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Abstract—This paper investigates interference-cancellation
schemes at the receiver, in which the interference data, which
is valid data intended for another receiver, is known a priori.
The interference channel, however, is unknown (the blind part).
Such a priori knowledge is common in wireless relay networks.
For example, a relay could be relaying data that was previously
transmitted by a node A. If node A is now receiving a signal
from another node B, the interference from the relay is actually
self-information known to node A. Besides the case of self-
information, the node could also have overheard or received
the interference data in a prior transmission by another node.
Directly removing the known interference requires accurate
estimate of the interference channel, which may be difficult
in many situations. In this paper, we propose a novel scheme,
Blind Known-Interference Cancellation (BKIC), to cancel known
interference without interference channel information. BKIC
consists of two steps. The first step combines adjacent symbols
to cancel the interference, exploiting the fact that the channel
coefficients are almost the same between successive symbols. After
such interference cancellation, however, the signal of interest is
distorted. The second step recovers the signal of interest amidst
the distortion. We propose two algorithms for the critical second
steps. The first algorithm (BKIC-S) is based on the principle of
smoothing. It is simple and has near optimal performance in
the slow fading scenario. The second algorithm (BKIC-RBP) is
based on the principle of real-valued belief propagation. Since
there is no loop in the Tanner graph, BKIC-RBP can achieve
MAP-optimal performance with fast convergence, and has near
interference-free performance even in the fast fading scenario.
Both BKIC schemes outperform the traditional self-interference
cancellation schemes that have perfect initial channel information
by a large margin, while having lower complexities.

Index Terms—Self-interference, Blind, MAP, Belief Propaga-
tion, Interference Cancellation.

I. INTRODUCTION

THE use of relay in wireless networks is attracting in-

creasing attention [1, 2] because of the many advantages

it brings, such as improved connectivity and reduced pow-

er consumption. Many multi-hop relay standards, including

802.16j, 802.11s, are being developed.

In wireless relay networks, a node may receive a target

signal intended for it superimposed with interference. In many

scenarios, the receiver actually knows the data contained in

the interference [3], either because the interference was signal

previously received/overheard by the node, or the interference

is self-information previously transmitted by the node and

now relayed by a relay to another node. One example of

known interference is when physical-layer network coding

over infinite field [4] (e.g., analog network coding [5]) is used
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in a two-way relay channel, as shown in Fig. 1a. Another

example is a linear-chain one-way relay network [6], as shown

in Fig. 1b. Many other scenarios of known interference can be

found in [3].

The method to deal with known interference is straightfor-

ward in theory. The receiver first estimates the channel coef-

ficient of the interference signal and then removes the known

interference from the received signal [3]. In this paper, we refer

to this scheme which requires the knowledge (and therefore

the estimation) of the interference channel as traditional KIC

(Known Interference Cancellation). This scheme does not

perform well when the channel estimation is inaccurate.

Accurate channel estimation is non-trivial even in the ab-

sence of interference. This is the reason why non-coherent

detection schemes that do not require channel information

are still widely studied and used in wireless communication

systems [7]. In the presence of interference, channel estimation

faces additional challenges. First, channel estimation is more

difficult because the training sequences are corrupted by the

superposition of two signals. Simultaneous estimation of the

channel coefficients of the target signal and the interference

can be complex. For example, when the two training sequences

are the same and they overlap with each other, we can only

obtain the summation of the two channel coefficients but

not their individual values. Second, when the power of the

interference is much larger than that of the target signal, a

tiny estimation error of the interference channel may cause the

interference cancellation process to leave behind a relatively

large residual interference with respect to the target signal.

Third, it may be impossible to estimate the channel accurately

[8] in mobile environment with fast fading. The channel

estimated from the training sequence may have changed by

the time the data is received.

We note that the above difficulties apply regardless of

whether the interference is known or unknown: for both cases,

the training sequences are presumed known in order to enable

channel estimation.

There has been some work trying to tackle the problem

of estimating the channels of two superimposed packets.

For example, in physical-layer network coding [9-11], the

channels of two superimposed packets need to be estimated.

To deal with the channel estimation problem, the physical-

layer network coding implementation in [12] uses orthogonal

sequences for the two packets. The analog network coding

scheme in [5], on the other hand, attaches the training sequence

to both the front end and back end of a packet, and time

the transmissions of the two packets so that one of them has

interference-free front end and the other one has interference-

free back end. These schemes use new frame designs and are

not compatible with legacy wireless systems. Ref. [13] uses

an optimization scheme to estimate the channels with two
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specially designed training sequences. The estimation accuracy

is much poorer than single-channel estimation. Non-coherent

ANC schemes that avoid channel estimation have also been

studied [14, 15]. However, these non-coherent schemes suffer

from SNR degradation of about 3dB compared with the

coherent schemes. By contrast, the blind known-interference

cancellation (BKIC) schemes proposed in this paper can

obtain near-perfect performance – specifically, performance

close to that of a point-to-point communication link without

interference – while avoiding estimation of the interference

channel.

BKIC has three advantages over the traditional methods:

1) good performance; 2) no need for interference channel

estimation; and 3) compatibility with legacy systems. The

principle on which BKIC operates is based on the observation

that the wireless channel typically remains almost unchanged

between adjacent symbols [8]. BKIC uses the interference

in one symbol to cancel the interference in its adjacent

symbol. For example, if the interference channel is h and

the interference symbol is 1, then the interference in the

current symbol is h. If the interference data in the adjacent

symbol is -1, then the corresponding known interference is

approximately –h. The interference can be cancelled with each

other if we combine the two symbols. Such adjacent-symbol

combination, however, may result in distortion of the target

signal. Thus, a key issue is how to remove such distortion as

the next step. We propose two schemes, smoothing (BKIC-S)

and real-valued belief propagation (BKIC-RBP), to equalize

the resulting distortion.

