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Abstract

We consider a general class of network revenue management problems, where mean demand

at each point in time is determined by a vector of prices, and the objective is to dynamically

adjust these prices so as to maximize expected revenues over a finite sales horizon. A salient

feature of our problem is that the decision maker can only observe realized demand over time, but

does not know the underlying demand function which maps prices into instantaneous demand

rate. We introduce a family of “blind” pricing policies which are designed to balance tradeoffs

between exploration (demand learning) and exploitation (pricing to optimize revenues). We

derive bounds on the revenue loss incurred by said policies in comparison to the optimal dynamic

pricing policy that knows the demand function a priori and prove that asymptotically, as the

volume of sales increases, this gap shrinks to zero.

Keywords: Revenue management, network, pricing, nonparametric estimation, minimax, learn-

ing, asymptotic optimality, curse of dimensionality.

1 Introduction

1.1 Background and overview of the main contributions

Background and motivation. One of the central problems in revenue management is the so-

called tactical pricing problem: given an initial inventory of products to be sold over a finite selling

season,the objective is to devise a strategy that dynamically adjusts prices so as to maximize the

expected total revenues (under the assumption that inventory levels cannot be changed after the

commencement of the selling season). The recent book by Talluri and van Ryzin (2005) and survey

papers by Elmaghraby and Keskinocak (2003) and Bitran and Caldentey (2003) describe numerous

instances of this problem, ranging from fashion and retail, to air travel, hospitality and leisure. In
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cases where there are several different product types and a set of “resources” (raw materials, flight

legs or other primitive components) used to “assemble” them, the problem described above is often

referred to as network revenue management.

Among the first papers to propose a general mathematical model for the network problem is that

of Gallego and van Ryzin (1997). They formulated a finite horizon stochastic control problem where

realized demand is given by a (multivariate) Poisson process whose instantaneous rate represents

mean demand for each product type, and is controlled by a vector of prices chosen by the decision

maker. The objective is to maximize the total expected revenues over the course of a selling season,

subject to an initial inventory of primitive resources used to construct the finished products. In

this setting the optimal dynamic pricing policy can be derived, at least in principle, by exploiting

Markovian structure and solving the associated Bellman equation. Roughly speaking, the resulting

policy seeks to adjust prices at each point in time based on current inventory levels so as to maximize

future expected profits.

The dynamic programming logic articulated above, and variants thereof, form the analytical

backbone of most revenue management studies to date (cf. Talluri and van Ryzin (2005)). The

vast majority of these studies are predicated on the assumption of “full information,” namely,

that the demand function, i.e., the functional relationship that determines how price affects mean

demand rate, is known to the decision maker at the start of the selling season. The only remaining

source of uncertainty is the randomness of realized demand. Needless to say, this type of stipulation

may be invalid in many practical settings where a priori information describing the demand function

may be incomplete or lacking altogether.

The purpose of our work is to study the problem of dynamic pricing on a network à la Gallego

and van Ryzin (1997), albeit in a setting where the demand function is unknown and little is

assumed insofar as its properties (in particular, it need not admit a parametric representation).

For this reason we refer to the class of problems studied in this paper as “blind” network revenue

management, indicating the opaque nature of information available to the decision maker. The

performance of any blind pricing policy will be measured relative to that of the optimal dynamic

pricing policy that knows the demand function a priori. We will focus on the worst case revenue

loss over a broad class of admissible demand functions, hence ensuring the robustness of pricing

policies with respect to model uncertainty.

The approach we develop for solving this class of dynamic optimization problems under model

uncertainty differs significantly from almost all antecedent literature in the area of revenue man-

agement. In particular, it is not guided by dynamic programming principles. Rather, we pursue

a blend of ideas from nonparametric estimation and large scale system analysis, and the proposed

pricing policies are designed to balance exploration (demand learning) and exploitation (revenue

optimization) tradeoffs intrinsic to the class of problems described above.
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Before we explain the main contributions of our paper, it is worthwhile distinguishing between

two important settings associated with the aforementioned dynamic optimization problems: one

where the action set (feasible price set) is discrete and finite; and one where it is infinite. The former

is certainly more closely related to the practice of revenue management, where pricing decisions are

often constrained to a fixed and given set of values; some examples and further discussion can be

found in Talluri and van Ryzin (2005, §5.2.1.3). In addition, as this paper will flesh out in some

level of detail, this setting enjoys important theoretical properties that render it attractive from

practical considerations as well. We will therefore commence our discussion and focus a significant

portion of the analysis on the finite action set problem, presenting subsequently extensions to the

infinite action set formulation where there is continuum of feasible prices. This will allow us to

fully elucidate the escalation in complexity in passing from the former to the latter.

Overview of the main contributions and qualitative insights. This paper advocates a

simple approach to the design of blind pricing policies which hinges on a separation of estimation

(demand learning) and control (pricing). In the setting where the set of feasible prices is finite and

fixed in advance, we develop a simple linear programming-based policy that uses an initial learning

phase to estimate demand at each price point, and then determines the proportion of time each

price should be used downstream to (approximately) maximize expected revenues; see Algorithm 1.

We then study the revenue loss incurred by this policy, relative to the full information benchmark.

As the market size (volume of sales) grows large we establish that this relative loss in revenues

shrinks to zero uniformly over the class of admissible demand functions. That is, the revenues

generated by the proposed policy are close asymptotically to the best achievable revenues under

full information on the demand function. Theorem 1 spells this out rigorously and characterizes

the rate at which the relative revenue loss diminishes. The important observation here is that

this rate is dimension-independent, an attractive property in the context of blind network revenue

management problems.

The main question then is whether the magnitude of relative revenue loss associated with our

proposed blind pricing policy can be significantly reduced. To this end, we derive a general lower

bound on achievable performance that shows that no policy can achieve a “substantially” better

performance than our proposed algorithm in the sense of significantly improving the rate of con-

vergence of the relative revenue loss to zero; this result is formalized in Theorem 2. In addition, we

show that for a slightly more restricted class of problems there do not exist policies that achieve a

better convergence rate than our proposed blind pricing algorithm; see Theorem 3. These results

provide a characterization of the complexity of the pricing problem in the finite action set case.

We then move on to consider the more complicated case in which the action set is a continuum

of prices from which one needs to construct the optimal pricing policy. We first develop a simple

policy that tests a discrete subset of prices in the exploration (demand learning) phase, and then
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selects the “best” price to be used in the exploitation (revenue extraction) phase; see Algorithm

2. Our analysis establishes that the policy is asymptotically optimal, but at the same time, its

performance degrades significantly with the number of products being sold as a consequence of the

curse of dimensionality; see Theorem 4.

We then propose a modification of the policy mentioned above, that uses the demand data

obtained in the price testing phase to construct a nonparametric estimate of the entire demand

function and revenue surface. This functional estimate is then fed into a deterministic optimization

problem which gives rise to the ultimate pricing policy; see Algorithm 3. The policy described

above exploits prior knowledge on the smoothness of the demand function to guide both data

collection (price testing), and the nonparametric curve fitting stages. Unlike most work in the full

information setting, where smoothness is typically imposed as a purely technical condition, in our

context smoothness plays a much more instrumental role: it communicates important information

on the unknown demand function. Roughly speaking, the smoother the demand surface, the less

one suffers from dimensionality effects; this is articulated in precise mathematical terms in Theorem

5 (see also the remark following the theorem).

