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Abstract

Kriging is a useful method for developing metamodels for product design optimization.

The most popular kriging method, known as ordinary kriging, uses a constant mean

in the model. In this article, a modified kriging method is proposed, which has an

unknown mean model. Therefore it is called blind kriging. The unknown mean model is

identified from experimental data using a Bayesian variable selection technique. Many

examples are presented which show remarkable improvement in prediction using blind

kriging over ordinary kriging. Moreover, blind kriging predictor is easier to interpret

and seems to be more robust to misspecification in the correlation parameters.
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1 Introduction

The use of computer modeling and experiments is becoming more and more popular for

product design optimization [1]. Based on the physical knowledge of the product, mod-

els such as finite element models can be formulated and solved on computers. Although

cheaper than experimenting on products or prototypes, computer experiments can still be

time consuming and expensive. An approach to reduce the computational time and cost is to

perform optimization on a metamodel that approximates the original computer model. The

metamodel can be estimated from data by running the computer experiment on a sample of

points in the region of interest.

Kriging is widely used for obtaining the metamodels [2, 3, 4]. For examples, [5] uses

kriging for the thermal design of wearable computers and [6] uses kriging for the design of a

variable thickness piezoelectric bimorph actuator. See [7, 8, 9, 10] for more examples. The

popularity of kriging is due to the fact that computer models are often deterministic (i.e.,

no random error in the output) and thus interpolating metamodels are desirable. Kriging

gives an interpolating metamodel and is therefore more suitable than the other common

alternatives such as quadratic response surface model.

A kriging model, known as universal kriging, can be stated as follows [11]. Assume that

the true function y(x), x ∈ Rp, is a realization from a stochastic process

Y (x) = µ(x) + Z(x), (1)

where µ(x) =
∑m

i=0 µivi(x) and Z(x) is a weak stationary stochastic process with mean

0 and covariance function σ2ψ. The vi’s are some known functions and µi’s are unknown

parameters. Usually v0(x) = 1. The covariance function is defined as cov{Y (x+h), Y (x)} =

σ2ψ(h), where the correlation function ψ(h) is a positive semidefinite function with ψ(0) = 1

and ψ(−h) = ψ(h). In this formulation µ(x) is used to capture the known trends, so that

Z(x) will be a stationary process. But, in reality, rarely will those trends be known and thus

the following special case, known as ordinary kriging, is commonly used [11, 12, 13],

Y (x) = µ0 + Z(x). (2)
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The metamodel (or the predictor) can be obtained as follows. Suppose we evaluated the

function at n points {x1, · · · ,xn} and let y = (y1, · · · , yn)′ be the corresponding function

values. Then ordinary kriging predictor is given by

ŷ(x) = µ̂0 +ψ(x)′Ψ−1(y − µ̂01), (3)

where 1 is a column of 1’s having length n, ψ(x)′ = (ψ(x − x1), · · · , ψ(x − xn)), Ψ is an

n × n matrix with elements ψ(xi − xj), and µ̂0 = 1′Ψ−1y/1′Ψ−11. It is the best linear

unbiased predictor, which minimizes the mean squared prediction error E{Ŷ (x) − Y (x)}2

under the model in Eq. (2).

The predictor in Eq. (3) is an interpolating predictor and is easy to evaluate. However, it

has some problems. First, the prediction can be poor if there are some strong trends (see the

simulation results in [14]). Second, it is not easy to understand the effects of the factors by

just looking at the predictor. Of course, sensitivity analysis techniques such as the functional

analysis of variance can be used for understanding and quantifying their effects [1], but the

proposed predictor in this article is a much simpler alternative. Third, the predictor is not

robust to the misspecification in the correlation parameters (see [15] for examples). In this

article, we propose a modification of universal kriging predictor that overcomes the foregoing

problems of ordinary kriging predictor.

