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SUMMARY

Response-only identification of civil structures has attracted much attention during recent years, as input excitations are
rarely measurable for ambient vibrations. Although various techniques have been developed by which identification can
be carried out using ambient responses, these techniques are generally not applicable to non-stationary excitations that
structures experience during moderate-to-severe earthquakes. Recently, the authors proposed a new response-only
modal identification method that is applicable to strong shaking data. This new method is highly attractive for cases
in which the true input motions are unavailable. For example, when soil–structure interaction effects are
non-negligible, neither the free-field motions nor the recorded foundation responses may be assumed as input. Even
in the absence of soil–structure interaction, in many instances, the foundation responses are not recorded (or are recorded
with low signal-to-noise ratios). Thus far, the said method has been only applicable to fully instrumented systems
wherein the number of sensors is equal to or greater than the number of active modes. In this study, we offer various
improvements, including an extension that enables the treatment of sparsely instrumented systems. Specifically, a
cluster-based underdetermined time–frequency method is employed at judiciously selected auto-source points to
determine the mode shapes. The mode shape matrix identified in this manner is not square, which precludes the use
of simple matrix inversion to extract the modal coordinates. As such, natural frequencies and damping ratios are
identified from the recovered modal coordinates' time–frequency distributions using a subspace method. Simulated data
are used for verifying the proposed identification method. Copyright © 2013 John Wiley & Sons, Ltd.
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frequency distributions

1. INTRODUCTION

Identification of the modal characteristics of civil structures—that is, natural frequencies, damping

ratios, andmode shapes—from response signals recorded during strong ground shaking has been a subject

of research for more than three decades [1–3]. However, when there is soil–structure interaction, signals

recorded at the foundation level during ground shaking are different from the true foundation input mo-

tions [4,5]. In such cases, neither the methods that require knowledge of the input [6,7] nor the methods

that assume the input to be white noise [8–10] can be used.

Recently, a new output-only identification method has been developed for civil structures by

Ghahari et al. [11]. This method obviates the need for the unknown input to be uncorrelated and works

in two steps. First, the mode shapes and modal coordinates are extracted by applying a blind source

separation (BSS) technique [12,13] to the spatial time–frequency distribution (STFD) matrices of the
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recorded responses. BSS has recently attracted much attention from researchers in the civil engineering

community who seek to use it in modal identification and structural health monitoring applications

[14–24]. Then, natural frequencies and damping ratios are identified through concurrent analyses of

the extracted modal coordinates. Although it was demonstrated that this method could be successfully

employed for output-only identification of civil structures under non-stationary earthquake excitations,

its application was limited to determinate and overdetermined cases in which the number of active

modes is equal to or smaller than the number of sensors.

In the present study, we propose an extension through which only a few response signals are used

for identification. Multiple-input excitations and closely spaced modes—two limitations of the

previously proposed method—are also addressed here. In the first step of this new approach,

time–frequency (TF) points at which only one mode is present are identified through a new auto-source

point selection criterion. Second, a cluster-based underdetermined TF BSS method [25] is employed to

extract real-valued mode shapes, because the modes are assumed to be completely disjoint at the

selected auto-source points. Note that one of the remaining limitations is that the mode shapes are

assumed to be real valued, whereas there exists real-life cases—for example, long and flexible or lightly

damped structures—that exhibit complex modes. Nevertheless, the method proposed here can be

extended by adopting an approach similar to what was proposed in [26,27]. The mode shape matrix

identified in this manner is not square, which precludes the use of simple matrix inversion to extract

the modal coordinates. As such, the natural frequencies and damping ratios must be identified from

the recovered modal coordinates' time–frequency distributions (TFDs). Hence, a subspace-based

method [28] is used to recover the modal coordinates' TFDs. Through this approach, it is now possible

to extract modal coordinates' TFDs even for TF points at which several modes are present simulta-

neously, that is, non-disjoint modes. This capability is quite attractive for applications on civil structures

that have closely spaced modes. After recovering the modal coordinates' TFDs, natural frequencies can

be identified as frequency lines with maximum energy. Damping ratios of several modes can also be

identified from the free vibration portions of the recovered modal coordinates' TF representations.

The method does not depend upon the number of input motion excitations—that is, it is applicable,

for example, to soil–structure systems under both sway and rocking input motions.

The remainder of this manuscript is organized as follows. The proposed identification method is

presented in Section 2, in which the mode shape, natural frequency, and damping ratio identification

approaches are presented in three successive subsections. In Section 3, the performance of the

proposed method is addressed using a synthetic data set from a 10-story building. Finally, concluding

remarks are provided in Section 4.

2. PROPOSED IDENTIFICATION TECHNIQUE

2.1. A blind source separation approach to system identification

The governing equations of motion for an N-DOF system with n instrumented DOFs, which is excited

by q input accelerations, can be expressed as

M ẍ tð Þ þ C ẋ tð Þ þKx tð Þ ¼ �Ml ẍg tð Þ (1)

where M, C, and K are the constant N�N mass, proportional damping, and stiffness matrices of the

system, respectively. The vector x(t) contains relative displacement responses of the system at all

DOFs; ẍg tð Þ ¼ ẍg1 tð Þ⋯ẍgq tð Þ
� �T

is a vector time signal, which contains the (unknown) foundation

input accelerations; and l is the influence matrix [29]. The absolute acceleration of structure is

ẍt tð Þ ¼ ẍ tð Þ þ l ẍg tð Þ; (2)

which can be expressed in modal space as

ẍt tð Þ ¼ ϕ q̈ tð Þ (3)

where ϕ is an N�m real-valued mode shape matrix whose i-th column (ϕi) is the i-th mode shape and

q̈ tð Þ is a vector that contains the absolute acceleration modal coordinates whose i-th row is the
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absolute acceleration response of an SDOF system with the natural frequency, ωn, and damping

ratios, ξ, corresponding to the i-th mode. Also, m≤N is the number of contributing modes.

It is expedient to note here that Equation (3) is similar to the basic equation in BSS [30] techniques,

in which an attempt is made to recover both the mixing matrix (here, the mode shape matrix) and the

source signals (here, the modal coordinates) from the response signals. Herein, based on the TF domain

BSS technique developed by Belouchrani et al. [12,13], we propose a technique to estimate the modal

coordinates ( q̈ tð Þ) and the mode shape matrix (ϕ), using a limited number of recorded response signals

(ẍt tð Þ). This type of BSS problem is usually referred to as underdetermined problems [31]; that is, the

number of sensors is less than the number of sources. The recovery of the modal coordinates is an

additional challenge, because mode shape matrix is not square. The key ingredient for solving these

underdetermined problems is the exploitation of the sparseness of the source signals [32]. To that

end, response signals are usually transformed to domains in which the source signals are disjoint or

quasi-disjoint. The TF domain is the most suitable domain for non-stationary source signals, wherein

several studies have attempted to tackle underdetermined problems [25–28,33,34].