On a technical level our paper contributes to the theory of revenue management, and more

broadly to dynamic optimization under model uncertainty, by characterizing and formalizing math-

ematically some of the complexities of the blind network pricing problem. The proofs of performance

bounds for our proposed policies rely on a blend of ideas: analysis of a “deterministic skeleton”

problem; large deviations results that quantify fluctuations of the stochastic system relative to its

fluid-model counterpart; and nonparametric estimation techniques. In terms of lower bounds on

the performance that can be achieved by any pricing policy, we introduce a proof technique which

is based on information theoretic arguments that help identify and formalize the “worst case”

scenarios.

On a more practical level, we would like to note a connection between the learning phase in

our pricing strategies and the widespread industry practice of “price testing.” A recent empirical

study of 32 large U.S. retailers, finds that nearly 90% of them conduct such price experiments

(see Gaur and Fisher (2005)), and the advent of the Internet and the Direct-to-Customer model

have served to greatly facilitate such price testing practices and their implementation (see, e.g.,

Williams and Partani (2006) for further discussion and examples). Given the central role of price

testing practices, there is a growing need to better understand this approach and add to its rigorous

foundations. (It is worth noting that the use of “testing” ideas is not limited to prices; see Fisher

and Rajaram (2000) for a study involving merchandise testing.)

Our analysis attempts to shed some light on this issue by providing simple and intuitive guide-

lines for selecting both the number of prices that should be tested, as well as the overall fraction

of the selling season that should be dedicated to experimentation, in addition to highlighting the
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underlying complexity of such problems. While said guidelines are established on the basis of a

theoretical analysis, they hopefully provide a basis for future development of practical and imple-

mentable pricing policies.

1.2 Related literature

Almost all work we are aware of that incorporates model uncertainty into the dynamic pricing

problem described above, has effectively been restricted to the one dimensional case (where there

is only a single product being sold). The bulk of these studies focus on a parametric setting

where the structure of the demand function is assumed to be known up to a finite number of

unknown parameters. The method of choice in the analysis of such problems has been a Bayesian

formulation of dynamic programming; see Lobo and Boyd (2003), Aviv and Pazgal (2005), Araman

and Caldentey (2009), and Farias and Van Roy (2010), all of which restrict attention to one or

two unknown parameters. Distinct from this stream of literature is the recent work of Besbes and

Zeevi (2009) that proposes a “frequentist” approach to the problem, using maximum likelihood to

infer the unknown parameters, and policies that hinge on a separation of estimation and control.

For any parametric approach to work well, it is crucial that the structure assumed by the policy

be consistent with that of the true underlying demand function. In other words, the postulated

model needs to be well specified with respect to the actual mechanism that determines realized

demand. To remove misspecification risk, one needs to step outside the boundaries of parametric

modeling assumptions. For example, one can assume that the unknown demand function satisfies

some mild nonparametric structural conditions (e.g., that it is monotone, bounded, differentiable,

etc.). Very little work has been done to date in this direction. A few recent studies consider static

settings, which do not involve dynamic decision making over time and tradeoffs between learning

and pricing; see, e.g., Rusmevichientong et al. (2006) and Eren and Maglaras (2010) (see also van

Ryzin and McGill (2000) and Ball and Queyranne (2009) in the context of capacity allocation

problems). An exception is the work of Lim and Shanthikumar (2007) that formulates a robust

max-min analogue of the dynamic pricing problem of Gallego and van Ryzin (1994); see also Lim

et al. (2008) for an analysis of the multiproduct case. Their work is fairly conservative insofar as

an adversary (nature) is allowed to alter the distribution of realized demand at each point in time

to counter any chosen policy, and with the exception of exceedingly simple cases, the approach is

not tractable and does not lead to prescriptive solutions.

The work which is perhaps most closely related to the current paper is that of Besbes and Zeevi

(2009). In terms of the problem formulation and main thrust, that paper studies an analogue

of the Gallego and van Ryzin (1994) single product pricing problem. It focuses on the impact of

parametric versus nonparametric assumptions on the structure of the unknown demand function,

in particular, and quantifies the economic value of such prior information via a minimax regret
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formulation. The pricing policies proposed in that case hinge crucially on the one-dimensional

nature of the single product problem and only consider the case where there is a continuous set of

feasible prices. The network problem, which serves as the focal point of the present paper, raises a

different set of issues, for example, the distinction between finite and continuous action sets, and the

curse of dimensionality. In terms of contributions to methodology, the present paper shares some

common threads with Besbes and Zeevi (2009), most notably the core idea of separating estimation

and control. However, at a finer grain level, the policies, as well as the proof techniques needed

to study their performance, differ in a significant manner and involve new ideas that draw a much

stronger connection between nonparametric statistics and dynamic optimization under uncertainty.

Unlike Besbes and Zeevi (2009), the present paper does not address parametric modeling. Based

on the theory developed there, it is possible to establish a significant performance improvement in

the network setting if one is able to restrict attention to a parametric class of demand models.

The exploration-exploitation trade-off that characterizes the blind network revenue management

problem relates also to the multi-armed bandit paradigm (see, e.g., Cesa-Bianchi and Lugosi (2006)

for a recent and comprehensive survey). While there is a high level connection with this stream of

work, the presence of capacity constraints in conjunction with the multi-dimensional aspect of the

problem does not allow to establish a direct connection with existing results.

The remainder of the paper. The next section introduces the model and formulates the

problem. Section 3 analyzes the blind network problem where the feasible price set is discrete and

finite. Section 4 shifts focus to the general blind network case. All proofs are collected in three

appendices: Appendix A presents the proofs of the main results, Appendix B presents the proofs

of the results in Section 4 and Appendix C details the proofs of auxiliary lemmas. Appendix D

contains some additional numerical illustrations.

2 Problem Formulation

The model. We consider a revenue management problem in which a firm sells d different products

which are generated (assembled or produced) from ℓ resources. Let A = [aij ] denote the capacity

consumption matrix, whose entries aij ≥ 0, i = 1, . . . , ℓ and j = 1, . . . , d, denote the number of

units of resource i required to generate product j. It is assumed that the entries of A are integer

valued and each column contains at least one non-zero entry. The selling horizon is denoted by

T > 0, and after this time sales are discontinued and there is no salvage value for the remaining

unsold products.

Demand for products at any time t ∈ [0, T ] is given by a multivariate Poisson process with

intensity λt = (λ1t , ..., λ
d
t ) which measures the instantaneous demand rate (in units such as number

of products requested per hour, say). This intensity is determined by the price vector at time
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t, p(t) = (p1(t), . . . , pd(t)) through a demand function λ : Dp → Rd
+, where Dp ⊆ Rd

+,+ (where

R+,+ := (0,+∞)) denotes the set of feasible prices which is assumed to be compact.1 Thus the

instantaneous demand rate at time t is given by λt = λ(p(t)), and the realized demand is a controlled

Poisson process. More will be said on the demand function shortly.

Let (p(t) : 0 ≤ t ≤ T ) denote the price process which is assumed to have sample paths that are

right continuous with left limits taking values in Dp. Let (N
1(·), ..., Nd(·)) be a vector of mutually

independent unit rate Poisson processes. The cumulative demand for product j up until time t

is then given by Dj(t) := N j(
∫ t
0 λ

j(p(s))ds). We say that (p(t) : 0 ≤ t ≤ T ) is non-anticipating

if the value of p(t) at time t ∈ [0, T ] is only allowed to depend on past prices {p(s) : s ∈ [0, t)}

and demand values {(D1(s), . . . , Dd(s)) : s ∈ [0, t)}. (That is, the price process is adapted to the

filtration generated by past values of the demand and price processes.)