2 Blind Kriging

We propose a simple modification to universal kriging model in Eq. (1). We do not assume

the functions vi’s to be known. Instead, they are identified through some data-analytic

procedures. Because vi’s are unknown in our model, we name it blind kriging. Thus, the

blind kriging model is given by

Y (x) = v(x)′µm + Z(x), (4)

where v(x)′ = (1, v1, · · · , vm), µm = (µ0, µ1, · · · , µm)′, and m are unknown. Here Z(x) is

assumed to be a weak stationary stochastic process with mean 0 and covariance function
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σ2
mψ. The correlation function ψ can also depend on m, but for the moment assume it to

be independent. The blind kriging predictor, which has the same form as that of universal

kriging predictor, is given by

ŷ(x) = v(x)′µ̂m +ψ(x)′Ψ−1(y − V mµ̂m), (5)

where V m = (v(x1), · · · ,v(xn))′ and µ̂m = (V ′
mΨ−1V m)−1V ′

mΨ−1y. Note that V m is an

n× (m+ 1) matrix.

The most important step in blind kriging is to identify the unknown functions vi’s.

They can be chosen from a set of candidate functions (or variables) using variable selec-

tion techniques. If some simple functions are used in the candidate set, then the predictor

can be easily interpreted using the first part v(x)′µ̂m. The second part of the predictor

ψ(x)′Ψ−1(y − V mµ̂m) helps to achieve interpolation.

2.1 Variable Selection

There are many variable selection techniques that are popular in regression analysis such as

forward selection, backward elimination, and step-wise regression [16]. Recently, many other

techniques have also been proposed [17, 18, 19, 20]. All of these techniques have a drawback

for using in the analysis of experiments and in particular for blind kriging. They do not lead

to models that satisfy the well known principles of effect hierarchy and effect heredity [21].

The effect hierarchy principle states that lower order effects (such as main effects) are more

important than higher order effects (such as two-factor interactions) and the effect heredity

principle states that in order for an interaction effect to be significant, at least one of its

parent factors should be significant. These principles are useful for identifying models that

are simple and interpretable. Ref [22] introduced a Bayesian variable selection technique that

incorporates these two principles. Another Bayesian variable selection technique introduced

in [23, 24] seems to be more useful for our purpose because of its connections with kriging. It

can be considered as a Bayesian version of the forward selection strategy. Below we explain

this technique briefly. Additional details of the technique are included in the Appendix. We
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note that the work in [23, 24] focus on physical experiments and therefore, the Bayesian

variable selection technique was applied only to linear models and not kriging models.

The candidate variables are selected as the linear effects, quadratic effects, and two-

factor interactions. Here the two-factor interactions include the linear-by-linear, linear-by-

quadratic, quadratic-by-linear, and quadratic-by-quadratic interactions. There are a total

of t = 2p2 candidate variables (excluding the constant term). We note that this Bayesian

variable selection technique can easily handle three and higher order effects, but in this

article we focus on the lower order effects for the simplicity of exposition and interpretation.

Following [24], first scale the factors in [1.0, 3.0]. Other ranges such as [0, 1] or [−1, 1] maybe

used, however, Eqs (6) and (7) should be changed accordingly (see the Appendix). The linear

and quadratic effects can be defined using the orthogonal polynomial coding [25]

xjl =

√
3√
2
(xj − 2) and xjq =

1√
2
(3(xj − 2)2 − 2), (6)

for j = 1, 2, · · · , p. The variables xjl and xjq are scaled so that they have the same length
√

3

when xj takes the values 1, 2, and 3. The two-factor interaction terms can be defined as the

products of these variables. For example, the linear-by-quadratic interaction term between

x1 and x3 can be defined as x1lx3q.

Denote the candidate variables by u1, · · · , ut. Consider approximating y(x) by the linear

model
∑m

i=0 µivi +
∑t

i=0 βiui, where u0 = 1. As an example, for two factors x1 and x2,

the linear model is
∑m

i=0 µivi +
∑8

i=0 βiui, where u0 = 1, u1 = x1l, u2 = x1q, u3 = x2l,

u4 = x2q, u5 = x1lx2l, u6 = x1lx2q, u7 = x1qx2l, and u8 = x1qx2q. Note that when t > n− 1,

a frequentist estimation of the βi’s is not possible. However, all of the t effects can be

simultaneously estimated using a Bayesian approach. For doing this, we need to postulate

a prior distribution for β = (β0, β1, · · · , βt)
′. Let

β ∼ N (0, τ 2
mR),

where 0 is a vector of 0’s having length t+ 1 and R is a (t+ 1)× (t+ 1) diagonal matrix.

The matrix R can be constructed as follows. Assume that the correlation function in

ordinary kriging model has a product correlation structure given by ψ(h) =
∏p

j=1 ψj(hj).