Here, we present a new method wherein the mode shapes are identified first through a cluster-based

method described in [25] from TF points at which the modal coordinates are completely disjoint. Then,

modal coordinates' TFDs are recovered from all TF points by a method proposed in [28], which is a

subspace-based method for non-disjoint sources.

Calculating the STFD of both sides of Equation (3) yields

Dẍ tẍ t t; fð Þ ¼ ϕDq̈q̈ t; fð ÞϕT (4)

where Dẍ t ẍ t t; fð Þ and Dq̈ q̈ t; fð Þ are, respectively, n� n and m�m (n<m) STFD matrices whose ele-

ments are the auto-TFD and cross-TFD of the recorded signals and the modal coordinates, and T de-

notes matrix or vector transpose. The discrete-time form Cohen-class STFD matrix of a vector x

containing n analytic signals is defined as [35]

Dxx t; fð Þ ¼ ∑
þ∞

l¼�∞
∑
þ∞

m¼�∞
φ m; lð Þ x t þ mþ lð Þ xH t þ m� lð Þ e�4πjf l (5)

where Dxx t; fð Þ½ �kl ¼ Dxkxl t; fð Þ for k, l ∈ {1,…,n}. Here, the superscript H denotes a Hermitian

transpose, and j ¼
ffiffiffiffiffiffiffi
�1

p
. The scalars t and f represent the time and frequency variables, respectively.

Different choices of the kernel function, φ(m,l), which depends on both the time (t) and the lag (l) vari-

ables, lead to different TFD realizations. These quadratic TFDs have higher TF resolutions than linear

ones—for example, short time Fourier transform—but suffer from interference. Interference terms are

spurious features that appear when representing a multi-component signal in the TF domain using one

of the quadratic methods, while points corresponding to the true energy are named auto-terms. A new

TFD family, which is referred to as reduced interference distribution (RID), has been proposed [36] to

attenuate the interference terms. Herein, we adopt the smoothed pseudo Wigner–Ville distribution

(SPWVD) [37], which is an enhanced version of Wigner-Ville distribution (WVD) [38] and belongs

to the said RID family.

Considering the STFD definition provided earlier, and by assuming that an ideal TF distribution tool

(such as SPWVD) is utilized so that the interference terms have been reduced, the TF points can now

be classified into three different groups based on the localization of modal coordinates observed in

earthquake engineering as follows:

1. Single auto-term TF point (SATFP): At these points, only one mode is present; thus, STFD

matrices of modal coordinates,Dq̈ q̈ t; fð Þ, are diagonal with only one non-zero diagonal element,

which represents the energy of the active mode.

2. Multiple auto-term TF point (MATFP): At these points, several modes are present; thus, auto-

TFDs of several modes are non-zero as well as their cross-TFDs.* Therefore, STFD matrices

*It is theoretically possible to find TF points in which auto-TFDs of several signals are non-zeros, while their cross-TFDs are zero
(Adel Belouchrani, personal communication). However, such points are not very probable [27].
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of the modal coordinates, Dq̈ q̈ t; fð Þ, have non-zero diagonal and off-diagonal elements. However,

in most practical cases, only two modes may be present simultaneously in time and frequency;

hence, Dq̈ q̈ t; fð Þ would be zero with only two non-zero diagonal and off-diagonal elements.

3. Cross-term TF point (CTTFP): At these points, the cross-TFDs of modal coordinates are

non-zero, while their corresponding auto-TFDs are zero. Therefore, at such points,

Dq̈ q̈ t; fð Þ matrices are off-diagonal with only two non-zero off-diagonal elements in most

practical cases.

To illustrate the TF point classification described earlier, a synthetic example is presented,

which is representative of typical data encountered in earthquake engineering. Consider a

3-DOF model with natural frequencies 0.50, 2.54, and 2.70Hz. The two higher modes are specif-

ically chosen to be closely spaced. Modal damping ratios are set at 5%, 1%, and 0.93%, for

modes 1–3, respectively.

Figure 1 displays the real parts of SPWVD (auto-TFD and cross-TFD) of analytical modal

coordinates under horizontal accelerogram recorded in El Centro Array #9 during Imperial Valley

earthquake, 1940 [39], wherein all SPWVD values are colored in logarithmic scale. On the basis of

Figure 1. Auto-SPWVD and cross-SPWVD of analytical modal coordinates. (i) D q̈1q̈1
, (ii) D q̈1q̈2

, (iii) D q̈1q̈3
, (iv)

Dq̈2 q̈2
, (v) Dq̈2 q̈3

, and (vi) Dq̈3 q̈3
.
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the aforementioned definitions, examples for SATFPs, MATFPs, and CTTFPs are marked on this

figure. To wit, points a(t= 10.55, f= 0.50), b(t= 27.01, f= 2.54), and c(t= 14.73, f= 2.70) are SATFPs

for the first, second, and third modes, respectively, and the STFD matrices at these points are

Dq̈q̈ að Þ ¼

17:79
¯

0:01þ 0:50i 0:01þ 0:44i

0:01� 0:50i �0:04 �0:05þ 0:03i

0:01� 0:44i �0:05� 0:03i �0:01

2
6664

3
7775

Dq̈q̈ bð Þ ¼

0:00 �0:02þ 0:01i �0:01

�0:02� 0:01i 16:50
¯

0:16þ 0:63i

�0:01 0:16� 0:63i �0:55

2
6664

3
7775

Dq̈q̈ cð Þ ¼

0:00 �0:01i �0:01þ 0:04i

0:01i 0:24 �0:41þ 3:05i

�0:01� 0:04i �0:41� 3:05i 50:24
¯

2
6664

3
7775

Because the first mode is far from other modes in frequency domain—consequently, in TF

domain—there is not an MATFP at which all three modes are present. On the other hand, there

many MATFPs at which both the second and third modes are present simultaneously, because they

are closely spaced modes in the frequency domain. Point d(t = 23.91, f = 2.62), whose STFD matrix

is shown later, can be labeled as an MATFP.

Dq̈q̈ dð Þ ¼
0:00 �0:05� 0:01i 0:01þ 0:01i

�0:05þ 0:01i 13:59
¯

�4:95þ 0:58i
¯

0:01� 0:01i �4:95� 0:58i
¯

1:82
¯

2
664

3
775

Also, because a TF distribution with minimum interference terms has been utilized in this exam-

ple, there is no CTTFP between the first and second and or between the first and third modes.