Information structure and the dynamic optimization problem. We assume that the

decision-maker does not know the true demand function and only knows that λ belongs to the class

L := L(M,m, p∞), which for finite positive constants M , m and a vector p∞ ∈ Dp satisfies the

following:

i.) Boundedness of demand: for all λ ∈ L, ‖λ(p)‖ < M for all p ∈ Dp.

ii.) Minimum revenue rate: for all λ ∈ L, sup{p · λ(p) : p ∈ Dp} > m.

iii.) “Shut-off” price: for all λ ∈ L, λ(p∞) = 0.

Here for two vectors y, z ∈ Rd, y · z denotes the usual scalar product and ‖y‖ := max{|yi| : i =

1, ..., d}. To avoid trivialities, M , m are assumed to be such that L is non-empty. It is worth

noting that Assumptions i.) and ii.) are quite benign and hold for many demand models used in

the revenue management literature such as linear, exponential and iso-elastic (Pareto), as long as

the parameters are assumed to lie in a compact set; see, e.g., Talluri and van Ryzin (2005, §7) for

further examples. The existence of a “shut-off” price in Assumption iii.) is not restrictive from a

practical standpoint since in most applications there exists a finite price that yields zero demand.

From a modeling perspective, this is merely a convenient way to allow for a sales denial.

While the decision maker possesses only limited information on the demand function, s/he is

able to continuously observe realized demand at all time instants starting at time 0 and up until

the end of the selling horizon T . We shall use π to denote a pricing policy and its associated price

process will be denoted (p(t) : 0 ≤ t ≤ T ). With some abuse of terminology, we will use the term

policy to refer to the price process itself, as well as the algorithm that generates it interchangeably.

1The assumption of time-homogeneity of the demand function allows to isolate learning effects from demand

tracking considerations. The challenges associated with an unknown time dependent demand function are highlighted

in Section 5.
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For 0 ≤ t ≤ T put

N j,π(t) := N j
(∫ t

0
λj(p(s))ds

)
, for j = 1, . . . , d, (1)

where N j,π(t) denotes the cumulative demand, i.e., number of units requested of product j up to

time t under the policy π. Let Nπ(t) denote the vector (N1,π(t), ..., Nd,π(t)).

Let x = (x1, x2, ..., xℓ) denote the inventory level of each resource at the start of the selling

season. We assume without loss of generality that xi > 0, i = 1, ..., ℓ. A policy π is said to be

admissible if the induced price process is non-anticipating and satisfies

∫ T

0
AdNπ(s) ≤ x a.s., (2)

p(s) ∈ Dp, 0 ≤ s ≤ T, (3)

where A is the capacity consumption matrix defined earlier and vector inequalities are assumed

to hold componentwise. The term non-anticipating means that at any point in time, p(t) can

only depend on past realized demand (Nπ(s) : 0 ≤ s < t) and prices (p(s) : 0 ≤ s < t). It is

important to note that while the decision maker does not know the demand function, knowledge of

p∞ guarantees that the constraint (2) can be met. We let P denote the set of admissible policies,

and the performance of a policy π ∈ P is measured in terms of cumulative expected revenues,

Jπ(x, T ;λ) := E
[∫ T

0
p(s) · dNπ(s)

]
. (4)

It is worth noting that the decision maker is not able to compute the expectation in (4) since

the true demand function governing customer requests is not known a priori. This lends further

meaning to the terminology “blind revenue management,” where one is attempting to optimize (4)

in a blind manner.

The full information benchmark and main objective. When the demand function λ is

known prior to the start of the selling season, the dynamic optimization problem described above

can, at least in theory, be solved; this will be referred to as the “full information” setting. This

problem is precisely the one formulated in Gallego and van Ryzin (1997), who also characterize

the optimal state-dependent pricing policy using dynamic programming. Suppose that we fix a

demand function λ ∈ L. Let us define

J∗(x, T |λ) := sup
π∈P

E
[∫ T

0
p(s) · dNπ(s)

]
, (5)

where the notation reflects the fact that the optimization problem is solved “conditioned” on

knowing the demand function λ at time t = 0.

Clearly the value of the full information optimization problem (5) serves as an upper bound on

the revenues that can be achieved by any admissible policy in the blind setting. That is, for any

demand function λ ∈ L, we have that Jπ(x, T ;λ)/J∗(x, T |λ) ≤ 1 for all π ∈ P. This ratio measures
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the performance of any admissible policy on relative scale; generated revenues are expressed as a

fraction of the optimal revenues in the full information setting. Our objective is to design policies

that maximize this ratio uniformly over all demand functions in the class L; that is, choose π ∈ P

to maximize

inf
λ∈L

Jπ(x, T ;λ)

J∗(x, T |λ)
. (6)

The criterion in (6) can be viewed as the result of a two step procedure: first the decision maker

selects a policy π ∈ P, and then “nature” picks the worst possible demand function λ ∈ L for

this particular policy. Measuring performance in this manner guarantees that “good” policies will

perform well regardless of the true underlying demand function. The fact that admissible poli-

cies can only learn the true demand function by observing realized demand over time introduces

an obvious tension between exploration (estimation/demand learning) and exploitation (optimiza-

tion/pricing), and balancing these contradicting objectives is one of the main issues that will be

explored in what follows.

3 Main Results

As alluded to earlier, the simplest and probably most practically relevant instance of the blind

network revenue management problem occurs when the set of feasible prices is discrete and finite,

say, Dp = {p1, ..., pk, p∞}. In more generic control terminology this describes a situation where the

action set is finite. In this setting, uncertainty is essentially limited to the value of the demand

function at the finite collection of prices in Dp \ {p∞}.

3.1 The proposed pricing policy

Our proposed blind pricing policy is based on a single tuning parameter τ ∈ (0, T ] that defines the

length of a learning horizon and does rely on knowledge of the parameters defining the class L of

demand functions. During this exploration period the mean demand rate at the various prices is

estimated. Subsequently, these demand estimates are used as inputs for an empirical, data-driven,

linear optimization problem. The solution of the latter gives rise to the pricing policy that will

be used in the exploitation period which takes place over the interval [τ, T ]. In other words, the

policy thus constructed, fleshed out in the pseudo-code below, “separates” between estimation and

control phases.

Algorithm 1: π(τ )

Step 1. Initialization:

Set the learning interval to be [0, τ ] and put ∆ = τ/k.
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Step 2. Learning/experimentation:

(a) While inventory is positive for all resources, price at pi from ti−1 = (i− 1)∆ to ti = i∆,

i = 1, 2, ..., k

If some resource runs out of stock, apply p∞ up until time T and STOP.

(b) Compute

d̂i =
total demand over [ti−1, ti]

∆
, i = 1, ..., k. (7)

Step 3. Optimization/exploitation: Let t̂ = (t̂1, ..., t̂k) be the solution of the linear program

max
{ k∑

i=1

pi · d̂i ti :

k∑

i=1

A d̂i ti ≤ x,

k∑

i=1

ti ≤ T − τ, ti ≥ 0, i = 1, ..., k
}
. (8)

For each i = 1, ..., k, apply pi for t̂i time units on (τ, T ] until some resource is out of stock,

then apply p∞ for the remaining time.