This paper considers BKIC schemes for both flat fading

channel and frequency selective channel. We show that the per-

formance of our schemes is almost the same as that of a pure

coherent point-to-point channel without interference (note: this

is a theoretical upper bound for our system). Besides its

excellent performance, our schemes are also attractive because

of their low complexity and compatibility with legacy systems.

Specifically, our schemes do not require special changes to the

frame structure or the operation of the transmitter. A salient

feature of our schemes is that they could be realized by an

add-on module inserted into the signal processing path of

the receiver without requiring complicate modifications to the

existing module.

The remainder of this paper is organized as follows. In

section II, we present the system model and architecture

of BKIC. Section III explains BKIC under the flat fading

channel assumption, and Section IV extends the discussion

to the frequency selective fading channels. In Section V, we

analyze the performance. We validate and supplement the

analytical results with numerical simulation in Section VI.

Finally, Section VII concludes this paper.

II. SYSTEM MODEL AND ARCHITECTURE

A. System Model

Known interference is common in many wireless networks.

Two Way Relay Channel (TWRC) with analog network coding

[5] in Fig. 1a, and one-way relay chain network in Fig. 1b,

are two examples with known interference. In this section,

N1Time Slot 1Time Slot 2 N1 N2N2RR
(a) Two way relay with analog network coding, where
the two sources N1 and N2 transmit simultaneously to
the relay in the first time slot, and the relay amplifies
and broadcasts the received signal to both sources in the
second time slot.

(b) One way relay channel in a chain.

Fig. 1: Two wireless networks with known interference.

we present the general mathematical formulation for known

interference systems. For a focus, consider the chain network

in Fig. 1b. The source node S transmits to the destination

node D through two relay nodes, R1 and R2, and there are

no cross-hop transmissions.

For simplicity, we assume one dimensional q-ary ASK

modulation at all the nodes; our method can be easily extended

to other modulations, including two-dimensional modulations.

As shown in Fig. 1b, in time slot 1, S transmits a packet

to relay R1; in time slot 2, R1 forwards it to the second

relay R2; and in time slot 3, R2 forwards it to destination

D, while node S sends a new packet to R1 at the same time.

The transmissions in time slots 2 and 3 are repeated for the

delivery of successive packets from S to D.
Note that node R1 receives a superposition of the two

packets, one from S and one from R2. With the assumption of

symbol level synchronization [16], the k-th received symbol

at R1 can be expressed as

r(k) =

Lx
∑

l=0

hx(k, l)x(k − l)+

LI
∑

l=0

h(k, l)I(k − l)+n(k) (1)

where x(k) ∈ A = {−q + 1,−q + 3, · · · q − 3, q − 1} is

the k-th target symbol sent from S and I(k) ∈ A is the k-

th known interfering symbol sent from R2; n(k) is the zero

mean Gaussian noise with variance σ2; h(k, l) and hx(k, l) are

respectively the l-th tap channel coefficients from R2 and S to

R1 for their k-th symbols; Lx and LI are the respective max-

imum tap delays of the two signals. The transmit powers, and

the effects of transmit and receive pulse shapes, are combined

into the channel coefficients, h(k, l) and hx(k, l). According to

the WSSUS (Wide-Sense Stationary-Uncorrelated Scattering)

model of Bello [17], all the channel taps are independent

of each other; for each tap, the channel variation satisfies

E {h(k, l)h(k − 1, l)} = J0(2πfmaxτ), where J0(2πfmaxτ)
is the zeroth order Bessel function of the first kind, fmax is the

maximum Doppler frequency, and τ is the symbol duration.

Hereafter, the bold letter x/I denotes the corresponding vector
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of the whole packet. Note that asynchrony between the signal

and interference, if any, can be incorporated into the above

baseband model. For example, if the symbols of the signal

and interference are not aligned in time, the resulting sampling

offset of the interference is equivalent to a multi-path effect

that can be combined into the multi-path in (??). For carrier

frequency asynchrony, the receiver can synchronize to the

carrier frequency of the interference in a traditional way if we

regard the target signal as “noise” during the BKIC process

(the resulting frequency offset of the target signal, if any, can

be processed after BKIC).

The system formulation for analog network coding in two-

way relay channel is the same as in (??) and the details are

omitted here.

B. System Architecture

We propose a blind known-interference cancellation scheme

which can cancel the interference in (??) and transform r(k)

to the signal of interest,
Lx
∑

l=0

hx(k, l)x(k − l) + n(k), plus a

small noise as

z(k) =
Lx
∑

l=0

hx(k, l)x(k − l) + n(k) + w(k)

= x′(k) + n(k) + w(k)

(2)

where w(k) is the residual interference introduced during

the interference cancellation processing of our BKIC scheme.

According to (??), we have the following two definitions:

Definition 1: Desired Signal (DS): x′(k) =
Lx
∑

l=0

hx(k, l)x(k − l), which does not contain any noise

or interference.

Definition 2: Desired Signal plus Noise (DSN): x′(k) +

n(k) =
Lx
∑

l=0

hx(k, l)x(k − l) + n(k), which is equivalent to

the received signal from a pure point-to-point transmission

without any interference. The function of BKIC is to remove

the known interference. In the ideal case, its output should

be exactly DSN. In reality, BKIC needs to estimate DSN as

accurately as possible.

The signal z(k) in (??) is DSN with a small extra noise,

from which the traditional signal detection algorithm can then

proceed to detect x as in conventional receivers. As will be

shown later, the small noise w(k) can be approximated as a

Gaussian noise with negligible variance. Therefore, the trans-

mission technique (i.e., modulation and other specifications)

employed by source S or the channel experienced by S does

not affect our BKIC scheme.