However, such points can be detected between the second and third modes, as they are close. Point

e(t = 29.60, f= 2.60) is an example CTTFP whose STFD matrix is

Dq̈q̈ eð Þ ¼
0:00 �0:01i 0:00

0:01i �0:41 �1:89� 0:89i
¯

0:00 �1:89þ 0:89i
¯

�0:23

2
664

3
775

Considering the aforementioned definitions, at the SATFPs of the k-th mode, Dq̈q̈ t; fð Þ is diagonal
with only one non-zero diagonal element. Thus, Equation (4) can be converted to

Dẍ tẍ t tk; f kð Þ ¼ ϕkDq̈k q̈k
tk; f kð Þϕk

T (6)

where ϕk is the k-th column of ϕ, and Dq̈kq̈k
tk; f kð Þ is the k-th mode's auto-TFD. Equation (6) is

arguably the most significant relationship in TF-based BSS problems as will be discussed later.

Nevertheless, the detection of an SATFP is not easy, because the modal coordinates' STFD matrices
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are not available. Hence, we use STFD matrices of the response signals instead to locate such points. In

our previous study [11], the following criterion was used to that end

maxi λi Dẍ tẍ t t; fð Þ½ �j j
Dẍ tẍ t t; fð Þk kF

� 1

����
���� < ϵ (7)

where ϵ is a small positive scalar, ‖. ‖F denotes the Frobenius norm, and maxi λi Dẍ tẍ t t; fð Þ½ �j j
represents the largest eigenvalue of its argument matrix. This criterion can be used, because the STFD

matrix of modal coordinates at each SATFP is of rank one or, in more precisely case of real data, has

one eigenvalue that is significantly larger than the other values. The eigenvalues of the STFD matrix

of the response signals can be used instead of their modal coordinate counterparts, when the mode

shape matrix is unitary, which is not generally valid.† For this reason, a pre-whitening step is used

to make the mixing matrix unitary [40]. However, for underdetermined cases—that is, the main

subject of this study—the mode shape matrix is not unitary at all, so the proposed criterion can only

be used as an approximation [25]. The criterion presented in Equation (7) has been calculated for

points a, b, c, d, and e in Table I, where it may be observed the points d and e are incorrectly identified

as SATFPs. To make improvements on the SATFP selection, Fevotte and Doncarli [40] have

proposed the following criterion

maxi λi Dẍ tẍ t t; fð Þ½ �j j
∑i λi Dẍ tẍ t t; fð Þ½ �j j

� 1

����
���� < ϵ (8)

where ϵ is a very small number. Values of this criterion are also calculated and shown in Table I. As

seen, this criterion yields a lower value for point e than other points, indicating better performance.

Nevertheless, it is also unable to detect point d as an MATFP. Generally, for an STFD response matrix

given below, it can be shown that Equation (8) also does not work well, especially when α and β values

are close.‡

Dẍ tẍ t t; fð Þ ¼
0 0 0

0 α β

0 β α

2
64

3
75 (9)

Although the proposed criterion in Equation (8) has better performance in deselecting CTTFPs, it is

only applicable to problems for which the mixing matrix is unitary, similar to Equation (7). This prob-

lem can be circumvented by employing SVD instead of eigen-analysis as suggested by Giulieri et al.

[41]. That is, TF points are selected so that the following index is 1

C t; fð Þ ¼ maxi σi Dẍ tẍ t t; fð Þ½ �f g
∑i σi Dẍ tẍ t t; fð Þ�g½f (10)

†For structural systems for which the mass matrix is diagonal with identical elements, the mode shape matrix can be assumed to
be unitary.

Table I. Values obtained from different SATFP selection criteria.

a b c d e

maxi λi Dẍ t ẍ t t; fð Þ½ �j j
Dẍ tẍ t t; fð Þk kF

1.0000 0.9994 1.0000 1.0000 0.8062

maxi λi Dẍ t ẍ t t; fð Þ½ �j j
∑i λi Dẍ t ẍ t t; fð Þ½ �j j 0.9915 0.9665 0.9989 0.9983 0.5767

maxi σi Dẍ t ẍ t t; fð Þ½ �f g
∑i σi Dẍ t ẍ t t; fð Þ½ �f g 0.9915 0.9665 0.9989 0.9983 0.5767

‡For cases with α= β, both this new criterion and Equation (7) are no longer able to identify point d as an MATFP.
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where σi[.] denotes the singular value of its argument matrix. This new criterion is also calculated for

points a, b, c, d, and e, which yielded identical values to those obtained from Equation (8) (cf. Table I)

without assuming a unitary mode shape matrix. Also, note that this new criterion cannot yet properly

detect MATFPs.

As mentioned, for purely disjoint modes, the aforementioned metric is theoretically 1 at SATFPs.

However, in practice, the local maximum of C(t, f) over the TF plane can be used. In the present study,

to find local maxima of such a function, the following criteria is used [40]

GradC t; fð Þk k < ϵGrad (11)

HC t; fð Þ < 0 (12)

where GradC (t, f) and HC (t, f) denote the gradient function and the Hessian matrix of C(t, f),

respectively. ϵGrad in Equation (11) is chosen to be very small in order to select points around the local

maxima. To prevent selecting points with nearly zero energy, C(t, f ) must be calculated for points

satisfying the following condition

∑i
———————

σi Dẍ tẍ t t; fð Þ½ �f g
σ

>ϵEnergy (13)

where

σ ¼ 1

nf nt
∑
t; f

∑
i¼n

i¼1

σi Dẍ tẍ t t; fð Þ½ � (14)

where nf and nt are the number of frequency and time points, respectively, in which σi Dẍ tẍ t t; fð Þ½ � is
calculated. Also, ϵEnergy is very small and chosen experimentally (typically a value of 1% will work).

