k=2
= tOhl(O)HXHl - tohl(O)X(K) + VK.
In general, we expect(K) < ||x||;, and hencel|ds —s2||; ~

toh1(0)]|x|]1; in particular, recalling (B.1),/|d2 — s2|l1
toh1(0)||x||y wheneverx(K) = 0.

Let no denote again the greatest common divisor of the
x(k). Recalling Proposition A.1, we havf,(d, — s2) ~
ld2 — s2||; for small g. As a function ofg, S,(d2 — s2) is

still piecewise linear, but because of thg-terms, neither do
the discontinuities occur necessarily tat1 (0)ng/(2n — 1),

n € IN, nor does the function take on the limiting value
||[dz—sz||; at those points. This situation renders the estimation
of ¢h1(0) harder than it was to estimatg0) in Section II-A.
Furthermore, only the estima#g is available and nos..

From the discussion in Appendix A, it follows that a plot
of Sy(dy — s2) should look like a “noisy” version of the
curve in Fig. 26. Giverss, X can be readily obtained from
(2.8) for eachq. Suppose thag, is at hand; to choose a
value forg, we first plotS;(d; — §) to identify graphically a

Recall (2.5) and (2.6); observe that the sum on the righgtausible interval fory: We look for an interval whose lower
hand side of (2.5) is a superposition of ramps with slomnd higher endpoints correspond, respectively, to approximate

h1(0) originating at the7,,. Recall thath;(0) > 0 (the case

global minimum and global maximum around the limiting



432 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 45, NO. 2, FEBRUARY 1997

| T ! | T ! ! 016 [ : D I 4
23| v A AAN A 4 L /’\A M - 0.14 |- =
v w 0.12 =
0.10
2ol | 0.08
0.06 - -
0.04 |-

0.02 — =

21 L 000k .

JO

-0.02 —
0.04 —

L.
2l J‘ -0.06 |- =
! ‘ :

0.08 —

0.10 —
I 1 | | | i | |

2 5 1e-02 2 5 le-01 0 100 200 300 400 500

Fig. 27. Example 2:S4(d2 — 82) (solid line) and its limiting value Fig. 28. Example 253 (k).
|[d2 — 82||1 (dotted line).

. ) ) o (were it not for the constraint < £ — i < K, this
value||d; — 82|y (cf. Fig. 26). Inside this interval, we chooseyould be a morphological dilation). The modification in the

¢ to minimize thead hoc*“consistency cost” morphological opening was done to improve the result near
Timax the end points. The widthk, and the scale:; are chosen
C(g) =Y | lid2 = 8ally = ¢/nllXlg/nllsl- to achieve a good tradeoff between a smjali(1)| and a
n=1 smallmaxy, |§2(k) —&2(k—1)|. For the numerical examples in

Section 1I-D3, we sefky = 60 and chose-; to minimize the

toh1(0)]x||, for small ¢ and by (2.8): We expeck|,/» max-jump i_nég. There is one excepFion (Example 2), where

nX|g, n € IN. a local minimum in the max-jump, with a much smaller value
Fig. 27, which corresponds to Example 2 in Section 1I-C£f [52(1)], was chosen. Fig. 28 shows(k) from Example 2

shows the plot ofS,(dy — §;) along with its limiting value (Cf- Fig. 6).

||dz — &2||1. This plot shows the difficulty of choosingnow

that 2(0) = 0. The curveS,(d, — §2) is not as “clean” as is APPENDIX C

S,(]d2]) in Fig. 26, and there does not appear to be a pattern CHOOSING 3

of points ¢, q/2,4/3,... at which the curve hits the limiting 14 computeh, we first need to obtairk; for eachs, h
value ||d; — 8,||;. The curve in Fig. 27 suggests looking fofis then obtained as an approximate solutionzte= % = r
¢ in the plausible interval0.02, 0.045]; the minimizer ofC(:)  yiewed as a function of. One can then ask whethgrwould
over this interval isg = 0.02456. result from “solving”z = h % r over IN¥; this is the key

We now estimates;. From (B.2), it follows thatd»(k) >t our approach for choosing. Recall thath + r = L(h)r
sy(k), with equality if x(k) = x(k — 1) = 0; the condition 5y thatL(h) is a lower-triangular matrix. Suppose thit
hi(0) > w(histo) implies maxy [da(k) — da(k — 1)] > 5 at hand, and leth vary as g varies; for eachs, let
maxy, [s2(k) — s2(k — 1)|. The smooth trend shown in Fig. 6£0 = min{k : h(k) # 0}, and letg = [h(£)|. We letx € IN¥
corresponds tasy(k) from Example 2. It turns out that a 4,040 the approximate solution o= L(h)r obtained by
slight modification of the discretenorphological openingf “back substitution,(¢o) = Q,(z(f)) and forfy < k < K
d» by a “smooth”structuring vectorf is a convenient way ' ¢ =
for obtaining 8, (see [11, ch. 4]—Figs. 4.15 and 4.16 in koo

{Qq <z(k) - > h(Ox(k-t+ 1)),0}.
{=lo+1

The definition of C(q) is motivated by S,(d> — s2)

R

particular). The morphological opening consists of performingf((/f) = Inax
a morphological erosionor Minkowski difference, followed

by a morphological dilation or Minkowski sum (see also | 4o > 2, we letx(k) = 0 for k < £,. Of course, we would

[11, Figs. 4.12 and 4.13]). To this end, we consifigk) := |ike a 3 for which x =  is true; we choos@ as the smallest
7>1(]§2 _ k%)l/Q, |k| < ko; the width kg € IN and the scale minimizer 0f| H)A(Hl _ ||)~(||1|
r1 > 0 are chosen below. We first perform
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