A relay enabled with our interference cancellation may be

built as shown in the system architecture of Fig. 2. When

the signal is received, the relay first checks if the known

interference is present with the block “interference check”.

Interference check may be implemented with an optimal

matched filter that projects the received signal to the locally

known interference sequences [19, 20]. In [19], a similar

technique is used for spectrum sensing, in which instead

of known interference, the signature of the primary user is

known and is to be detected. As shown in the analysis and

Fig. 2: System architecture with blind known-interference

cancellation

experimental measurement in [19], the needed interference

signal power for interference check decreases linearly with

packet length and it could be as low as -136dbm. To limit

the scope of this paper, we will not delve into the details of

“interference check”.

If known interference is not present, then the packet is

directly fed to a conventional receiver for data detection. If

known interference is present, then the packet is fed to the

BKIC block to cancel the known interference. After that,

the signal is fed to the conventional receiver for target data

detection.

III. BLIND KNOWN-INTERFERENCE CANCELLATION IN

FLAT FADING CHANNEL

In this section, we present our BKIC schemes assuming

flat fading channel. The next section extends the treatment to

the general multi-path channel. BKIC consists of two steps.

In the first step, the interference is canceled by combining

adjacent symbols. In the second step, the DSN, i.e., the point-

to-point form of the signal, distorted during the cancellation

step, is recovered. The second step is the non-trivial step, and

we present two algorithms for it. The first algorithm, which

serves as a benchmark, recovers DSN by means of smoothing;

the second algorithm recovers DSN by a novel real-valued

belief propagation framework.

A. Step 1: Interference cancellation

With flat fading, LI =1 for the interference channel, we

can rewrite (??) as

r(k) = x′(k) + hI(k)I(k) + n(k). (3)

In practice, the channel may be time varying, and the variation

depends on the moving speed and other environmental factors.



IEEE JOURNAL ON SELECTED AREA IN COMMUNICATIONS , VOL. X, NO. X, XXXX 2012 4

However, for adjacent symbols, the channel variation is very

small. We can then approximate the channel variation as

hI(k + 1) ≈ hI(k) + ∆(k). (4)

In (??), ∆(k) ∼ N(0, σ2
∆) is governed by the Doppler rate,

and it is almost negligible in modern wireless communication

systems [21, 25]. This key attribute enables us to use adjacent

symbols to cancel the known interference without channel es-

timation. To do so, we obtain a new signal t(k) by combining

r(k) and r(k + 1) as follows:

t(k) = r(k)− I(k)
I(k+1)r(k + 1)

=
(

x′(k)− I(k)
I(k+1)x

′(k + 1)
)

+ n(k)

− I(k)
I(k+1)n(k + 1)− I(k)∆(k)

k ∈ {1, 2, · · ·N−1}

(5)

In (??), almost all the interference terms have been removed in

t(k). However, the signal of interest to us is DSN, x′(k)+n(k),
rather than t(k). In the next step, we show how to extract DSN

from t(k).

B. Step 2: DSN recovery

In (5), the target signal x′(k) is distorted into the form of

t(k) after the interference cancellation step. At first glance,

t(k) may appear to be the signal x′(k) passing through

an Inter-Symbol Interference (ISI) channel, in which case

traditional ISI equalization schemes such as filtering, Viterbi

detection and Belief Propagation (BP) [22] detection, could be

used to recover x′(k). However, a closer examination reveals

an important difference between the signals t(k) in (5) and

that of a traditional ISI channel. Specifically, the difference

is the correlated noise in (5) for adjacent symbols t(k) and

t(k+1). Although Viterbi/BP detection achieves optimal MAP

performance for independent noise in ISI equalization, its

performance is far from optimal for the recovery of the target

signal here because of the correlated noise, as will be shown

in our numerical simulation.

Noise whitening is a standard technique for dealing with

correlated noise. However, we cannot directly whiten the

noise in (5) because it is impossible to transform the N − 1
equations in (5) into N equations with independent noise terms

while maintaining the interference cancellation effect. Another

possibility is the noise prediction and whitening process in

[23]. As will be shown in our simulation results later, this

scheme is also far from optimal.

We now propose two schemes to recover DSN with near

optimal performance.

1) Recovery by Smoothing: From (5), we could write

u(1) = t(1)

= x′(1) + n(1)− I(1)
I(2) (x

′(2) + n(2))− I(1)∆(1)

u(k) = u(k − 1) + I(1)
I(k) t(k)

= x′(1) + n(1)− I(1)
I(k+1) (x

′(k + 1) + n(k + 1))

−I(1)
k
∑

m=1
∆(m) for k ∈ {2, · · ·N − 2}

(6)

Then, we obtain the estimate of x′(1) + n(1) as follows:

z(1) =
1

N − 1

N−1
∑

k=1

u(k) = x′(1) + n(1) + w(1) (7)

where the residual interference w(1) = − 1
N−1

N−1
∑

k=1

{

I(1)
I(k+1) (x

′(k + 1) + n(k + 1)) + I(1)(N − k)∆(k)
}

is independent of x′(1) and n(1). As will be shown in

the next section, w(k) can be approximated by Gaussian

distribution. For slow fading (σ2
∆almost equals 0), its variance

is very small; for fast fading, it may become larger due to

the accumulation of errors (note: this effect is inevitable

in any channel estimation scheme). Then, we can remove

x′(1) + n(1) from each signal in (5) to obtain the estimate of

x′(k) + n(k) as:

z(k) = I(k)
I(1) (z(1)− u(k − 1))

= x′(k) + n(k) + I(k)(w(1)/I(1) +
k−1
∑

m=1
∆(m))

= x′(k) + n(k) + w(k) for k ≥ 2

(8)

We can then feed z(k) to a conventional receiver for final

desired data detection.