2.2. Estimation of the mode shapes

By selecting SATFPs, we have TF points at which the modes are purely disjoint. Suppose that there are

two SATFPs (t1, f1) and (t2, f2) that are related to k-th mode. Thanks to Equation (6), the following

relationships can be written

Dẍ tẍ t t1; f 1ð Þ ¼ ϕkDq̈kq̈k
t1; f 1ð Þϕk

T (15)

Dẍ tẍ t t2; f 2ð Þ ¼ ϕkDq̈kq̈k
t2; f 2ð Þϕk

T (16)

As seen, Dẍ tẍ t t1; f 1ð Þ and Dẍ tẍ t t2; f 2ð Þ have the same eigenvectors (corresponding to the largest

eigenvalue); that is, the STFD matrices of response signals at all SATFPs corresponding to the same

mode have the same eigenvector [25]. Therefore, a clustering approach (see, for example, [42] for

clustering techniques) can be used to categorize the principal eigenvectors of the STFD matrices of

response signals at all SATFPs into m (number of total active modes) groups. Note that this clustering

approach can only be applicable if the mode shape vectors are pairwise linearly independent—that is,

ϕi≠ αϕj ∀ i, j= 1,…,m. Such independence is fully satisfied for determinate or overdetermined cases;

however, it must be carefully considered for underdetermined problems. Note that, if the earthquake

excitation has a very narrow-band frequency content, and its dominant frequency falls within two

modes, then the method is unable to find the mode shapes of these modes, because no SATFPs of such

modes are detected. However, this hypothetical situation is arguably extremely rare. At least, the

authors have yet to observe such a scenario with real-life data. On the basis of this assumption, k-means
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clustering is used in the present study. This clustering is a partitioning method through which data

(here, a set of eigenvectors) are grouped into k mutually exclusive clusters. To do so, a distance

measure is used by which k-means partitions the eigenvectors into clusters in which the vectors within

each cluster are as close to each other as possible and as far from those vectors that belong to other

clusters as possible. Herein, the standard modal assurance criterion (MAC) is used as a distance

measure, which is calculated through

MACij ¼
ϕi:ϕj

� �2

ϕik k2 ϕj

�� ��2 (17)

k-means starts with k assumed eigenvectors as true mode shapes; then, by assuming them as clusters'

centroids, other eigenvectors are clustered so that the sum of their distances (i.e., MAC) from the

cluster centroid is minimized for all clusters. There are several methods to produce the initial

estimation of the centroids. In the present study, k (the number of assumed clusters) points are

uniformly selected at random from the data. After the initial estimation of the clusters' centroids,

k-means algorithm tries to find the centroid and also move vectors between clusters until the sum of

distances cannot be decreased further.

One of the important parameters in the clustering approach is the number of clusters. Theoretically,

if all selected points are exactly SATFPs, then the number of clusters is the number of contributing

modes. However, the number of active modes cannot be accurately estimated blindly. Moreover,

selected points are not usually pure SATFPs because of modal frequency overlapping between the

closely spaced modes, especially for higher level of damping. One solution for this problem is to repeat

the clustering procedure for a range of number of clusters (usually greater than the number of expected

contributing modes). After that, a silhouette [43] diagram can be used to find the best number of

clusters. This diagram provides a succinct graphical representation of how well each object lies within

its cluster [44]. The silhouette index for the l-th datum (here, eigenvector) is calculated through

sl ¼
bl � al

max al; blf g (18)

where al is the average of dissimilarity (here, 1�MAClr) between the l-th datum with all other data

within the same cluster and bl is the lowest average dissimilarity between the l-th datum with other

clusters. To calculate bl, the average dissimilarity of this datum with all the data of another single clus-

ter is calculated. Then, this calculation is repeated for every cluster where the l-th datum is not a mem-

ber. bl is the minimum among all these averages. Considering Equation (18), sl varies between �1 and

+1. An sl value close to 1 denotes that the datum is appropriately clustered, while a value close to �1

means it would be more appropriate if this datum was clustered in its neighboring cluster. A zero sl
value indicates that the datum is located on the border of two clusters. As an illustration, Figure 2

Figure 2. A silhouette diagram with 10 clusters.

656 S. F. GHAHARI ET AL.

Copyright © 2013 John Wiley & Sons, Ltd. Struct. Control Health Monit. 2014; 21: 649–674

DOI: 10.1002/stc



displays a silhouette diagram for which the number of clusters is assumed to be 10. The number of

members of each cluster depicts the number of eigenvectors that are similar to each other. For example,

this figure shows that the fourth cluster has a larger size, because a large number of the selected

SATFPs are related to a specific mode. Note that the order of appearance of clusters along the y-axis

is random, while the order of appearance of members of a cluster is descending with the similarity

between the member and the centroid of the cluster. On the basis of the silhouette definition, the best

choice for the number of clusters yields the best clustering, which produces the maximum value of the

silhouette average, that is,

S ¼ 1

k
∑k

i¼1si; (19)

si ¼
1

Mi

∑Mi

j¼1s
i
j; (20)

where sij is the silhouette index for the j-th datum placed in the i-th cluster andMi denotes the number of

the i-th cluster's members. Further details on the clustering process are deferred to the verification prob-

lem presented in Section 3.

2.3. Recovering the modal coordinates' time–frequency domains

A subspace-based method that was proposed in [28] is described herein, through which the modal co-

ordinates' TFDs can be recovered at all TF points regardless of their type (SATFPs, MATFPs, or

CTTFPs).

Assume that there exists a point t′ f ′ð Þ at which p modes are present where p<m. In what follows,

an attempt is made to determine which p modes are present, as well as their energy contributions.

If these p modes are labeled with α1, α2,…, αp indices, then Equation (4) can be rewritten at this TF

point as

Dẍ tẍ t t′; f ′
� �

¼ eϕDq̃̈ q̃̈ t′; f ′
� �eϕT (21)

where

eϕ ¼ ϕα1 ;…;ϕαp

h i
(22)

ëq ¼ ëqα1 tð Þ;…; ëqαp tð Þ
h iT

(23)

As the matrix Dq̃̈ q̃̈ t′; f ′ð Þ is full rank, a projector onto the orthogonal compliment of Dẍ tẍ t t′ f
′ð Þ can

be defined as

P ¼ I� VV
T (24)

where I is an n� n identity matrix and V is an n� p matrix formed by the p principal singular

vectors of Dẍ tẍ t t′; f
′ð Þ. It can be shown that [28]

Pϕi ¼ 0 ∀ i∈ α1; ; α2;…; ; αp
	 


(25)

Pϕi≠0 ∀ i∉ α1; ; α2;…; ; αp
	 


(26)

Thus, by considering noise effects and calculation errors, {α1,α2,…,αp} can be obtained as the p

modes that have the smallest ‖Pϕi‖. This process can be employed at all TF points (with sufficient

energy) to detect their present modes. Note that for employing the proposed subspace approach,
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mode shape vectors must have unit lengths. Then, the modal coordinates' TFDs can be easily re-

covered as the diagonal elements of the following matrix

Dq̃̈ q̃̈ t′; f ′
� �

¼ eϕ #
Dẍ tẍ t t′; f ′

� �eϕ #T (27)

where # denotes the Moore–Penrose pseudo-inversion operator.