In Step 3, A denotes the capacity-consumption matrix defined in the capacity constraint (2) of

the original dynamic optimization problem (Section 2). In addition, it is clear that any practical

implementation of the policy would not “shut off” all the demand once a single resource becomes

unavailable, but would rather do so only for those products that use the unavailable resource. The

result we present in Theorem 1 is valid for policies that improve upon the above by refining Step

3 through partial and/or gradual demand “shut off.”

Intuition. In steps 1 and 2, the decision-maker estimates the demand at each of the k feasible

prices by testing the price on a period of time of length τ/k. To understand the logic underlying

Step 3, imagine that the demand function λ(·) is revealed at the start of the selling season, and

that demand is deterministic rather than governed by a Poisson process. The revenue maximization

problem would then be given by the following deterministic dynamic optimization problem

max
{ k∑

i=1

pi · λ(pi) ti :
k∑

i=1

A λ(pi) ti ≤ x,
k∑

i=1

ti ≤ T, ti ≥ 0, i = 1, ..., k
}
. (9)

It is possible to show (see Gallego and van Ryzin (1997)) that the solution of this linear program

leads to near-optimal performance in the full information stochastic dynamic optimization problem.

The objective of Step 3 is to get “close” to said solution, by solving a suitable empirical version

of the deterministic problem (9). The optimal solution for this problem t̂ is then used for the

remainder of the time horizon (τ, T ].

Balancing the exploration-exploitation trade-off. The choice of the key tuning parameter

τ is meant to balance two contradicting objectives. As τ increases, so do the quality of the estimates
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of the demand function values and in turn the quality of the approximation to the deterministic

skeleton problem (and its solution). However, an increase in τ also implies shorter exploitation

time and higher potential revenue losses.

3.2 Theoretical analysis

Exact analysis of the performance of the policy described in the previous section is quite difficult.

We therefore introduce an asymptotic regime which facilitates an approximate analysis, and which

has been used in several revenue management studies to date (see, e.g., Talluri and van Ryzin

(2005, §3.6,5.3) and references therein). The regime is predicated on the number of initial resources

and potential demand growing proportionally large. In particular, for any positive integer n the

initial resource vector and the demand function are given by

xn = nx, λn(·) = nλ(·). (10)

Here n which serves as a proxy for the market size determines both the order of magnitude of

inventories and the rate of demand; when n is large this scaling characterizes a regime with a high

volume of sales but maintains inventory constraints2. Such an asymptotic regime is appropriate to

analyze problems where the potential demand over the sales horizon and the initial inventory are

of the same order of magnitude.3 The following notation will be useful: for real valued positive

sequences {an} and {bn} we write an = O(bn) if an/bn is bounded from above for large enough

values of n (i.e., lim sup an/bn < ∞). If an/bn is also eventually bounded away from zero (i.e.,

lim inf an/bn > 0) then we write an ≍ bn.

We will denote by Pn the set of admissible policies for a system with scale n, and the expected

revenues under a policy πn ∈ Pn will be denoted Jπ
n (x, T ;λ). With some abuse of notation we

will occasionally use π to denote a sequence {πn : n = 1, 2, . . .} as well as any element of the

sequence, omitting the subscript “n” to avoid cluttering the notation. For each n = 1, 2, . . ., let

J∗
n(x, T |λ) denote the optimal revenues that can be achieved in the full information case, i.e., when

the demand function is known a priori in a system of scale n. It follows from Section 2 that for

all n = 1, 2, . . ., we have that Jπ
n (x, T ;λ) ≤ J∗

n(x, T |λ). With this in mind, the following definition

characterizes admissible policies that have “good” asymptotic properties.

Definition 1 (Asymptotic optimality) A sequence of admissible policies {πn} is said to be

asymptotically optimal if

inf
λ∈L

Jπ
n (x, T ;λ)

J∗
n(x, T |λ)

→ 1 as n→ ∞. (11)

2An alternative interpretation of this regime is one where the sales rate does not change but the time horizon

grows linearly with n: all of the results in the paper carry over with appropriate modifications to that setting.
3The asymptotic regime considered is not appropriate for cases when there is a fundamental mismatch between

supply and demand, e.g., x ≪ λ(p).
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Asymptotically optimal policies are those that achieve the full information upper bound on revenues

as n → ∞, uniformly over the class of admissible demand functions. For such policies it is also of

interest to measure the (worst case) magnitude of revenue loss incurred in comparison to the best

achievable performance under full information. Normalized by the latter, this gives the performance

loss on relative scale (say, in percentage terms), i.e., sup{1− Jπ
n (x, T ;λ)/J

∗
n(x, T ;λ) : λ ∈ L}. The

rate at which this shrinks to zero quantifies the rate of convergence in (11), a measure of the

second-order behavior of asymptotically optimal policies.

Theorem 1 For τn ≍ n−1/3, the sequence of policies {π(τn)} defined by Algorithm 1 is asymptot-

ically optimal. In particular,

sup
λ∈L

(
1−

Jπ
n (x, T ;λ)

J∗
n(x, T |λ)

)
= O

((log n)1/2
n1/3

)
as n→ ∞. (12)

Note that learning, as measured by the length of the exploration phase τn, occurs on a shorter time

scale than the sales horizon T . Also of significant importance is the observation that the rate of

revenue loss does not depend on the number of products being sold, i.e., the rate of convergence

above is dimension independent.

Proof sketch. As alluded to in the discussion following Algorithm 1, there are two sources of

error that impact the revenue loss relative to the maximal full information revenue benchmark, as

captured by the ratio Jπ
n/J

∗
n. The first error source can be interpreted as an “exploration bias”

that is due to experimenting with prices in the absence of information on the demand model. This

results in potential revenue losses of order τn. The second source of error is stochastic, arising from

the fact that only noisy observations of the demand function are available. Since each price is held

fixed for τn/k units of time, this introduces an error of order (nτn/k)
−1/2; this observation is less

transparent and is rigorously detailed in the proof using uniform probability bounds for deviations

of random variables from their expectation. The overall revenue loss is dictated by the sum of the

two sources detailed above, namely

1− Jπ
n/J

∗
n ≈ C

(
τn +

k1/2

(nτn)1/2

)
. (13)

This last expression captures mathematically the tension that must be resolved in choosing the

tuning parameters associated with Algorithm 1. Roughly speaking, shortening τn decreases the

exploration bias, but increases the stochastic error since there is more “noise” at each tested price.

Balancing the two error terms in (13) yields the choice of tuning parameter τn that minimizes the

order of magnitude of the relative loss. This choice is the one reported in the theorem and gives

rise to the revenue loss rate in (12).

Remark. The proof of Theorem 1 provides an upper bound on the constant C that appears

in (13), and a careful inspection of the proof reveals that the upper bound depends on the initial
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inventory and time horizon through (min{1,mini=1,...,ℓ xi/T})
−1, and the number of prices, k,

through k4/3.4 Hence, as the number of possible prices k increases, so does the constant C. The

analysis we have presented focuses on cases where k is finite and small (relative to the scale of the

system). On the other extreme, one has a continuum of prices; this setting is analyzed in Section 4.

We note that the upper bound for C is fairly conservative. A possible way to evaluate the quality of

the policy (and the constant C) would be to test the latter across a large range of possible demand

functions and extract the corresponding “worst” constant; see, e.g., Besbes and Zeevi (2009, §6.3).