5



Let lij = 1 if βi includes the linear effect of factor j and 0 otherwise. Similarly, qij = 1 if βi

includes the quadratic effect of factor j and 0 otherwise. Then the ith diagonal element of

R is given by
∏p

j=1 r
lij
jl r

qij

jq , where

rjl =
3− 3ψj(2)

3 + 4ψj(1) + 2ψj(2)
and rjq =

3− 4ψj(1) + ψj(2)

3 + 4ψj(1) + 2ψj(2)
. (7)

The foregoing connection with kriging makes this Bayesian variable selection technique the

most suitable among its competitors. As shown in [23, 24] the effect hierarchy and effect

heredity principles are embedded in the prior.

Assume that Z(x) in Eq. (4) follows a Gaussian process. Then the posterior mean of β

can be approximated by [24]

β̂ =
τ 2
m

σ2
m

RU ′Ψ−1(y − V mµ̂m), (8)

where U is the model matrix corresponding to the experimental design. A variable can be

declared important if its absolute coefficient is large. Thus the variable to enter at each step

m = 0, 1, 2, · · · can be selected as the variable with the largest |β̂i|. We note that [23, 24]

instead uses the standardized coefficient for variable selection. Both produce similar results,

but the computation of the former is easier. For maximizing |β̂i|, without loss of generality

we can set τ 2
m/σ

2
m = 1 in Eq. ( 8), which further simplifies the computations.

There remains an important issue to address in this Bayesian forward variable selection

strategy. When should we stop adding terms to the mean part? In other words, what is

the best value for m? The difficulty in choosing m is that, irrespective of its value, kriging

predictor interpolates the data and thus gives a perfect fit. Therefore, the prediction errors

are all 0. This prevents us from using the standard model selection criteria in regression

analysis such as Cp-statistic and Akaike information criterion [16]. We overcome this problem

by using cross validation errors.

Let ŷ(i)(x) be the predictor after removing the ith data point. Then the leave-one-out

cross validation error is defined as

cvi = yi − ŷ(i)(xi),
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for i = 1, 2, · · · , n. Define the cross validation prediction error (CVPE) by

CV PE(m) =

√√√√ 1

n

n∑
i=1

cv2
i .

Now we can choose the value of m that minimizes CV PE(m). We should point out that the

foregoing approach of using cross validation errors works well only if the experimental data

points are able to capture the trends in the true function.

The cross validation errors can be computed only after estimating the unknown param-

eters from the data, which is discussed in the next section. Among the parameters, those

associated with the correlation function are computationally difficult to estimate. Clearly,

the computations will become even more difficult if we need to estimate those parameters af-

ter removing each data point. Therefore, we recommend keeping the correlation parameters

the same when computing cross validation errors.

2.2 Estimation

We choose the following Gaussian product correlation function

ψ(h) = exp(−
p∑

j=1

θjh
2
j),

which is the most popular correlation function used in computer experiments. Other cor-

relation functions such as cubic correlation function and Matérn correlation function could

also be used [3]. Let θ = (θ1, · · · , θp)
′. The parameters µm, σ2

m, and θ can be estimated

by maximizing the likelihood. Because the model is selected based on a cross validation

criterion, it may seem more appropriate to use the same criterion for estimation. However,

many empirical studies have shown that the maximum likelihood estimates perform better

than the estimates based on cross validation [3, 14].

Under the assumption that Z(x) in Eq. (4) follows a Gaussian process, the negative of

the log-likelihood is given by

NL =
n

2
log(2π) +

n

2
log σ2

m +
1

2
log |Ψ|+ 1

2σ2
m

(y − V mµm)′Ψ−1(y − V mµm).
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For the moment assume that θ is known. Minimizing NL with respect to µm and σ2
m, we

obtain [3]

µ̂m = (V ′
mΨ−1V m)−1V ′

mΨ−1y, (9)

σ̂2
m = =

1

n
(y − V mµ̂m)

′
Ψ−1(y − V mµ̂m). (10)

Thus, the minimum value of NL is

NL =
n

2
(1 + log(2π)) +

1

2
(n log σ̂2

m + log |Ψ|). (11)

Now consider the case with unknown θ. It can also be estimated by minimizing NL in

Eq. (11). However, the minimization is not a trivial task. We have encountered multiple

local minima in many examples and thus, finding the global minimum is difficult. Therefore,

we propose to estimate θ only at m = 0. Thus

θ̂ = arg min
θ

n log σ̂2
0 + log |Ψ|. (12)

Keeping the correlation parameters the same at each step also helps in identifying a mean

model that satisfies effect heredity [24]. At the final step, that is after choosing m, the

correlation parameters can be again estimated (i.e., by minimizing NL in Eq. (11)), which

can give a better prediction. Because θ is estimated two times, the computational complexity

in fitting a blind kriging model is roughly twice as that of an ordinary kriging model. The

approach is explained with examples in the next section.