Remark 1

Estimation of the number of present sources at each TF point is a challenging problem in electrical en-

gineering literature [28]; however, for civil engineering applications, p = 2 and p = 3 for 2D and 3D

problems, respectively, are reasonable assumptions.

Remark 2

The aforementioned approach works well provided that the number of present modes at each TF point

is less than the number of recorded response signals. Considering Remark , at least three and four

sensors must be used for identification of 2D and 3D problems, respectively.

To show how the proposed approach works, let us consider again the 3-DOF system of Section 2.1.

The mode shape matrix for this system is

ϕ ¼
0:059 �0:704 �0:708

0:677 �0:493 0:546

0:734 0:512 �0:447

2
64

3
75 (28)

‖Pϕi‖ for these points are shown in Table II. As mentioned earlier, two smallest values indicate two

modes that may be present at a point. Two modes that present such a circumstance are introduced in

Table II. For both MATFPs and CTTFPs, the criterion of selecting the modes with two smallest

‖Pϕi‖ works well. However, for SATFPs, it is important to exclude the modes that are not actually

present. For this reason, the ratio between two smallest ‖Pϕi‖ is used in this study to decide whether

a TF point is an SATFP or not. This index is calculated for selected points and is shown in Table II.

As seen, for SATFPs (i.e., points a, b, and c), this index is small, whereas for points d and e, it is large.

As such, it appears that a threshold value of 0.1 can be used to detect SATFPs. Present modes detected

by this threshold are shown in Table II as well as their recovered auto-TFDs by Equation (27). As seen,

recovered TFDs are identical to corresponding diagonal values of matrices Dq̈q̈ að Þ, Dq̈q̈ bð Þ, Dq̈q̈ cð Þ,
Dq̈q̈ dð Þ, and Dq̈q̈ eð Þ.

2.3.1. Natural frequency identification. Having TFD of a mode at all TF points, natural frequency of

the mode can be detected through three approaches: (i) synthesizing time signals of modal coordinates

Table II. Values of ‖Pϕi‖ for selected points.

‖Pϕ1‖ ‖Pϕ2‖ ‖Pϕ3‖

Two modes with
smallest ‖Pϕi‖ Ratio Present modes

Recovered
Dq̈ iq̈ i

t; fð Þ
a 0.0089 0.6298 0.7767 1, 2 0.01 1 17.79
b 0.9999 0.0010 0.0164 2, 3 0.06 2 16.50
c 0.9749 0.2221 0.0141 2, 3 0.06 3 50.25
d 0.7072 0.2419 0.6643 2, 3 0.36 2, 3 13.59, 1.82
e 1.0000 0.0014 0.0070 2, 3 0.2 2, 3 �0.41, �0.23
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through inverse TF transform and concurrent analysis of them as suggested in [11]; (ii) identifying

natural frequency as frequency point with highest energy concentration in whole TF plane; and (iii)

identifying natural frequency as frequency line with highest energy concentration. The first method

is not favorable, as inverse TF transform is an arduous task for RID family [25]. The second method

is simple and applicable; however, it may result in spurious frequencies if input motion has a

dominant frequency with a high level of energy concentration at a short time window. The third

method circumvents this problem, as its energy concentration throughout the entire time window is

used. For this purpose, an index is introduced as

E fð Þ ¼ ∫
þ∞

�∞TFD t; fð Þdt

∫∫
þ∞

�∞TFD t; fð Þdt df
(29)

which is the ratio of time-marginal energy of a signal at a specific frequency to the total energy. It is

expected that this index would be at a maximum at the natural frequency of the mode, because the

maximum time average of energy concentration occurs at this frequency.

2.3.2. Damping ratio identification. There are several methods for identifying damping ratios from

free vibration signals [45–47]. On the other hand, estimation of damping ratios from response

signals recorded during strong ground shaking is a challenging problem, even when the input

excitations are measured. In a previous study [11], we used cross-relations among the extracted

modal coordinates for identification of both the natural frequencies and the damping ratios. That

approach is not applicable to the current scenario, because it was only valid for systems subject to a

single input and also because the time signals of the modal coordinates are not available here.

It is well known that earthquake input motions are non-stationary signals—their frequency content

varies with time. Thus, at certain instants, certain modes may be excited, while others are at rest.

Hence, the damping ratios of the at-rest modes can be identified through the free vibration portions

of their TFDs. Free vibration of the i-th modal coordinate in time domain is

qi tð Þ ¼ αie
�ξ iωnitsin ωdit þ θið Þ (30)

where αi and θi are two constants to be determined from initial conditions; ξ i is the damping ratio; and

ωni = 2πfni and ωdi ¼ ωni

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ξ i

2
p

are respectively the undamped and damped natural frequencies in

rad/s, with fni denoting the undamped natural frequency in Hertz. For simplicity, first, consider the con-

tinuous WVD of this signals, which is given by

WVDqiqi
t; fð Þ ¼ ∫

þ∞

�∞ q̂i t þ τ

2

� �
q̂i

� t � τ

2

� �
e�j2πf τdτ (31)

where q̂i tð Þ ¼ qi tð Þ þ j H qi tð Þ½ � is the analytic associate of the signal qi(t), in which H[•] denotes a Hil-

bert transform. The Hilbert transform of a signal qi(t) is given by

H qi tð Þ½ � ¼ 1

π
∫
þ∞

�∞

qi τð Þ
t � τ

dτ: (32)

For small values of the damping ratio, H[qi(t)] is approximately equal to [48]

H qi tð Þ½ �≈� αie
�ξ iωnitcos ωdit þ θið Þ (33)
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By inserting Equations (32) and (33) into Equation (31), the continuous auto-TFD of the i-th modal

coordinate's free vibration can be simplified as

WVDqiqi
t; f nið Þ ¼ αi

2e�2ξ iωnit F e�jωdit
� �

f¼f ni
(34)

where F •½ �f ni denotes a Fourier transform at the natural frequency fni. Noting that WVDqiqi
t; f nið Þ is an

exponential time signal whose decay rate is 2ξ iωni, the damping ratio can be easily detected through a

simple curve fitting. To extend this equation to the SPWVD, which is used in the present study, the

following expression can be used [36]

SPWVDqiqi
t; fð Þ ¼ g1 tð Þ�WVDqiqi

t; fð Þ�G2 fð Þ (35)

where g1(t) and G2( f) are the time and frequency smoothing windows, respectively, and * is the con-

volution operator. At the frequency that corresponds to the natural frequency of the i-th mode, G2( f ) is

a constant. Therefore, by applying, for example, a Hamming window for g1(t), the SPWVD of the free

vibration modal coordinate signal can be expressed as

SPWVDqiqi
t; f nið Þ ¼ 0:54� 0:46cos

2πt

L� 1


 �� �
�αi2e�2ξ iωnit F e�jωdit

� �
f¼f ni

(36)

in which L is the time length of the window. By calculating the convolution, the SPWVD can be

expressed as

SPWVDqiqi
t; f nið Þ ¼ Ae�2ξ iωnit (37)

where

A ¼ αi
2e�2ξ iωniL

2:66þ 0:5ξ i
2ωni

2L2
� �

e2ξ iωniL � 1
� �

Þ
ξ iωni π2 þ ξ i

2ωni
2L2

� � F e�jωdit
� �

f¼f ni
(38)

Equation (38) shows that SPWVDqiqi
t; f nið Þ is also an exponential time signal whose decay rate is 2ξ iωni.