3.3 Fundamental limits on achievable performance

As mentioned earlier, the rate of convergence in (11) measures the quality of asymptotically optimal

policies. In what follows we will establish that the performance of the policy given by Algorithm 1,

with τn specified as in Theorem 1, cannot be significantly improved upon in general, and in certain

settings is best possible.

3.3.1 A lower bound on achievable performance

For simplicity, we focus on a setting where k = 2, there is only a single product being sold and

there are no inventory constraints.5

Theorem 2 Suppose that Dp = {p1, p2, p∞} and the inventory of primitive resources is infinite

(x = ∞). Then, for some constant C > 0,

sup
λ∈L

(
1−

Jπ
n (∞, T ;λ)

J∗
n(∞, T |λ)

)
≥

C

n1/2
for all n ≥ 1, (14)

for all admissible policies π ∈ P.

The above result establishes a fundamental bound on the performance of any admissible policy: no

policy can achieve a faster rate of convergence than O(1/n1/2) over the entire class L when there

are no inventory constraints.

Proof sketch. The bound above is derived by restricting attention to two possible demand

functions µ1(·) and µ2(·) in L that are “close.” In particular, we focus on two demand functions

that cross at p1 and that are off by a factor of 1/n1/2 at p2. The key underlying idea revolves

around the tension that any admissible policy faces when nature is restricted to the two choices

µ1 and µ2. On the one hand, since the two demand functions coincide at p1, one needs to price

at p2 to accumulate observations that would allow to distinguish if nature selected µ1(·) or µ2(·).

4This assumes that the learning phase τn is taken to be proportional to k1/3n−1/3.
5We note that in Theorem 2, the assumption that x = ∞ is only made to simplify the argument. It is sufficient to

assume unconstrained “on average,” i.e., that the class of admissible demand functions L contains a demand function

µ(·) such that max{µ(p1), µ(p2)}T < x− 1.

13



At the same time, pricing at p2 might lead to revenue losses if nature initially selected the demand

function µ1. To analyze this tension, we reduce the problem to a hypothesis test for determining if

λ = µ1 or λ = µ2 and show, using information theoretic arguments, that essentially only two cases

can occur. Roughly speaking, either a policy does not gather sufficient information to distinguish

between the two hypotheses reliably, in which case it has a non-vanishing probability of selecting

a suboptimal price, implying a worst case revenue loss of O(1/n1/2); or sufficient information is

gathered to distinguish between the two hypotheses, but this comes at the “price” of a learning

related relative revenue loss of O(1/n1/2). It follows that for all policies π ∈ P

sup
λ∈{µ1(·),µ2(·)}

(
1−

Jπ
n (x, T ;λ)

J∗
n(x, T |λ)

)
≥

C

n1/2
for all n ≥ 1.

The result then follows.

Discussion. The preceding discussion highlights an important feature of the policy given in

Algorithm 1. While the latter is predicated on a simple separation of estimation (demand learning)

and control (pricing), the rate of convergence that it achieves is “not far” from the best possible

rate, which by Theorem 2 is known to be no better than order 1/n1/2. While this rate may

not be achieved by said policy, its structure strikes a reasonable balance between complexity and

performance. To that end, Theorem 3 below will establish that at least in the case where inventory

constraints are absent, the proposed policy has performance which is best possible among all those

policies that suitably constrain the number of price changes.

Remark (on the alternative of parametric modeling). Careful inspection of the proof of

Theorem 2 reveals that many commonly used parametric models contain demand functions that

are “close” in the sense of the proof sketch following the theorem. For example, a class of linear

demand models {θ1 − θ2p : (θ1, θ2) ∈ [θ1, θ1]× [θ2, θ2]} such that θ1 < θ1 and θ2 < θ2 will contain

the aforementioned two demand functions (for n sufficiently large). Hence, even under typical

parametric modeling assumptions it is impossible to construct policies that can do better than

the lower bound of order 1/n1/2 for all parameter instances, and in general performance could be

much worse if the postulated model is misspecified, in which case the ratio Jπ
n/J

∗
n might not even

converge to 1.

3.3.2 Optimality of the proposed policy in a restricted setting

We further investigate the performance of the policy presented in Algorithm 1 in settings where

k = 2, there is a single product being sold, and there are no capacity constraints. The key

observation here is that the proposed policy should select in Step 3 a single price that maximizes

the estimated expected revenue rate. In other words, it need not make more than k price changes.

The next result provides a lower bound on the performance of any admissible policy that is restricted

to use at most k price changes.
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Theorem 3 Suppose Dp = {p1, p2, p∞} and the inventory of primitive resources is infinite (x =

∞). Let P ′ ⊆ P denote the set of admissible policies that use at most 2 price changes throughout

the horizon. Then, for some constant C > 0,

sup
λ∈L

(
1−

Jπ
n (∞, T ;λ)

J∗
n(∞, T |λ)

)
≥

C

n1/3
for all n ≥ 1, (15)

for all policies π ∈ P ′.

In the setting covered in Theorem 3, (15) establishes that the policy described in Algorithm 1, with

τ specified as in Theorem 1, achieves the best possible rate of convergence among all policies in P ′

(up to a logarithmic factor).

The main intuition outlined in the proof sketch of Theorem 2 applies to Theorem 3 as well, with

the key difference being that, in the above it is necessary to account for the fact that the price can

only change twice. This constraint implies a more subtle choice of “worst-case” demand functions

and the need to track the times at which the price changes.

3.4 A numerical illustration

We consider an example with two products and three resources. The first, second and third rows

of the capacity consumption matrix A are given by (1, 1), (3, 1) and (0, 5) respectively. This means

that product 1 requires 1 unit of resource 1, 3 units of resource 2 and no units of resource 3, etc.

We consider three different underlying demand models to test the efficacy of our proposed policy:

a linear, an exponential and a logit model.

a) λ(p1, p2) = (8− 1.5p1, 9− 3p2)
′,

b) λ(p1, p2) = (5 exp{−0.5p1}, 9 exp{−p2})
′,

c) λ(p1, p2) = 10(1 + exp{−p1}+ exp{−p2})
−1(exp{−p1}, exp{−p2})

′.

It is important to emphasize that our policies are constructed in a blind manner, without knowledge

of the demand function. The set of feasible prices is {(1, 1.5), (1, 2), (2, 3), (4, 4), (4, 6.5)}. In Table

1, we illustrate the performance of the policies defined by Algorithm 1 with τn = n−1/3. Note that

in assessing the performance ratio Jπ
n/J

∗
n, we use the upper bound provided by the deterministic

relaxation in place of J∗
n (see Gallego and van Ryzin (1997)) and hence the actual ratio Jπ

n/J
∗
n is

at least as high as that reported in the table. The results are based on running 103 independent

simulation replications from which the performance indicators were derived by averaging. The

standard error was below 0.1% in all cases.

The results in Table 1 are consistent with the asymptotic optimality statement of Theorem 1.

The proposed policy generates at least 83% of the full information benchmark for n = 103, and
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Market “size” n = 102 n = 103 n = 104

Tuning parameters τ = 0.22 τ = 0.10 τ = 0.05

Jπ
n/J

∗
n Jπ

n/J
∗
n Jπ

n/J
∗
n

initial Linear .65 .86 .94

inventory Exponential .75 .84 .91

xn = ( 3, 5, 7)× n Logit .78 .87 .95

initial Linear .76 .83 .92

inventory Exponential .87 .94 .98

xn = (15, 12, 30)× n Logit .88 .94 .97

Table 1: Price restricted case. Results in the table give a lower bound on the performance of

the policy π(τ) realtive to the optimal performance in the full information case. Here τ = fraction

of time allocated to learning.

this performance is achieved by allocating only 10% of the selling horizon to the learning phase. In

addition, the performance is seen to be comparable for the various demand models tested, exhibiting

the robustness asserted in Theorem 1.