3 Examples

3.1 Example 1: Engine block and head joint sealing Experiment

The engine block and head joint sealing assembly is one of the most crucial and fundamental

structural design in the automotive internal combustion engine. Design decisions must be

made upfront, prior to the availability of a physical prototype, because it affects downstream

design decisions for other engine components as well as significantly impacts the long lead
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Figure 1: Finite element model of engine head and block joint sealing assembly

time tooling and machining facility setup. Reversing a decision about this assembly at a

later time has very expensive consequences. Thus, the use of a computer simulation model is

indispensable. The design of the engine block and head joint sealing assembly is very complex

due to multiple functional requirements (e.g., combustion gas, high pressure oil, oil drain, and

coolant sealing) and complicated geometry; thus, the interactions among design parameters

in this assembly (block and head structures, gasket, and fasteners) have significant effects.

To best simulate the engine assembly process and operating conditions, a finite element

model was developed to capture the complexity of part geometry, the compliance in the

components, non-linear material properties, and contact interface between the parts (see

Fig. 1). To address performance robustness of the joint sealing, manufacturing variability of

the mating surfaces and head bolt tensional load are included in the analysis for which design

parameters are optimized. Because the assembly model is computationally expensive, the

availability of a computationally efficient and accurate metamodel is important for optimizing

the design.

Eight factors are selected for experimentation: gasket thickness (x1), number of contour

zones (x2), zone-to-zone transition (x3), bead profile (x4), coining depth (x5), deck face sur-

face flatness (x6), load/deflection variation (x7), and head bolt force variation (x8). Because
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Table 1: Example 1, Data for the engine head and block joint sealing experiment

Run x1 x2 x3 x4 x5 x6 x7 x8 y
1 2 2 3 2 2 1 2 3 1.53
2 3 3 3 2 3 1 3 1 2.21
3 1 1 2 3 2 1 3 3 1.69
4 3 1 2 1 2 2 3 1 1.92
5 1 1 2 2 3 1 1 2 1.42
6 1 3 2 3 3 3 2 2 5.33
7 1 3 1 2 1 2 3 3 2.00
8 2 3 2 1 1 1 1 1 2.13
9 3 2 1 3 3 2 1 2 1.77
10 2 1 1 2 1 3 1 3 1.89
11 1 3 3 1 3 2 1 3 2.17
12 3 2 2 3 1 2 1 3 2.00
13 3 3 1 3 2 1 2 3 1.66
14 2 1 1 3 3 2 3 1 2.54
15 1 2 1 1 3 1 2 1 1.64
16 3 1 3 2 3 3 2 3 2.14
17 1 2 3 1 1 3 3 2 4.20
18 3 2 2 2 1 3 2 1 1.69
19 1 2 1 2 2 3 1 1 3.74
20 2 2 2 1 3 3 3 3 2.07
21 2 3 3 3 2 3 1 1 1.87
22 2 3 2 2 2 2 2 2 1.19
23 3 3 1 1 2 3 3 2 1.70
24 2 2 3 3 1 1 3 2 1.29
25 2 1 1 1 1 1 2 2 1.82
26 1 1 3 3 1 2 2 1 3.43
27 3 1 3 1 2 2 1 2 1.91
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of the complexity in the simulation setup and the excessive computing requirements, only

27 runs are used for the experiment. The experimental design, which is a 27-run orthogonal

array [25], is given in Table 1. In this example, we analyze only the gap lift (y).

First consider ordinary kriging. The maximum likelihood estimate of θ is given by

θ̂ = (2.75, .26, .02, .01, .01, 4.00, .01, .01)′.