To examine the proposed approach, consider, for example, a modal coordinate's free vibration sig-

nal with fn= 2 Hz and ξ = 5%. The time history of this signal and its SPWVD at f= 2 Hz are shown in

Figure 3(a). In this figure, the starting time of the signal and the time at which its SPWVD peaks are

shown by t0 and tp, respectively. To calculate the SPWVD, a Hamming window with L= 3 s is used.

Note that the peak time is bounded as

t0 �
L

2
≤tp≤t0 þ

L

2
(39)

Figure 3. Damping estimation from SPWVD of free vibration signal. (a) Time history, (b) SPWVD at natural fre-
quency, and (c) fitting process.
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In real-life situations, the time history of the free vibration signal is not available, so we have to

select a suitable portion of the TFD within which Equation (37) is valid, without knowing t0. To make

sure that the selected initial point is greater than t0, we suggest to select t= tp +L/2 so that

t0≤t ¼ tp þ
L

2
(40)

The last point of the fitting curve can be easily selected as the last point with positive energy and

negative derivative, or as the point through which the best fit (i.e., the smallest residual) is obtained,

provided that we have a reasonable data length—for example, 10 cycles of vibration. For the example

shown in Figure 3(a), the fitting curve is presented in Figure 3(b). As this figure indicates, curve fitting

is nearly perfect (ξ = 4.98%) and the goodness-of-fit, R2, is very close to 1 (the ideal case).

R2 ¼ ∑n
i¼1 ŷi � yð Þ2

∑n
i¼1 yi � yð Þ2

(41)

where yi, ŷi, and y are the i-th exact and fitted values, and the average of n exact values used for fitting,

respectively.

Remark 3

To the best of the authors' knowledge, the only way to distinguish between the free vibrations and the

reduced excitation portions of the recovered TFD of the mode is to check whether this portion follows

an exponentially decaying function introduced in Equation (37).

2.3.3. Summary. In order to make the implementation of the proposed identification method easy for

the readers, all of the necessary steps are summarized here:

Step 1: Compute the STFD matrices of absolute acceleration response signals via Equation (5) using their analytic
forms.
Step 2: Locate TF points with non-zero energy via Equations (13) and (14) with suitable ϵEnergy.
Step 3: Select the SATFPs via Equations (10)–(12) with ϵGrad = 0.1%.
Step 4: Perform the k-means clustering of the principal eigenvectors of the response signals' STFD matrices at se-
lected SATFPs for a range of number of clusters.
Step 5: Calculate the average of silhouette values, S, using Equations (18)–(20) over all clustered data, for all
iterations.
Step 6: Determine the best number of clusters, which corresponds to maximum S.
Step 7: Calculate the MAC indices (cf. Equation (17)) among the recovered mode shapes—that is, at the centroids
of clusters—and select the ‘true mode shapes’ as those with the highest si.
Step 8: Determine the modes that are present at each TF point by using Equations (24)–(26).
Step 9: Recover the modal coordinates' TFDs by using Equation (27).
Step 10: Compute the natural frequencies and damping ratios for each recovered modal coordinate's TFD via
Equations (29), (37), (38), and (40).

Note that the primary assumptions adopted for the aforementioned algorithmare as follows: (i) there

are at least three and four sensors for 2D and 3D problems, respectively, and (ii) the mode shape

vectors are pairwise linearly independent. The accuracy of results will deteriorate if these conditions

are not met.

3. VERIFICATION AND PERFORMANCE EVALUATION OF THE PROPOSED METHOD

The performance of the proposed identification approach is explored here by using synthetic data from a

10-story shear-building model. We have used the same model in a previous study to verify a modal

identification method for data from underdetermined free/ambient vibration surveys [49]. Its stories have

identical floor mass and interstory stiffness values, given respectively as 100mt and 176.729MN/m.

Mass proportional damping is considered, with the first mode's damping ratio set at 5% of critical.

Table III displays the resulting natural frequencies and damping ratios of this synthetic model.

The horizontal accelerogram recorded by the El Centro Array #9 during the 1940 Imperial Valley

earthquake [39] is used as input motion of the system. The dynamic analysis was carried out using
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the lsim command in MATLAB [50] with a 100-Hz sampling frequency. Figure 4 displays the TF

representations of the first floor and the roof absolute acceleration responses using SPWVD.

3.1. Complete instrumentation

First, complete instrumentation is considered to examine the performance of the proposed method for

determinate problems. Figure 5(a) displays automatically selected auto-source points with ϵGrad= 0.001

and ϵEnergy = 0. Many frequency lines can be observed in this figure, and some of them are highly dis-

continuous in time. It is expected that those points that make up the highly discontinuous frequency

lines to be SATFPs; however, it is probable that some MATFPs are among them, especially when

two close modes have exactly the same energy. As will be shown later, it is possible to detect such

points by post-processing the recovered modal coordinates' TFDs.

By employing the k-means clustering procedure, the estimated mode shapes are divided into k clus-

ters. As mentioned earlier, it is recommended to repeat the clustering procedure for a range of values of

k, to determine the most suitable number of clusters for which S is the largest. Also, to improve the

accuracy of the proposed approach and also increase the computational speed, it is more desirable to

cluster the same amount of data for each frequency bin, because k-means clustering suffers from dif-

ference between the densities of available data for each mode [51]. That is, the highest modes may

be grouped with wrong clusters, because they usually have the lowest number of selected SATFPs.

Here, we select the eigenvectors of 10 randomly selected SATFPs for each frequency bin. Figure 6

Table III. Natural frequencies and damping ratios of the 10-story model.