4 Extensions

In this section, we deal with the case where the set Dp contains a continuum of feasible prices, and

model uncertainty pertains to a surface λ(·) in a d-dimensional space. We henceforth assume that

Dp is a compact convex set, and one of the key questions in the design of blind pricing policies is

now concerned with the selection of “good” test prices within this feasible set.

4.1 The blind pricing policy

Before describing the policy we need to define a price grid. Let Bp :=
∏d

i=1[p
i, pi] denote the

minimum volume hyper-rectangle in Rd
+, such that Bp ⊇ Dp. Given a positive integer κ, one can

divide each interval [pi, pi], i = 1, ..., d into
⌊
κ1/d

⌋
intervals of equal length. Define the resulting

grid of points in Rd
+ as Bκ

p . Let e = (1, . . . , 1) ∈ Rℓ. The following algorithm provides pseudo-code

that defines a class of admissible learning and pricing policies that are parametrized by a triplet

of tuning parameters (τ, κ, δ): τ ∈ (0, T ] represents the length of an initial interval dedicated to

learning; κ is a positive integer that defines the number of prices to “test” during the learning

phase; and δ > 0 is a “fudge factor” that allows for some slack in the capacity constraint (2).

16



Algorithm 2: π(τ ,κ, δ)

Step 1. Initialization:

(a) Set the learning interval to be [0, τ ], and set κ to be the number of prices to experiment

with. Put ∆ = τ/κ.

(b) Define P κ = {p1, ..., pκ} to be the prices to experiment with over [0, τ ], where P κ ⊇

Bκ
p ∩ Dp.

Step 2. Learning/experimentation:

(a) On the interval [0, τ ] apply pi from ti−1 = (i− 1)∆ to ti = i∆, i = 1, 2, ..., κ as long as

inventory is positive for all resources. If some resource runs out of stock, apply p∞ up

until time T and STOP.

(b) Compute

d̂(pi) =
total demand over [ti−1, ti)

∆
, i = 1, ..., κ. (16)

Step 3. Optimization:

For i = 1, ..., κ,

If Ad̂(pi)T ≤ x+ δe, then [check if price is feasible]

r̂(pi) = pi · d̂(pi) [compute empirical revenue rate]

else r̂(pi) = 0.

End If

End For

Set p̂ = argmax{r̂(p) : p ∈ P κ}. [empirically optimal price]

Step 4. Pricing:

On the interval (τ, T ] apply p̂ until some resource is out of stock, then apply p∞ for the

remaining time.

Step 1 sets the first two tuning parameters: τ determines the length of interval used for learning

the demand function; and κ sets the number of prices that are experimented with on that interval.

In Step 2, prices in the discrete set P κ are used to obtain an empirical approximation of the demand

function;
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The logic underlying Step 3 is similar to the underlying Step 3 of Algorithm 1. Here, however,

one considers the following deterministic relaxation problem

max
{∫ T

0
r(λ(p(s)))ds :

∫ T

0
Aλ(p(s))ds ≤ x , p(s) ∈ Dp for all s ∈ [0, T ]

}
, (17)

where r(·) is the revenue rate. Gallego and van Ryzin (1997) show that the solution to (17) is

constant over time, and establish that this fixed price yields close to optimal performance in the

original stochastic problem. Step 3 of the algorithm uses observed demand to form an estimate of

the revenue function, and then proceeds to solve a suitable empirical version of the deterministic

problem (17). The optimal solution for this problem p̂ is then used for the remainder of the time

horizon (τ, T ]. The choice of the tuning parameter δ allows some modest violation of the capacity

constraints: the logic here is that the estimates of the demand rate are “noisy,” and the δ-slack

avoids restricting too drastically the search for the empirical optimal price p̂.

As opposed to Algorithm 1 which only required the specification of a learning period τ , the

continuous action set problem introduces the need for additional tuning parameters. The choice

of the learning horizon τ and number of “test prices” κ is meant to balance several contradicting

objectives. As in Algorithm 1, increasing τ results in a longer time horizon over which the demand

function is estimated, however by doing so there is also a potential loss in revenues that stems from

spending “too much time” on learning and exploration. Now, for every fixed choice of τ , there is

also an inherent tradeoff between the number of prices to experiment with, κ, and the accuracy

of estimating the demand function on this price grid which is dictated by the length ∆=τ/κ. In

particular, using more prices translates into a better coverage of the domain of the demand surface,

but it also implies that the estimates are more “noisy” since each price is used for a shorter interval.

The next section explains how to balance these error sources.

4.2 Performance analysis

In addition to the basic assumptions outlined in Section 2, we impose the following regularity

conditions, which are quite standard in the revenue management literature (cf. Talluri and van

Ryzin (2005)).

Assumption 1 Every demand function λ(·) ∈ L has an inverse, denoted γ(·), the set Dλ := {l :

l = λ(p), p ∈ Dp} is convex and the revenue function r(λ) := λ · γ(λ) is concave. In addition,

λ(·) is Lipschitz continuous, i.e., ‖λ(p)− λ(p′)‖ ≤ K‖p− p′‖ for all p, p′ ∈ Dp, where K is a given

positive constant.

In the context of the high sales volume asymptotic regime given in (10), we provide below a

result that characterizes the performance of blind policies defined by Algorithm 2.
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Theorem 4 Let Assumption 1 hold, and set

τn ≍ n−1/(d+3), κn ≍ nd/(d+3), δn = Cn(logn)1/2n−1/(d+3), (18)

with C > 0 sufficiently large. Then the sequence of policies {πn} defined by Algorithm 2 is asymp-

totically optimal. In particular,

sup
λ∈L

(
1−

Jπ
n (x, T ;λ)

J∗
n(x, T |λ)

)
= O

((log n)1/2
n1/(d+3)

)
as n→ ∞, (19)

where d denotes the number of products.

Remarks.

1. As in Theorem 1, the first part of the theorem states that the value of full information

diminishes for large n.

2. In contrast with the price restricted case where only finitely many actions are considered, the

rate of revenue loss in the current setting degrades with the number of products (d); compare with

(12). This is an obvious manifestation of the curse of dimensionality. We return to this point in

Section 4.5, where a method is proposed to diminish this effect. It is worth noting that one could

mimic the proof sketch of Theorem 1 (outlined following the statement of the result), where now,

in addition to the two previous error sources, there would be an additional error source of order

κ
−1/d
n stemming from the discretization of the price space. In this case, the overall revenue loss

would be

1− Jπ
n/J

∗
n ≈ C

(
τn +

1

κ
1/d
n

+
κ
1/2
n

(nτn)1/2

)
. (20)

4.3 A simple state-dependent refinement

The learning phase in the policy described by Algorithm 2 results in an estimate of the demand

function at the price vectors that are tested over the interval [0, τ). These estimates are subsequently

used to solve an empirical version of the full information deterministic relaxation problem, which

results in a single price which is then used for the rest of the selling season. This strategy does not

make further use of the estimates of the demand function after time t = τ . A simple way to refine

this approach would be to re-solve the aforementioned optimization problem at additional points

in time downstream of τ . For example, consider a policy πr(τ, κ, δ, Tr) that re-solves at time Tr. It

proceeds as in Algorithm 2 except that Step 4 is replaced by:

Step 4(r). Pricing:

On the interval (τ, Tr] apply p̂. If some resource runs out of stock, apply p∞ up until time

T and STOP. Otherwise, let Ir be the inventory at time Tr and re-solve:
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For i = 1, ..., κ,

If Ad̂(pi)(T − Tr) ≤ Ir + δe, then

r̂(2)(pi) = pi · d̂(pi)

else r̂(2)(pi) = 0.