To avoid numerical problems, we have constrained each θi in [.01, 4] in the optimization of

the likelihood. We obtain CV PE(0) = .5784. The ordinary kriging predictor is given by

ŷ(x) = 2.27 + ψ̂(x)′Ψ̂
−1

(y − 2.27 1),

where ψ̂(x) is a vector of length 27 with ith element ψ(x−xi) = exp(−
∑8

k=1 θ̂k(xk −xik)
2)

and Ψ̂ is a 27× 27 matrix whose ijth element is ψ(xi − xj) = exp(−
∑8

k=1 θ̂k(xik − xjk)
2).

Now consider blind kriging. To apply the Bayesian forward selection technique in [23, 24],

we first need to construct the R matrix. It is a 129× 129 diagonal matrix given by

R̂ = diag(1, r̂1l, r̂1q, r̂2l, · · · , r̂7qr̂8q),

where

r̂jl =
3− 3e−4θ̂j

3 + 4e−θ̂j + 2e−4θ̂j

and r̂jq =
3− 4e−θ̂j + e−4θ̂j

3 + 4e−θ̂j + 2e−4θ̂j

.

Now compute

β̂ = R̂U ′Ψ̂
−1

(y − 2.27 1),

where U is a 27× 129 matrix whose first column is 1 and the other columns correspond to

the values of x1l, x1q, x2l, · · ·, x7qx8q. Note that because we are only interested in finding

the maximum value of |β̂i|, we have set τ 2
0 /σ

2
0 = 1 in Eq. (8). A half-normal plot [25] of the

absolute values of β̂i’s is shown in Fig. 2. We can see that the maximum value of |β̂i| occurs

for the coefficient of the linear-by-linear interaction term of x1 and x6. This could have been

easily identified without using a half-normal plot; it is given here only for illustration.

Thus, take v1 = x1lx6l. Again estimate the coefficients using

β̂ = R̂U ′Ψ̂
−1

(y − V 1µ̂1),
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Figure 2: Half-normal plot of |β̂i|’s at m = 0

where µ̂1 is obtained from Eq. (9) and V 1 is a 27×2 matrix whose first column is 1 and the

second column is the values of v1. Note that in this computation, the matrices R̂, U , and

Ψ̂ remain the same as before. At this step, we identify x1l as the most significant among

the remaining variables, because it has the largest |β̂i|. Thus, take v2 = x1l and continue the

forward selection procedure. In the next four steps, the variables x6l, x1qx6l, x1q, and x2lx6q

are selected. The CV PE(m) decrease as shown in Fig. 3 (in the figure ordinary kriging

is denoted by OK). The next variable to enter is x6q, but it increases the CV PE(m). We

checked a few more steps and found that CV PE(m) is continued to increase and thus we

choose m = 6. We obtain CV PE(6) = .4243. It is also informative to calculate the usual

R2 value used in regression analysis. For our problem, we can define it by [23]

R2(m) = 1−
∑n

j=1(yj −
∑m

i=0 µ̂ivij)
2∑n

j=1(yj − µ̂0)2
.

It is also plotted in Fig. 3. We can see that the six variables in the mean part explains

about 86% of the variation in the data. The kriging part captures the remaining 14%.

The correlation parameters θ can again be estimated by minimizing NL in Eq. (11).
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Figure 3: Plots of CV PE(m) and R2(m) in Example 1

The new θ̂ is obtained as

θ̂ = (.01, .01, .01, .01, 4, .24, 4, .14)′.

We obtain CV PE(6) = .2702, which is much smaller than using the θ estimated at the

beginning. The CVPE shows about 53% improvement in prediction using blind kriging over

ordinary kriging (CV PE(0) = .5784).

The blind kriging predictor is given by

ŷ(x) = 2.18−.44x1lx6l−.48x1l+.39x6l+.21x1qx6l+.19x1q +.30x2lx6q +ψ̂(x)′Ψ̂
−1

(y−V 6µ̂6).

It is clear from the mean model that x1 and x2 have interactions with x6. Because x6 (the

deck face surface flatness) is a noise factor, robustness against it can be achieved by adjusting

the two control factors x1 and x2. This cannot be understood from ordinary kriging predictor

without performing additional sensitivity analysis [26].
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3.2 Example 2: Piston Slap Noise Experiment

Piston slap is an unwanted engine noise resulting from piston secondary motion. A computer

experiment was performed by varying six factors to minimize the noise. The factors were

set clearance between the piston and the cylinder liner (x1), location of peak pressure (x2),

skirt length (x3), skirt profile (x4), skirt ovality (x5), and pin offset (x6). The experimental

design and the data are given in Table 2. More details of the experiment can be found in

[27, 28].