2) Recovery by Real-valued BP: Belief propagation is a

powerful technique for inferring information from a large

amount of correlated data. In the conventional method of

applying BP to equalize ISI as in (5), x’ and its ISI form

x′(k)− I(k)
I(k+1)x

′(k+1) are associated with the corresponding

variable nodes. Their estimates are refined with message

passing [22]. Direct BP application as such assumes the noise

terms in the N − 1 equations in (5) are independent. Strictly

speaking, this is not true.

For correlated noise terms, [23] proposed to predict and

whiten the correlated noise during the message passing pro-

cedure to improve the performance of the traditional BP

algorithm. However, this method cannot make full use of the

special form of noise correlation in (5) and can achieve only

suboptimal performance. For better performance, we propose

a novel BP scheme where DSN x’+n and the post-cancellation

signal t, rather than DS as in traditional BP, are associated with

the variable nodes. Since they are real-valued signals, we refer

to our BP detection algorithm as BKIC with Real-valued BP

(BKIC-RBP). The Tanner graph of our BP algorithm is shown

in Fig. 3.

An important subtlety in the Tanner graph is that x’+n is

treated as “signal symbols”. With respect to Fig. 2, x’+n is the

target signal that will be fed to the conventional receiver after

the interference cancelation process. With reference to (5), the

observations t(k) are made up of adjacent “signal symbols”

plus noise in the cancellation process, which is −I(k)∆(k)
and does not include n(k) and n(k+ 1). The noise n(k) will

be dealt with by the conventional receiver later.

Remark: We stress that associating DSN rather than DS

to the left variable node in Fig. 3 is the key of our BKIC-

RBP scheme. First, directly estimating DS cannot improve the

performance since the noise is independent of the interference.

More importantly, n(k)− I(k)
I(k+1)n(k+1)−I(k)∆(k) becomes
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'(1) (1)x n+

'(2) (2)x n+

'( ) ( )x N n N+

(a) Top-to-Bottom

'(1) (1)x n+

'(2) (2)x n+

'( ) ( )x N n N+

(b) Bottom-to-Top

Fig. 3: Tanner Graph for Continuous BP, where blank circles

denote the variable nodes, the filled circles denote the evidence

nodes and the rectangles denote the check nodes.

the general noise in t and the relation between adjacent noise

terms in (5) is wiped off from the figure when associating DS

to the left variable node.

With the above setting, the target of BKIC-RBP is to find

a vector x′ + n to maximize

P (x′ + n|t) ∝ P (t|x′ + n)P (x′ + n)
=

∏

k

P (t(k)|x′(k) + n(k), x′(k + 1) + n(k + 1))P (x′ + n) .

(9)

Based on (9), a corresponding Tanner Graph can be estab-

lished as in Fig. 3, where the messages being passed between

the variable nodes and the check nodes are the probability

density functions of the variable nodes at left hand side.

The algorithm includes three critical steps: initializing the

messages, updating the messages at the variable nodes and

updating the messages at check nodes in an iterative way.

Message initialization:

The variable nodes x’+n on the left side of Fig. 3 are not

associated with any channel outputs, and we initialize the PDF

of x’+n with the a priori probabilities. The variable x′ adopts

a discrete value, and the discrete distribution is determined by

the constellation set and the multi-path channel. However, we

cannot obtain the distribution because we assume the channel

information is not yet available in BKIC (i.e., estimation of

the signal channel, if any, occurs after BKIC as per the system

architecture in Fig. 2). Generally speaking, the upper bound

of the interference power, Pmax, can be derived easily. For

example, Pmax could be set to the max power of the received

signal r1.

We assume x′ is uniformly distributed in
[

−
√
Pmax,

√
Pmax

]

2. Since the noise is of Gaussian

distribution, the messages (i.e., the a priori probabilities)

associated with the leftmost edges in the Tanner graph can

be expressed as

mx′+n = px′+n (y) = px′+n (x
′ + n = y)

=

√
Pmax
∫

−
√
Pmax

px′(x
′ = s)pn(n = y − s)ds

= 1
2
√
Pmax

√
2πσ

√
Pmax
∫

−
√
Pmax

exp
(

−(y − s)2/2σ2
)

ds

. (10)

For each left variable node x′(k)+n(k), there is an incoming

edge from each of its adjacent check node, whose messages is

denoted by
←

mx′(k)+n(k), and an outgoing edge to the adjacent

check node, whose message is denoted by m⃗x′(k)+n(k).

With the initial messages, we then iteratively update them

to obtain the final estimation. Since our Tanner graph in Fig. 3

does not include any cycles, one iteration is enough to obtain

the optimal MAP performance. The iteration consists of two

parallel message update processes. One process successively

updates the top-to-bottom messages as illustrated in Fig. 3(a).

That is, the right-bound message from the top m⃗t2b
x′(k)+n(k) is

first updated. Then the updated m⃗t2b
x′(k)+n(k) is used to update

the next left-bound message
←

m
t2b

x′(k)+n(k), which is then used

to update the next right-bound message, and so on and so forth.

Similarly, the other process successively updates the bottom-

to-top messages, m⃗b2t
x′(k)+n(k) and m⃗b2t

x′(k)+n(k), as illustrated in

Fig. 3(b). For each of the processes, the right-bound messages

are messages going out of variable nodes, and the left-bound

messages are messages going out of check nodes. These two

types of messages are updated according to the variable-node

update rule and the check-node update rule, respectively, in

the following.