End If

End For

Set p̂(2) = argmax{r̂(2)(p) : p ∈ P κ}.

On the interval (Tr, T ] apply p̂
(2) until some resource is out of stock, then apply p∞.

Intuition. While such re-solving strategies are not guaranteed to yield benefits (see, e.g., Cooper

(2002) in the context of capacity allocation problems and more generally Secomandi (2008) for a

detailed discussion and a review of work related to re-solving issues), the main idea here is to

allow for some adaptation of the price to a given sample path of demand. As our discussion

following Theorem 4 indicates, the average performance of the policy described in Algorithm 2 is

essentially dictated by a law of large numbers, hence introducing re-solving points is expected to

“hedge” against deviations from the average case behavior, and lead to potential improvements in

performance. We illustrate this in the next section.

4.4 Illustrative numerical examples

Note that, as in the price restricted case, J∗
n(x, T |λ) is not readily computable in most cases. How-

ever, an upper bound is easy to obtain through the value of the deterministic optimization problem

given in (17). This upper bound is fairly tight for moderate sized problems (see Gallego and van

Ryzin (1997)), and hence one can compute a “good” lower bound on the ratio Jπ
n (x, T ;λ)/J

∗
n(x, T |λ)

based on this deterministic relaxation. The results depicted in Table 2 were obtained by running

103 independent simulation replications from which the performance indicators were derived by

averaging. The standard error was below 0.5% in all cases.

The capacity consumption matrix A and true demand functions are the ones defined in Section

3.4. The set of feasible prices is taken to be Dp = [0.5, 5]× [0.5, 5] and T = 1. In Table 2, we give

performance results for the policy π2 defined by Algorithm 2, and the re-solving policy πr2 (with

tuning parameters given in (18), with C = 2 and Tr = 1/2).

We observe that with inventory levels of the order of a few thousands, the expected revenues

under the proposed policy π2 exceed 65% of the optimal expected revenues in the full information

case (where the demand function is known a priori). The policy utilizes approximately 18% of
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Market “size” n = 102 n = 103 n = 104

Tuning parameters κ = 9, τ = 0.29 κ = 16, τ = 0.18 κ = 36, τ = 0.12

Policy π2 πr2 π πr2 π2 πr2

initial Linear .57 .60 .65 67 .76 .74

inventory Exponential .73 .75 .77 .83 .89 .89

xn = ( 3, 5, 7)× n Logit .68 .67 .81 .81 .85 .87

initial Linear .77 .78 .85 .86 .91 .91

inventory Exponential .69 .68 .81 .82 .91 .91

xn = (15, 12, 30)× n Logit .68 .68 .83 .83 .90 .90

Table 2: Results in the table give a lower bound on the ratio of the revenues extracted by the

policies π2(τ, κ, δ) (Algorithm 2) and πr2(τ, κ, δ, Tr) (Algorithm 2 with Step 4(r)), to the optimal

revenues in the full information case. Here κ = number of prices tested by the policy, τ = fraction

of time allocated to learning, and Tr = 1/2 is the time of re-solving and price adjustments in πr2.

the time horizon T to learn the demand function and experiments with 16 prices. Inspecting the

results, we observe that the ratio Jπ
n/J

∗
n approaches 1 as the market size increases, as predicted by

the asymptotic optimality result in Theroem 4. We also observe that the performance of the re-

solving policy πr2 is roughly on par with that of the original policy π2 and does not yield significant

improvements. This suggests that dynamic price adjustments following the learning phase have

little impact on performance and that the latter is primarily driven by the uncertainty associated

with the demand function. Comparing the results above with those in Table 1 that summarize the

price restricted case, it is evident that superior performance is observed when the set of feasible

prices is finite; this is in line with intution and the performance guarantees given in Theorems 1

and 4, respectively. In particular, the performance in the finite action case does not degrade with

the dimension of the set of products.

4.5 Mitigating the Curse of Dimensionality

The performance guarantee for the policies outlined in Section 4 degrades as the number of products

d increases. The culprit here is the necessity to experiment with sufficiently many price combi-

nations to suitably “cover” the domain of the unknown demand function. We next show how

one can exploit relatively innocuous smoothness assumptions on the demand function to efficiently

reconstruct the entire demand surface and to design “clever” pricing policies.

The form of smoothness we will be assuming is a natural strengthening of Assumption 1, which is

now required to hold for the first s− 1 derivatives. Thus, our class of demand functions is assumed

to be s-times differentiable with uniformly bounded derivatives. Note that almost all demand

functions commonly used in the literature fall into this category. We state this more formally in
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the following assumption.

Assumption 2 For some constant L > 0 and positive integer s, the demand function λ is s times

differentiable, and for all i = 1, ..., d
∣∣∣∣
∂a1,...,adλi(p)

∂pa11 ...∂p
ad
d

∣∣∣∣ ≤ L (21)

for all p ∈ Dp and nonnegative integers a1, ..., ad such that a1 + ...+ ad = s.

Here d is the dimension of the set of products, and s is mnemonic for smoothness of the demand

function. The idea now is the following: given a discrete price grid of cardinality κ, e.g., as detailed

prior to the statement of Algorithm 2, and given the observed demand at each of those price vectors

y = (d̂(p1), ..., d̂(pκ)), reconstruct an approximation λ̂(p; y) to the entire demand surface over the

price domain, p ∈ Dp. To achieve this goal, we will focus here on a standard nonparametric method

based on local polynomials, which roughly works as follows: for a given price point p ∈ Dp, consider

a neighborhood of that point Bp which is a hypercube with edge length h; fit a polynomial of degree

s− 1 to that neighborhood using observed demand, and approximate the value of the function λ(·)

at p by that of the polynomial at the same point.

More specifically, let us focus initially on the first component of the demand function λ1(·) and

detail the development of the approximation. For i = 1, ..., κ and j = 1, ..., d, let yji denote the

number of requests for product j when pricing at pi in the learning phase, and let yj denote the

row vector (yj1, ..., y
j
κn), where yi denotes the column vector (y1i , ..., y

d
i )

T . Select a parameter h > 0

such that hκ1/d ≥ s+ 1. For every p ∈ Dp, we define a window Bp =
∏d

i=1B
i, where

Bi =





[pi, pi + h] if pi ≤ pi + h/2,

[p̄i − h, 1] if pi ≥ p̄i − h/2,

[pi − h/2, pi + h/2] otherwise

The local polynomial approximation to the function λ1(·) will be a weighted sum of the obser-

vations y1i . We construct a set of weights as follows. Let β1, ..., βN be a basis in the space of

polynomials of degree s−1 of d variables. Fix a price p ∈ Dp and denote by G = Bp∩P
κ the set of

price points in the grid that also lie in the window Bp. Let β
i
G denote the column vector whose jth

component is given by the value of βi at the jth point in G and let M = [β1G, ..., β
N
G ]. Given that

hκ1/d ≥ s+ 1, it is possible to show that M has full rank. We define a vector of weights ωB(p) as

follows

ωB(p) =M(MTM)−1V (p), (22)

where V (p) = (β1(p), ..., βN (p))T . Note that the weights depend only on the basis of polynomials

and the grid of prices. Given the weights, the approximation takes the following form

λ̂1(p; y1) =
∑

i:pi∈Bp

ωB
i (p)y

1
i , (23)
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A similar approach conducted for every component of the demand function yields the approximation

λ̂(p; y) =
∑

i:pi∈Bp

ωB
i (p)yi. (24)

The proof of Theorem 5 in Appendix A contains further details on this approximation and some

of its properties. See also Nemirovski (2000) for a recent reference on such approximations.