Table 2: Example 2, Data for the piston slap noise experiment

Run x1 x2 x3 x4 x5 x6 y
1 71 16.8 21 2 1 0.98 56.75
2 15 15.6 21.8 1 2 1.3 57.65
3 29 14.4 25 2 1 1.14 53.97
4 85 14.4 21.8 2 3 0.66 58.77
5 29 12 21 3 2 0.82 56.34
6 57 12 23.4 1 3 0.98 56.85
7 85 13.2 24.2 3 2 1.3 56.68
8 71 18 25 1 2 0.82 58.45
9 43 18 22.6 3 3 1.14 55.5
10 15 16.8 24.2 2 3 0.5 52.77
11 43 13.2 22.6 1 1 0.5 57.36
12 57 15.6 23.4 3 1 0.66 59.64

To apply the Bayesian forward selection, first we scale x1, x2, x3, and x6 to [1.0, 3.0]. For

ordinary kriging, we obtain θ̂ = (1.17, .01, .23, .01, .01, .71) and CV PE(0) = 1.4511. The

CV PE(m) and R2(m) are plotted in Fig. 4 based on the variables identified by the Bayesian

variable selection technique. We see that the three variables x1l, x1lx6l, and x1qx6l give the

minimum CV PE(3) = 1.2777. The corresponding R2(3) = .79, which shows that the three

variables alone explain about 79% of the variability in the data. Estimating θ again, we

obtain θ̂ = (.01, .01, .09, 1.32, .01, .46)′ and CV PE(3) = 1.1168. Thus, we can expect about

a 23% improvement in prediction using blind kriging over ordinary kriging. The blind kriging
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predictor is given by

ŷ(x) = 56.6 + 1.40x1l − 1.12x1lx6l + .93x1qx6l + ψ̂(x)′Ψ̂
−1

(y − V 3µ̂3).

We can see that in this example the CV PE increased after the first step but then came

down significantly after two more steps. This shows that we should not stop the procedure

immediately when we observe an increase in CV PE. The procedure should be continued

for a few more steps before choosing the value of m. Note that the R2 plot is used only for

interpretation and not for selecting the best m.

An additional 100 runs were performed for validating the results. The two densities of

the prediction errors for ordinary kriging and blind kriging are shown in Fig. 5. It clearly

shows that blind kriging gives a much better prediction. We can also calculate the root-mean

squared prediction error (RMSPE) using

RMSPE =

√√√√ 1

100

100∑
i=1

(y(xi)− ŷ(xi))2.

For ordinary kriging RMSPE = 1.3626 and for blind kriging RMSPE = 1.0038, which

shows that the prediction error of blind kriging is smaller than that of ordinary kriging by

about 26%.

There are several case studies reported in the literature where universal kriging is applied

instead of ordinary kriging. Ref [30] used universal kriging with all linear effects in the mean

part of the model for the optimization in a material cellular design problem; see [31] for

other examples. In this example, we fitted a universal kriging model with linear effects for

all of the factors. The universal kriging predictor is given by

ŷ(x) = 55.3 + 1.02x1l − .15x2l − .96x3l + .01x4l − .45x5l − .31x6l + ψ̂(x)′Ψ̂
−1

(y − V µ̂),

with θ̂ = (0.14, 0.01, 0.17, 0.01, 0.01, 0.09). The RMSPE for the 100 validation runs is

obtained as 1.5109, which is larger than both ordinary and blind kriging. The reason for

this poor performance is that the mean part of the universal kriging model contains some

unimportant effects (R2 is only 25.4%). This shows the danger of using a universal kriging

model without proper variable selection.

16



3.3 Example 3: Borehole Model

The following simple function for the flow rate through a borehole is used by many authors

to compare different methods in computer experiments (see e.g., [29]):

y =
2πTu(Hu −Hl)

ln(r/rw)
[
1 + 2LTu

ln(r/rw)r2
wKw

+ Tu

Tl

] ,
where the ranges of interest for the eight variables are rw : (0.05, 0.15), r = (100, 50000), Tu =

(63070, 115600), Hu = (990, 1110), Tl = (63.1, 116), Hl = (700, 820), L = (1120, 1680), and

Kw = (9855, 12045). We re-scale the variables in [1.0, 3.0] and denote them as x1, x2, · · · , x8.