Message updates at the check nodes:

First consider the top-to-bottom process where the messages

associated with the edges between the left variable nodes and

the check nodes are updated one by one from top to bottom

as in Fig. 3 (a). For a check node connected to the right

evidence node t[k], the two left variable nodes connected to

it are x′(k) +n(k) and x′(k+1)+ n(k+1). Given the input

message m⃗t2b
x′(k)+n(k), the output message can be calculated

1
Pmax obtained in this way includes the power of DSN and the power

of the interference. So it is a loose upper bound of the maximal interference
power.

2A more accurate distribution of x′+n should improve the performance of
BKIC-RBP. Fortunately, BKIC-RBP with this approximate a prior distribution
still performs very well, as demonstrated by our simulation results later.
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using (5) as follows:

←

m
t2b

x′(k+1)+n(k+1) = px′(k+1)+n(k+1) (y) =
∣

∣

∣

I(k+1)
I(k)

∣

∣

∣
px′(k)+n(k)

(

I(k)y
I(k+1) + t(k) + I(k)∆(k)

)

=
∣

∣

∣

I(k+1)
I(k)

∣

∣

∣

∫

∆(k)

px′(k)+n(k)

(

I(k)y
I(k+1) + t(k) + I(k)s

)

p∆(k)(s)ds

∝
∫

px′(k)+n(k)

(

I(k)
I(k+1)y + t(k) + I(k)s

)

e−s2/2σ2

∆ds

(11)

whereσ2
∆ can be set to an upper bound of the variance of

the interference term ∆(k) 3. For block fading, ∆(k) = 0 with

probability 1. The PDF of x′(k + 1) + n(k + 1) in (11) can

be simplified to

←

m
t2b

x′(k+1)+n(k+1) = px′(k+1)+n(k+1) (y)

∝ px′(k)+n(k)

(

I(k)
I(k+1)y + t(k)

) . (12)

Now consider the bottom-to-top process where the other set of

messages associated with the edges between the left variable

nodes and the check nodes are updated one by one from the

bottom to the top as in Fig. 3 (b). Analogous to (11),the PDF

of x′(k) + n(k) can be updated from the PDF of x′(k+1)+
n(k + 1) and the observation t(k) based on the following

equation:

←

m
b2t

x′(k+1)+n(k+1) = px′(k)+n(k) (y) ∝
∫

e−s2/2σ2

∆ ·
px′(k+1)+n(k+1)

(

I(k+1)
I(k) y − I(k+1)

I(k) t(k)− I(k + 1)s
)

ds

(13)

For block fading, (??) can be simplified to

←

m
b2t

x′(k)+n(k) = px′(k)+n(k) (y)

∝ px′(k+1)+n(k+1)

(

I(k+1)
I(k) y − I(k+1)

I(k) t(k)
) (14)

Message updates at the variable nodes:

Message updates at the left variable nodes is the same

for both top-to-bottom process and the bottom-to-top process.

Take the top-to-bottom processing as an example. Each left

variable node is connected to three edges, whose associated

messages are output message m⃗t2b
x′(k)+n(k), input message

←

m
t2b

x′(k)+n(k) and the leftmost message with mx′+n respec-

tively. Each output message is updated with the two input

messages as

m⃗t2b
x′(k)+n(k) = pt2bx′(k)+n(k)

(

y|←mt2b

x′(k)+n(k),mx′+n

)

= 1
C

←

m
t2b

x′(k)+n(k) ·mx′(k)+n(k)

. (15)

where C is a normalization factor.

At the end of the processing, we need to collect the infor-

mation contained in all the messages and make a final estimate

of DSN. For the k-th variable node with x′+n, there is the a

priori PDF px′(k)+n(k) (y) contained in mx′+n, the extrinsic

information on px′(k)+n(k) (y) contained in
←

m
t2b

x′(k)+n(k) after

the top-to-bottom process, and another extrinsic information

on px′(k)+n(k) (y) contained in
←

m
b2t

x′(k)+n(k) after the bottom-

to-top process (there is only one extrinsic PDF of the first

3BKIC-RBP is robust to the value of σ
2

∆
as shown in the simulation.

Without an accurate estimate of σ
2

∆
, we can fix it to a relative high value,

such as 0.001, with almost no performance loss.

and the last left variable node). Then the final probability

distribution of x′(k)+n(k) can be calculated as the following

product:

px′(k)+n(k) (y|t)
= 1

Cmx′(k)+n(k) · ←m
t2b

x′(k)+n(k) ·
←

m
b2t

x′(k)+n(k)

(16)

where C is a normalization factor. px′(k)+n(k) (y|t) contains

all the information about x′ + n given the sequence t after

known interference cancellation and it can be fed to the

traditional detection block for further target data detection.

An estimate of x′ + n is given by

z(k) = argmax
y

px′(k)+n(k)(y|t) (17)

This estimate will be used in our numerical simulations

later.

Discussion: we can regard t as an inner encoder output with

input x′. Then the decoder of it, i.e., the hard/soft decision

based on px′(k)+n(k) (y|t) can be combined with the channel

decoding procedure so that the Turbo like detection-decoding

can applied to achieve even better performance.

IV. BKIC IN FREQUENCY SELECTIVE FADING CHANNEL

The previous section considered the BKIC scheme for the

flat fading channel. In this section, we extend the scheme to

the frequency-selective channel. When BKIC is performed in

a totally blind manner, we have no prior information about

the multi-path characteristics. However, it is still reasonable to

assume knowledge of the maximum delay of all the paths, L,

as in many current broadband wireless systems. For example,

the length of the predefined CP (cyclic prefix) in OFDM

system implies the maximum delay of all paths. We can

perform interference cancellation and recover the equivalent

DSN for each potential path in a successive way as follows.