Mode No. 1 2 3 4 5 6 7 8 9 10

fn(Hz) 1.00 2.98 4.89 6.69 8.34 9.81 11.06 12.07 12.79 13.23
ξ(%) 5.00 1.68 1.02 0.75 0.60 0.51 0.45 0.41 0.39 0.38

Figure 4. Time–frequency representations of (a) the first story and (b) roof responses.

Figure 5. Selected auto-source points.
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displays the variation of S for a range of number of k values, where it is observed that the largest value

of S is attained with k= 15. The silhouette diagram for that case is shown in Figure 7.

After determining the number of clusters, the cluster centroids are taken as the representative of

mode shapes. However, it is important to extract the real clusters that represent the mode shapes, as

in most cases—including the current example—the number of clusters is greater than the number of

active modes. That is, some mode shapes are reduplicative or correspond to the mistakenly selected

MATFPs. To distinguish such mode shapes, the MAC indices among all of the extracted mode shapes

are calculated and are shown in Figure 8. As seen, clusters 1, 11; 3, 14; 5, 6; 8, 12; and 13, 15 are similar.

Between two similar clusters, the cluster with greater si value is chosen as the final answer. Table IV

presents the selected clusters, the silhouette average si, the standard deviation of their silhouette values,

and their corresponding mode numbers. The MAC indices between these identified mode shapes and

Figure 6. Variation of S with number of clusters.

Figure 7. Silhouette diagram with 15 clusters.

Figure 8. MAC among extracted mode shapes.
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their exact counterparts are also shown in Table IV. As it can be observed from this table, except for

mode 8, all of the identified clusters have high MAC values with respect to their corresponding exact

mode shapes and high average silhouette values, which indicates that the mode shape identification

step has been successful. Although the obtained results are satisfactory, it is possible to improve the

accuracy of estimated mode shapes by removing data with low silhouette values, for example, sij < si ,

and by recalculating the centroids with the remaining vectors in each cluster. The new results are shown

in Table IV as the ‘Second iteration’ results. As seen, removal of data with low silhouette values has

considerably improved the MAC value for mode 8 whose si was low, while there were no significant

changes for the other modes.

Figure 9 displays the identified mode shapes through the first and second iterations by red and green

solid lines, respectively. In this figure, the clustered and exact mode shapes are also shown by gray and

black solid lines, respectively. This figure clearly indicates that the identified shape for mode 8 has

been significantly improved by removing those data that had the low silhouette values.

After finding the mode shapes, the modal coordinates' TFDs are recovered through the proposed

subspace-based identification method. However, it is favorable to apply this method first on the

selected points that were used during the mode shape estimation phase—that is, points shown in

Figure 5. It is expected that all points will be classified as SATFP; however, because of errors in the

proposed selection criterion—that is, Equation (10)—some MATFPs and rarely CTTFPs may have

been included. Figure 10 displays the classification results, which are obtained using the same

approach used in Table II. As seen, the subspace method is able to detect those TF points that are

between the frequency lines (natural frequencies) as non-SATFPs. After removing them from the

selected points, it is possible to repeat the mode shape identification step and the clustering phase to

obtain more accurate results. This second iteration is not applied here, because the identified mode

shapes are already very accurate.

By employing the subspace-based method along with Equation (27), the auto-TFDs of modal

coordinates are recovered. As an illustration, the recovered modal coordinates for modes 2 and 8 are

presented in which exact counterparts are also shown in Figure 11 side by side. As seen, the recovered

Figure 9. Clustered (gray), exact (black), first iteration (red), and second iteration (green) mode shapes.
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modal coordinates' TFDs are identical to their exact counterparts. Similar results were obtained for the

other modes and are omitted here for brevity.

The natural frequency of each mode is calculated using the E( f ) index, which is shown as an

example in Figure 12 for the sixth mode. The frequency corresponding to the maximum energy depicts

that natural frequency of the mode. By calculating this index for all recovered modal coordinates, the

natural frequencies (fi) of all modes are identified as shown in Table V. To make the comparison easy,

their analytical counterparts (fe)—previously reported in Table III—and the identification errors are

also shown in Table V. As seen, all of the natural frequencies are identified with less than 4% error.

For this synthetic example, we anticipated that the damping ratios would be identified with high

accuracy. Table V displays that the proposed method is successful in estimating damping ratios with

errors less than 4% for modes 2–10. However, that first mode's damping ratio has not been detected

accurately, because it has the lowest natural frequency, and as such, only a few free vibration cycles

were available in the signals. For real-life cases, this should not a problem, because it is possible to

continue recording response signals for a long window of time. Note that as it was mentioned in

Remark , we selected the free vibration portion as the decaying part, which follows an exponentially

decaying function with start and end times previously introduced.

Figure 10. Classified selected points as SATFPs and MATFPs or CTTFPs.

Figure 11. Comparison between the auto-TFDs of the exact and the recovered modal coordinates.
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3.2. Incomplete instrumentation

Herein, we make an attempt to reduce the number of sensors without losing any modes. For this, the

sensors distribution must be carefully selected for a given number of sensors. As an example, we

use five sensors to identify all 10 modes. As the proposed mode shape identification technique is based

on the linear independence of the mode shapes, we try to a select sensor distribution scenario that re-

sults in a set of estimated mode shapes so that the maximum value of the MAC indices among them is a

minimum while the summation of these MAC indices is minimum. This criteria is equivalent to having

the following sensor distribution index (SDI) to be a minimum

SDI ¼ max
i≠j

MACij �
∑m

i≠j¼1MACij

m2 � mð Þ (42)

where m is the number of active modes, which happens to be 10 for this synthetic example. Note that

this criterion does not guarantee the determination of all 10 modes, as the mode shapes are necessarily

partial as a result of the limited number of sensors. By selecting all possible combinations for the five

sensors, SDI is calculated using the analytical mode shapes. Figure 13 displays the variation of this in-

dex versus sensor combination. As this figure indicates, there are three scenarios that yield the same

minimum value for SDI. That is, deploying sensors at 1st, 2nd, 3rd, 5th, 8th or 1st, 4th, 8th, 9th,

10th, or 2nd, 4th, 5th, 6th, 10th would be the best distributions. Here, we use signals recorded at

2nd, 4th, 5th, 6th, and 10th stories, which is one of the equally best three.

The STFD matrices of the response signals are analyzed in the same manner and with the same ϵGrad
and ϵEnergy thresholds as the previous section, in order to automatically select the SATFPs. Figure 14

displays the selected points that are nearly the same as those observed in Figure 5. Again, the best num-

bers of clusters can be detected by applying the k-means clustering procedure. Figure 15 shows the var-

iation of S for a range of k values. The largest value of S is obtained with 16 clusters, whose silhouette

diagram is shown in Figure 16. To remove the repeated clusters, MAC indices between the centroids of

clusters—that is, the identified mode shapes—are used (Figure 17).