For convenience, we use the same 27-run experimental design in Table 1.

Using the Bayesian variable selection technique, we identified the linear effect of x1 as

the only important variable. The blind kriging predictor is given by

ŷ(x) = 93.4 + 60.1x1l + ψ̂(x)′Ψ̂
−1

(y − V 1µ̂1),

with θ̂ = (.31, .01, .01, .09, .01, .08, .07, .02)′. We randomly generated 1,000 values within the

experimental region and the prediction errors are plotted in Fig. 6. It shows remarkable

improvement in prediction for blind kriging over ordinary kriging.

To check for the robustness against misspecification of correlation parameters, we re-

peated the calculations by varying θ. Let θ1 = · · · = θ8 = θ. Fig. 7 shows the plot of

RMSPE values for different values of θ. We can see that the RMSPE values of blind kriging

are almost half of those of ordinary kriging and have much less variation. This shows that

blind kriging is more robust to misspecification in the correlation parameters than is ordi-

nary kriging. This is a great advantage, because in practice it is difficult to obtain precise

estimates of the correlation parameters.

We also tried universal kriging method for the borehole example. Two models are fitted,

one with all linear terms and the other with all linear and quadratic terms. The RMSPE

values for the 1,000 runs are given in Table 3. We can see that they are much higher than

that of ordinary kriging and blind kriging. Thus, including unimportant variables in the

mean part can actually deteriorate the performance. This clearly shows the importance of

selecting variables carefully and the superiority of blind kriging over universal kriging.

17



−30 −20 −10 0 10 20

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

prediction error

fr
eq

ue
nc

y

Ordinary Kriging

Blind Kriging
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Table 3: Comparison of different methods in Example 3

Method m RMSPE

Ordinary Kriging 0 9.7

Blind Kriging 1 5.5

Universal Kriging (linear) 8 11.3

Universal Kriging (linear and quadratic) 16 18.0

4 Conclusions

It is a common practice in the literature to use a constant mean for the kriging model.

Although some recent studies point out the benefits of using more complex models for the

mean [14, 30], none of them have proposed a systematic methodology to obtain such models.

In fact, the problem is much more complicated than merely using a complex model for the

mean. Unnecessary variables in the mean model can deteriorate the performance. Therefore

only those variables that have a significant effect on the response should be used for the mean

model. We showed that they can be identified using a Bayesian forward selection technique

proposed in [23, 24].

The Bayesian forward selection technique is directly related to kriging, which makes it

attractive to use in blind kriging method. The most difficult step in this Bayesian technique

is the estimation of correlation parameters. However, the estimates are readily available from

ordinary kriging model and thus, the technique can be applied with no additional difficulty.

Another advantage of the technique is that it incorporates the effect hierarchy and heredity

principles through prior specification and thus, produces interpretable models.

We also note that a naive strategy of identifying important variables using a variable

selection technique and then fitting the kriging part, in general will not work. This is

because the performance of blind kriging is quite sensitive to the number of variables used

in the mean part. Our approach computes the cross validation errors at each step of the

Bayesian forward selection technique and selects the model with minimum error. It may
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happen that ordinary kriging itself is the optimal predictor, which cannot be detected in

the naive strategy that applies a variable selection technique without considering the kriging

part. Thus, we believe that the use of cross validation errors along with the Bayesian forward

selection technique is critical for obtaining a good blind kriging predictor.

Several examples presented in the article demonstrate that substantial improvement in

prediction can be achieved by using blind kriging. It is also shown that blind kriging predictor

is simpler to interpret and is more robust to the misspecification in the correlation parameters

than ordinary kriging predictor.
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Appendix: Bayesian Variable Selection Technique

Here we provide some additional details for the Bayesian variable selection technique. The

computer model can be represented as Y = f(x), where the transfer function f can be

highly nonlinear. First assume that each xi takes only three values 1, 2, and 3. Later we will

explain how to generalize this. Define the linear and quadratic effects for each xi as in Eq.