We first rewrite the received signal in (1) as

r(k) = x′(k) +
L
∑

d=0

hI(k, d)I(k − d) + n(k)

= x′(k) +
L
∑

d=1

hI(k, d)I(k − d) + hI(k, 0)I(k) + n(k)

= x′
0(k) + hI(k, 0)I(k) + n(k)

.

(18)

In (??), we select the first path of the interfering signal as the

interference to be cancelled and combine the other interfering

paths to DS, x′(k). Then, the selected interfering path can be

removed by applying the BKIC scheme as in the preceding

section. After that, we can obtain

z1(k) = x′(k) +
L
∑

d=1

hI(k, d)I(k − d) + w0(k) + n(k) (19)

where w0(k)is the residual interference after removing the first

path.

Comparing z1(k) and r(k), we see that the first path of

interference has been removed and generated a new residual

interference term w0. In a similar way, we can remove the
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second path of interference to obtain z2(k). Repeat the BKIC

scheme L+1 times, we finally obtain that

z(k) = zL+1(k) = x′(k) +
L
∑

d=0

wd + n(k). (20)

V. PERFORMANCE ANALYSIS

In this section, we analyze the BER and SINR performance

of the proposed BKIC schemes under flat fading channels and

frequency selective channels.

A. BKIC under Flat Fading Channel

Proposition 1: The performance of the overall system

that incorporates the BKIC schemes as in Fig. 2 to cancel

interference is upperbounded by the clean system where there

is no interference at all.

This proposition is easy to understand since the interfering

data is independent to the target data and it can not help to

detect the target data. Due to the existence of the residual

interference w, BKIC schemes can never achieve this upper

bound exactly. Fortunately, we can approach it very closely.

Proposition 2: For the BKIC-S scheme, when the packet

length N is large, the residual interference w(k) can be well

approximated by a Gaussian noise N(0, µ(k)) , where the vari-

ance is µ(k) = I2(k)
(

(Px+σ2)
(N−1) + NPI

3 (1− α2)
)

E{1/I2(j)}.

Proof: According to (8), we can show that the residual

interference for the k-th symbol can be expressed as

w(k) = I(k)
k−1
∑

m=1
∆(m)−

I(k)
N−1

N−1
∑

j=1

{

1
I(j+1) (x

′(j + 1) + n(j + 1)) + (N − j)∆(j)
}

= −I(k)
k−1
∑

j=1

{

1−j
N−1∆(j)

}

− I(k)
N−1
∑

j=k

{

N−j
N−1∆(j)

}

− I(k)
N−1

N−1
∑

j=1

{

x′(j+1)
I(j+1)

}

− I(k)
N−1

N−1
∑

j=1

{

n(j+1)
I(j+1)

}

.

In above expression of w(k)4, all terms except the third

are of the Gaussian distribution. Based on central limited

theory, however, the third term can be well approximated as

a Gaussian distribution for large N . Then, the total residual

interference, w, can be regarded as of normal distribution. It

is straightforward to verify that its mean value is zero and its

variance is

µ(k) = E{|w(k)|2}
= (Px+σ2)

(N−1) Ej{ I2(k)
I2(j) }+ I2(k)σ2

∆
[

(k−2)(k−1)(2k−3)
6(N−1)2 + (N−k)(N−k+1)(2N−2k+1)

6(N−1)2

]

, (21)

where Px is the received power of the target signal x’ and PI

is the received power of the interfering signal.

From the above proposition, we can obtain some important

observations.

4By checking the residual interference, we can find that BKIC-S is exactly
equivalent to the traditional packet level KIC scheme: estimating the channel
by an optimal filter matched to the known interference sequence and then
subtracting the known interference.

Corollary 1: In BKIC-S, the residual interference is inde-

pendent of the received power of the interfering signal for

block fading channel.

In block fading channel, σ2
∆ = 0. Then the power of the

interfering signal, embedded in hI , does not affect the perfor-

mance of the BKIC-S scheme. This independence property is

desired especially when the interfering signal power is much

stronger than the desired signal. In contrast, the traditional

known-interference cancellation [3] scheme, which is based

on previously estimated channel information, performs poorly

in this case because the residual interference is proportional to

the interfering signal power with a given channel estimation

mean square error (MSE).

Corollary 2: In BKIC-S, there is an optimal packet length5

N that minimizes the residual interference µ for the continuous

fading channel.

The first term in (??) decreases with N as in the block

fading channel. The second term in (??) increases with N .

When N is large, the channel varies far from its average

value and the residual interference coming from channel

variation accumulates (fortunately, BKIC-RBP is insensitive to

channel variation.). If the interference data adopts a constant

power modulation (PSK modulation), the optimal N can be

calculated as

∂µ/∂N = 0 ⇒ Nopt = 1 +

√

3(Px + σ2)

σ2
∆

(22)

In real communication systems, σ2
∆ is very small and Nopt is

large.

Besides the performance, complexity is also an important

issue. The complexity of our BKIC-S scheme is quite low.

Only one multiplication and two addition processes are needed

for each symbol.

Corollary 3: With BKIC-S, the SNR loss compared to the

clean system (only DSN signal exists) is

∆ = SNRDSN − SNRBKIC−S

= 10 log(Px

σ2 )− 10 log( Px

σ2+µ )

= 10 log(1 + µ
σ2 ) ≈ µSNRDSN

. (23)

In BKIC-S, the residual interference is fixed when the power

of DS plus noise is given. As a result, the SNR loss of BKIC-S

depends on the SNR of DSN. For smaller residual interference,

the SNR loss is approximately proportional to the SNR of

DSN.