Table VI presents the selected clusters, the average (si), the standard deviation of their silhouette

values, and their corresponding mode numbers. The MAC indices between these final/identified mode

Figure 12. Variation of E( f ) for the sixth mode in the first iteration.

Table V. Identified and exact natural frequencies and damping ratios of the 10-story model.

Mode no. 1 2 3 4 5 6 7 8 9 10

fi(Hz) 1.04 3.06 4.91 6.74 8.36 9.81 11.05 12.05 12.81 13.26
fe(Hz) 1.00 2.98 4.89 6.69 8.34 9.81 11.06 12.07 12.79 13.23
err(%) = |fe� fi|/fe 4.00 2.68 0.41 0.75 0.24 0.00 0.09 0.17 0.16 0.23
ξ i(%) 6.12 1.62 0.98 0.72 0.59 0.51 0.45 0.40 0.38 0.37
ξe(%) 5.00 1.68 1.02 0.75 0.60 0.51 0.45 0.41 0.39 0.38
err(%) = |ξe� ξ i|/ξe 22.40 3.57 3.92 4.00 1.67 0.00 0.00 2.44 2.56 2.63
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shapes and their exact counterparts are also shown in this table. As the results indicate, all MAC values

are greater than 0.9, which is a better outcome than even the complete instrumentation—lest we forget

that these MAC values are calculated using partial mode shapes. To further improve the accuracy of the

estimated mode shapes, data with low (here, below-average) silhouette values are removed. The new

results are also shown in Table VI as the Second iteration results, wherein the MAC values for a

few modes have improved.

Remark 4

The number of sensors cannot be reduced further, because many different modes will look alike at the

sensor locations at which point the detection of redundant modes cannot be carried out easily.

Figure 13. Sensor distribution index for all possible combinations.

Figure 14. Selected auto-source points.

Figure 15. Variation of S with number of clusters.
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Figure 18 displays the identified mode shapes from the first and second iterations by red and green

solid lines, respectively. In this figure, the clustered and exact mode shapes are also shown by gray and

black solid lines, respectively. Note that only the mode shapes at the instrumented floors are shown in

Figure 18. As already suggested by the computed MAC values, the identified mode shapes at these

floors are nearly exact.

For incomplete instrumentation, it is more appropriate to verify the accuracy of the identified modes

through the Coordinate Modal Assurance Criterion (COMAC) [52] index, which is defined for the l-th

DOF as

COMACl ¼
∑10

k¼1ϕ
a
klϕ

i
kl

���
���

� �2

∑10
k¼1ϕ

a
kl
2

� �
∑10

k¼1ϕ
i
kl
2

� � (43)

whereϕa
kl andϕ

i
kl denote the analytical and identified mode shapes, respectively, at the l-th DOF in the

k-th mode. Figure 19 displays the COMAC indices for five sensors used in the identification process.

As seen there, the mode shapes at the instrumented floors are identified with acceptable accuracy after

the first iteration. Nevertheless, the accuracy is improved through the second iteration, especially for

the lower stories—except for story 4—whose responses are more affected by the higher modes.

Similar to the complete instrumentation case, we first apply the subspace method on the selected

points that are expected to be SATFP. As Figure 20 shows, many points are detected that do not belong

to the SATFP category. However, as the mode shapes were identified with suitable accuracy, we con-

tinue here with them to recover modal coordinates' TFDs. Figure 21 displays the recovered and the ex-

act modal coordinates' auto-TFDs for modes 2 and 8. Similar to the previous section, the modal

coordinates are extracted with satisfactory accuracy, although some error is observed for mode 8.

The natural frequencies and the damping ratios are identified through the previously described energy

Figure 16. Silhouette diagram with 16 clusters.

Figure 17. MAC among the extracted mode shapes.
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Figure 18. Clustered (gray), exact (black), first estimation (red), and second estimation (green) of mode shapes.

Figure 19. COMAC indices for instrumented DOFs in both iterations.

Figure 20. Classified selected points as SATFPs and MATFPs or CTTFPs.
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index and the curve-fitting process, respectively. For brevity, no graph is presented here for this step,

and only the identified results are provided in Table VII, wherein it can be observed that the identified

values are almost identical to those extracted by using 10 sensors.

4. CONCLUSIONS

In the present study, a new output-only identification technique was presented with which modal prop-

erties—that is, natural frequencies, damping ratios, and mode shapes—can be extracted without having

input motions, even when the instrumentation is sparse. This method is an extension of one that is

based on a BSS technique that was recently developed by the authors. In the present study, the princi-

pal eigenvectors of the STFD matrix of absolute acceleration response signals at automatically selected

TF points—named SATFP—are clustered using a k-means clustering procedure. The centroids of the

each cluster are considered as the mode shapes. Then, the modal coordinates' auto-TFDs are recovered

through a subspace approach with which it is possible to detect which modes are present at the TF

points. Finally, the natural frequencies and damping ratios are identified from these recovered TFDs.

The previously proposed blind identification [11] method was only applicable to systems for which

the number of sensors is greater than the number of active modes. The proposed method removes this

constraint. Moreover, closely spaced modes are addressed here so that it is not necessary for the modes

Figure 21. Comparison between the auto-TFDs of the exact and the recovered modal coordinates.

Table VII. Identified and exact natural frequencies and damping ratios with incomplete instrumentation.

Mode No. 1 2 3 4 5 6 7 8 9 10

fi(Hz) 1.04 3.06 4.91 6.74 8.36 9.83 11.05 12.05 12.81 13.24
fe(Hz) 1.00 2.98 4.89 6.69 8.34 9.81 11.06 12.07 12.79 13.23
err(%) = |fe� fi|/fe 4.00 2.68 0.41 0.75 0.24 0.20 0.09 0.17 0.16 0.08
ξ i(%) 6.12 1.62 0.98 0.72 0.59 0.49 0.45 0.40 0.38 0.38
ξe(%) 5.00 1.68 1.02 0.75 0.60 0.51 0.45 0.41 0.39 0.38
err(%) = |ξe� ξ i|/ξe 22.40 3.57 3.92 4.00 1.67 3.92 0.00 2.44 2.56 0.00
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to be completely disjointed in the TF domain. Performance of this new technique for both full and

sparse instrumentation cases were evaluated through a synthetic data set. The results indicated that

the method could be successfully applied to response signals recorded during earthquakes to determine

modal parameters using only output motions.
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