(6). Now consider approximating f(x) by a linear model containing all of the interaction

terms (up to the pth order interaction). The linear model can be written as
∑3p−1

i=0 βiui,

where u0 = 1, u1 = x1l, . . ., and u3p−1 = x1q · · ·xpq.

A major step in the Bayesian variable selection technique is to postulate a prior dis-

tribution for β = (β0, . . . , β3p−1)
′. This is a difficult task because of the huge number of

parameters. To simplify this task, Refs [23, 24] proposed an interesting idea. Instead of

directly postulating a prior for β, postulate a functional prior for f(x) and use it to induce

a prior for β. Assume that

f(x) ∼ GP (µ0, σ
2
0ψ),
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where µ0 is the mean and σ2
0ψ is the covariance function of the Gaussian process (GP).

Because there are 3p parameters in the linear model, their distribution can be obtained based

on 3p function values. One simple choice is to evaluate the function at the full factorial

design for the p factors (which contains 3p points). To simplify the results further, write

the linear model as µ0 +
∑3p−1

i=0 βiui and assume a product correlation structure given by

ψ(h) =
∏p

j=1 ψj(hj). Then, it can be shown that [24]

β0 ∼ N
(
0, τ 2

0

)
,

β1 ∼ N
(
0, τ 2

0 r1l

)
,

β2 ∼ N
(
0, τ 2

0 r1q

)
,

...

β3p−1 ∼ N
(
0, τ 2

0 r1qr2q · · · rpq

)
,

where rjl and rjq for j = 1, · · · , p are calculated using Eq. (7). Further, [24] shows

that βi’s are approximately independent. Thus, the prior distribution for β is a multi-

variate normal distribution with mean 0 and variance-covariance matrix τ 2
0R, where R =

diag{1, r1l, r1q, . . . , r1q · · · rpq}.

Let the experiment has n runs and let y be the data. We have y = µ01 +Uβ, where U

is the model matrix with dimension n× 3p. Using Bayes theorem, the posterior distribution

of β is given by

β|y ∼ N
(
τ 2
0

σ2
0

RU ′Ψ−1(y − µ01), τ 2
0R− τ 4

0

σ2
0

RUΨ−1UR

)
.

The posterior mean can be used as an estimate of β. This forms the basis for the forward

selection technique discussed in Section 2.1.

Note that if we are interested only up to the two-factor interactions, then approximate

results can be obtained by replacing R and U by their appropriate sub-matrices. Moreover,

if a factor takes values in a continuous interval, then it should be scaled in the interval

[1.0, 3.0]. Other ranges such as [0, 1] or [−1, 1] may also be used. However, the formulas for

the linear-quadratic effects and r’s should be changed accordingly. For example, if the factors

21



are scaled in [0, 1], then the linear-quadratic effects should be calculated using Eq. (6) after

replacing xj − 2 with 2(xj − .5) and the r’s using Eq. (7) after replacing the arguments of

ψj by .5 and 1 instead of 1 and 2.

Nomenclature

cvi = leave-one-out cross validation error

v(x) = Set of functions in the mean model

V m = n× (m+ 1) model matrix for the mean

lij, qij = Indicator variables for linear and quadratic terms

m = Number of variables in the mean model

n = Number of design points

p = Number of factors

t = Number of candidate variables

ui = ith candidate variable

x = p− dimensional vector of factors

xi = ith design point

xi = ith factor

xil, xiq = Linear and quadratic components of the ith factor

y = Data vector

ŷ(x) = Predictor at x

ŷ(i)(x) = Predictor at x after removing ith data point

Z(x) = Stochastic process

βi = Coefficient of ui

β = A (t+ 1)− dimensional vector containing β0, · · · , βt

θ = Coefficients in the Gaussian correlation function
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τ 2
mR = Prior variance-covariance matrix of β

σ2
m = Variance of Z(x)

ψ(h) = Correlation function

ψ(x) = An n− dimensional vector with ith element ψ(x− xi)

Ψ = Correlation matrix

1 = Vector of 1’s having length n

µ(x) = Mean function

µi = Coefficient of vi

µm = An (m+ 1)− dimensional vector containing µ0, · · · , µm

CVPE = Cross validation prediction error

NL = Negative of log-likelihood

OK = Ordinary kriging

RMSPE = Root mean squared prediction error
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