For the performance of BKIC-RBP, we have

Proposition 3: Given the assumption that ∆(k) for different

k are i.i.d Gaussian random variables, the performance of the

BKIC-RBP scheme achieves the MAP optimal DSN recovery

performance, which is lower bounded by the BKIC-S.

As is well known, the loop free BP detection has MAP-

optimal performance. In our BKIC-RBP, there are no cycles

in the Tanner graph in Fig. 3, so exact MAP performance of

signal recovery can be achieved. As a result, the performance

of BKIC-RBP is lower bounded by the BKIC-S scheme.

5In our paper, packet length is just the processing length of the algorithms.
Dividing a packet into several parts for processing is possible but not
considered here.
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Proposition 4: The complexity of BKIC-RBP is linear in

terms of packet length.

The loop-free property in Fig. 3 also guarantees fast con-

vergence of the BP algorithm. Only one iteration (one top-to-

bottom process and one bottom-to-top process) in the RBP

algorithm is enough to obtain the MAP performance. The

complexity of our RBP recovery is only 4N − 6 message

update operations, which is linear in terms of the packet length.

However, real value processing is needed to achieve the op-

timal MAP performance. In practice, we need to quantize the

real valued PDF into discrete form with controlled complexity.

As shown in our simulation and many other works [24], there

is typically little performance loss associated with quantization

errors in belief propagation algorithms.

B. BKIC under Selective Fading Channel

In multi-path channel, the flat fading BKIC is executed

several times to successively get rid of the interference of each

path. Therefore, the performance analysis is similar. We have

Proposition 5: For the BKIC-S in multi-path channel,

the total residual interference w can be approximated by a

Gaussian noise N(0,
L
∑

m=0
µm), where µm is the variance of

the residual interference generated after cancellation of the

m-th path. Its value can be obtained as in (21).

According to Proposition 5, we can obtain the correspond-

ing corollaries as those in the flat fading channel.

Extending Proposition 3, we can obtain a similar proposi-

tion as follows:

Proposition 6: In the multi-path channel, BKIC-RBP

achieves the MAP optimal performance for each path. Its

performance is lower bounded by the performance of BKIC-S.

VI. NUMERICAL SIMULATION

This section presents numerical simulation results for the

performance of BKIC. In our numerical studies, BPSK modu-

lation is assumed for the desired signal while both BPSK and

4-ASK modulations are investigated for the interference signal.

As is clear from the earlier discussion, the format of the target

signal does not affect the operation of BKIC. Thus, without

loss of generality in BKIC, we could assume flat fading with

unit channel coefficient for the target-signal channel (note:

with respect to Fig. 2, it is in the conventional receiver that the

channel characteristics of the target signal that matters, and it

is over there that the actual fading characteristics of the target

signal channel come into play).

For the interference channel, block fading, continuous fad-

ing channel and multi-path fading are simulated. The system

SNR is defined as 1/σ2, where 1 is the power of the target

signal and σ2 is the variance of the noise. For BKIC-RBP, we

need to quantize the messages (the PDFs) into discrete form to

enable simulation with Matlab. In our simulation experiments,

the quantization interval for BKIC-RBP is 0.025 for 1-7dB and

it is 0.0125 for 8-10dB. Quantization of the messages results in

quantization errors, and smaller quantization step can further

improve the performance at the cost of high complexity.
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Fig. 4: Residual-interference variance with N=100.
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Fig. 5: BER performance for block fading with N=100.

For comparison purposes, we also simulate the scheme of

Noise Predictive Belief Propagation (NPBP) in [23] for the

second step of BKIC. In our simulation, the length of the

whitening filter in [23] is set to two. The complexity of

BKIC-NPBP is 30(4N − 6)message update operations plus

3 whitening operations, which is much higher than BKIC-S

and BKIC-RBP.

A. Block Fading Channel

We first consider the single path block fading interference

channel. In this case, the channel coefficients are set to a

constant unit within the whole block.

In Fig. 4 and Fig. 5, we show the variance of the residual

interference and the BER of the proposed BKIC schemes

respectively, with packet length N =100 (bits).

We first look at the simulation performance of the BKIC-

S. For BKIC-S, the theoretical variance of the residual in-

terference assuming Gaussian approximation is µ = (1+σ2)
(N−1)

according to (21). Based on it, we can calculate the theoretical

BER of BKIC-S as Q(
√

1/(µ+ σ2)) as in [25]. In both

figures, the simulation results match the theoretical values very



IEEE JOURNAL ON SELECTED AREA IN COMMUNICATIONS , VOL. X, NO. X, XXXX 2012 9

1 2 3 4 5 6 7 8 9 10
10

−4

10
−3

10
−2

10
−1

10
0

SNR

B
E

R

BKIC−S

BKIC−RBP

BKIC−NPBP

theoretical BKIC−S

Lower Bound

Fig. 6: BER performance for block fading with N=1000.

well. This validates the Gaussian approximation in Proposition

2. In Fig. 4, we can see that the residual interference of BKIC-

S is almost independent of the SNR. The near-constant residual

interference becomes more significant compared to noise in

high SNR region. As a result, compared to the lower bound

(i.e., the standard BPSK without interference), the SNR loss

in Fig. 5 is larger when SNR increases. The SNR at BER of

2 × 10−3 is around 10dB, corresponding to an SNR loss of

more than 0.5 dB.

As predicted by Proposition 3, the performance of BKIC-

RBP, including residual interference and BER, is better than

BKIC-S. The improvement becomes even larger in high SNR

region. Both figures show that BKIC-RBP can benefit more

from SNR increase. One possible reason is that high SNR

will sharpen a priori distribution of DSN, which improves

the performance of BKIC-RBP. By contrast, the conventional

NPBP scheme is worse than BKIC-RBP by about 1.5dB. If we

do not know whether the channel is block fading or continuous

fading, and fixed σ2
∆ to 0.001, the performance of BKIC-

RBP1 is obtained. The almost identical performance shows

that BKIC-RBP is robust to σ2
∆.

Fig. 6 shows the BER performances of different schemes for

N =1000. As predicted in the analysis, the BER performance

of BKIC-S improves significantly as N increases. It is almost

the same as the theoretical lower bound. On the other hand, the

BER performance improvement of BKIC-RBP is negligible

compared to the case of N =100 since the fixed quantization

error dominates in the simulation.

In Fig. 7, we simulate the BKIC schemes by modulating

the interference data with 4-ASK. For BKIC-RBP, the perfor-

mance of 4-ASK is similar to that of BPSK. For BPSK-S and

the traditional BKIC-NRBP, however, the performance of 4-

ASK is significantly degraded compared with that of BPSK.

This can be explained by (21), from which we could see that

the residual interference power is directly proportion to the

interference power, 1 or 9 for 4-ASK. Therefore, half of the

desired signal endures very larger residual interference, and

that results in large BER like that caused by fading.
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Fig. 7: BER performance for block fading channel, where the

interference data is modulated with 4-ASK and N=100.
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Fig. 8: Residual interference for continuous fading channel
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Fig. 9: BER performance for continuous fading channel with

N=100.

B. Continuous Fading Channel

In this part, we set the interference channel to single path

continuous fading with the first order Markov channel mode

in and the parameter α is set to 1 − 10−3 as in [18], which

corresponds to a fast fading channel. σ2
∆ is set to 0.001.
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Fig. 10: BER performance for continuous fading channel with

N=1000.

Fig. 8 and Fig. 9 show the residual interference variance and

the BER of the BKIC schemes with N =100, respectively.

For comparison, we also give the BER performance of the

traditional known-interference cancellation (Traditional KIC)

scheme where the channel coefficient of the first symbol is per-

fectly known. Therefore, this performance is an upper bound

of the actual Traditional KIC where there is always channel

estimation error. From both figures, BKIC-RBP outperforms

all the other schemes by at least 1dB. BKIC-S is the next best

scheme when SNR is less than 10 dB. Compared to Fig. 5, all

schemes degrade when fading is continuous. The degradation

for BKIC-RBP and BKIC-NPBP is about 0.1 dB, which is

much smaller than that of BKIC-S and traditional KIC.

In Fig. 10, we present the BER performance of the BKIC

schemes when N =1000. With large N , the channel varies

more significant and the BKIC-S scheme performs even worse.

The BKIC-RBP scheme performs best among all the schemes

and there is only 0.2 dB SNR loss compared to the block

fading case. BKIC-RBP is about 1dB better than the BKIC-

NPBP scheme. It indicates that the BP algorithm is not

significantly affected by channel variation.

C. Frequency Selective Fading Channel

We also investigate the BER performance of BKIC with

frequency selective fading channel. The results are shown

in Fig. 11. For illustration, a simple multipath interference

channel scenario with two interference paths is considered.

The amplitudes of the two paths are the same and unchanged

within the packet; the delays of the two paths are 0 and 2

respectively. Compared to the flat fading case in Fig.5, both

the performances of BKIC-RBP and BKIC-S are degraded as

analyzed in the previous section. However, BKIC-S (traditional

KIC) degrades more than BKIC-RBP, which has only tiny

degradation.

VII. CONCLUSION

This paper presents two known-interference cancellation

schemes with good performance and low complexity. Although

there has been much theoretical work in this area, deployments
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Fig. 11: BER performance for frequency selective fading

channel with N=100.

of the previously proposed schemes are difficult because of

their needs for accurate channel estimation and their high

complexity. To our knowledge, there has been no effective

blind known-interference cancellation scheme that does not

require estimation of the interference channel. Our work fills

a gap in that regard.

Specifically, this paper proposes a framework for blind

known-interference cancellation (BKIC), as embodied in Fig.

2. BKIC operates on the principle that the channel coefficient

is almost constant for adjacent interference symbols in real

communication systems. Thus, if the interference symbols are

known, by combining adjacent symbols (i.e., combining the

received signal and a weighted off-shifted version of it), we

can obtain a new signal that is almost free of the interference.

This, however, causes distortion to our target signal. A key

challenge of BKIC, therefore, is how to compensate for this

distortion. To tackle this challenge, we propose and investigate

two schemes: BKIC-S, which is based on the principle of

smoothing; and BKIC-RBP, which is based on the principle

of real-value belief propagation. BKIC-RBP has MAP-optimal

performance. The algorithmic complexities of both schemes

are linear in the size of the packet.

We show that both BKIC-S and BKIC-RBP have superior

performance compared with the traditional schemes. Impor-

tantly, their performance is very close to the theoretical

performance bound, especially for block fading interference

channel. The performance of BKIC-S depends on packet size,

while the performance of BKIC-RBP is not sensitive to the

packet size, but is dependent on the quantization step used

in the algorithm to approximate real values. We also show

that BKIC-RBP is very robust against fast fading in which the

channel coefficients may vary in a dynamic manner within a

packet.

Going forward, to fully exploit the potential of BKIC in

wireless networks, new MAC layer and network layer pro-

tocols need to be designed. Besides relay networks, recently

there has been increased interest in the wireless networking

community on the realization of full-duplex wireless com-

munication [26]. In the full duplex mode, a node transmits

and receives at the same time. The received signal contains
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both the target signal as well as known interference (i.e., the

self transmitted signal that is known). The investigation of

BKIC for full-duplex wireless communication will be of much

interest.
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