To describe a policy that uses this nonparametric regression methodology, consider now replacing

Step 3 of Algorithm 2 as follows:

Algorithm 3: π(τ ,κ, δ,h)

Perform Steps 1 and 2 as in Algorithm 2.

Step 3. Optimization:

a) Let yi = d̂(pi), i = 1, ..., κ

b) Let λ̂(·, y) be an approximation to λ(·) based on local polynomials of order s−1 with parameter

h.

c) Set p̂ = argmaxp∈Dp
{p · λ̂(p; y) : Aλ̂(p; y) ≤ x+ δe}

Perform Step 4 as in Algorithm 2.

The policy described by Algorithm 3 takes as input four tuning parameters (τ, κ, δ, h), where

h is the smoothing parameter associated with the local polynomial regression to estimate and

reconstruct the demand function. In the context of the asymptotic regime given in (10), the

performance of policies defined by means of Algorithm 3 is given in the following result.

Theorem 5 Let Assumptions 1 and 2 hold. Let π denote the policies defined by Algorithm 3 where

τn ≍ n−1/(3+d/s), κn ≍
⌈
nd/(3s+d)

⌉
, hn = (s + 1)−1κ

−1/d
n , and δn ≍ C(log n)1/2n−1/(3+d/s) with

C > 0 sufficiently large, then {πn} is asymptotically optimal and

sup
λ∈L

(
1−

Jπ
n (x, T ;λ)

J∗
n(x, T |λ)

)
= O

( (log n)1/2
n1/(3+d/s)

)
. (25)

Remark (the curse of dimensionality). While the revenue loss relative to the full information

optimal revenues given in (25) degrades as the number of products, d, increases, it is now evident

that the smoother the demand function, the lesser are the curse of dimensionality effects. In
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particular the rate of convergence for the policy given by Algorithm 3 is n−1/(3+d/s) compared to

n−1/(3+d) for the original policy described by Algorithm 2. Note that if the demand function is “very

smooth” (roughly speaking infinitely continuously differentiable), then Jπ
n/J

∗
n ≈ 1− C/n1/3, up to

logarithmic terms. That is, revenue losses resulting from not knowing the demand function are

dimension-independent, approaching the performance of the price restricted case given in Theorem

1.

Remark (implications for price testing). Theorem 5 implies that the number of prices to be

tested in the learning phase is reduced compared to Theorem 4. This is an important implication

from a practical perspective: Algorithm 3 exploits smoothness of the demand function to extract

more information per tested price. The theoretical basis for this can be found in Theorems 4 and

5, if one focuses on the magnitude of the number of price tests: κn = nd/(d+3) in the former;

and nd/(d+3s) in the latter. If the function is “very smooth” (say, infinitely differentiable), then the

number of prices that needs to be tested grows very slowly. In fact, it can be shown to grow roughly

logarithmically with the market size n. For all practical purposes, this implies that it suffices to

test a very “small” number of prices. As the remark above indicates, the performance achieved

with this small number of test prices is close to being dimension-independent. Thus, with sufficient

smoothness the essential complexity of the problem, both in terms of price testing and generated

revenues, is “close” to that of the price restricted case (see Theorem 1). We illustrate this point in

a subsequent numerical example (Table 3).

As a side comment we note that the optimization problem in Step 3 of Algorithm 3 might not

be concave. To this end, if the true underlying revenue function is concave in price, at least in the

region where price experimentation is performed, then it is possible to obtain a tractable problem

by focusing on the concave envelope of p · λ̂(p; y).

Intuition. The main intuition underlying the result in Theorem 5 is as follows: as the smooth-

ness of the underlying demand function increases, the variation of this function between any two

points becomes more and more restricted. Exploiting this yields an improvement in the approxi-

mation of the demand function. In particular, one can show that with tuning parameters κn and

hn chosen such that κn ≍
⌈
nd/(3s+d)

⌉
and hn = (s+ 1)−1κ

−1/d
n , one has

sup
λ∈L

E‖λ̂n(p; y)− λ(p)‖∞ ≈ (nτn)
− s

2s+d . (26)

Revisiting the remarks following Theorem 4 and in particular (20), three main error sources were

highlighted: an exploration bias; a discretization error; and a stochastic error. In the current

context, the key observation is that the magnitude of the discretization and stochastic errors can

be reduced by exploiting smoothness. In particular, we now have for all λ ∈ L

1−
Jπ
n (x, T ;λ)

J∗
n(x, T ;λ)

≈ τn + (nτn)
− s

2s+d , (27)

where s is the smoothness index and d is the dimensionality. Balancing the error sources, one gets

that the optimal choice of the learning horizon is τn ≈ n−s/(3s+d). Now, one has that the fraction
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of the optimal full information revenue extracted by π is of order Jπ
n/J

∗
n ≈ 1 − Cτn. The rate τn

degrades gracefully with the dimension d, due to the smoothness of the demand function which is

exploited by the policy π.

A numerical example: performance analysis. To illustrate the performance of Algorithm

3 defined above, we consider the same setting as in Section 4.4. Let π denote the policy given

by Algorithm 2. Let π3 denote the policy that follows Algorithm 3 and uses local polynomials of

degree 1 to approximate the demand function. In Table 3, we provide performance results when both

policies use the same tuning parameters. This comparison highlights the value of “reconstructing”

the demand function (as in Step 3’ of Algorithm 3) rather than restricting the search to prices that

were tested in the learning phase (as in Step 3 of Algorithm 2).

Market “size” n = 103 n = 104

Tuning parameters κ = 16, τ = 0.18 κ = 36, τ = 0.12

Policy π2 π3 π2 π3

initial Linear .65 .76 .76 .83

inventory Exponential .77 .87 .89 .90

xn = ( 3, 5, 7)× n Logit .81 .85 .85 .94

initial Linear .85 .88 .91 .92

inventory Exponential .81 .82 .91 .91

xn = (15, 12, 30)× n Logit .83 .83 .90 .93

Table 3: Exploiting smoothness. Results in the table give a lower bound on the ratio of the

revenues extracted by the policy π2 (Algorithm 2) and π3 (Algorithm 3), relative to the optimal

revenues in the full information case. Here κ = number of prices tested by the policy, and τ =

fraction of time allocated to learning.

We observe a general improvement when using policy π3 compared to what is achieved by policy

π2. This improvement can be significant, at times exceeding 10% of the full information optimal

revenues. In particular, for the examples considered, the performance of policy π3 always exceeds

76% of the full information optimal revenues for market sizes of the order of 103. The improvements

are more marginal for cases where initial inventories are large (the case x = (15, 12, 30)); where

π already achieves a good performance. Note that the performance of policies π2 and π3 was

illustrated using identical tuning parameters, and in particular the same number of prices were

tested. Thus, one may also interpret the numerical results as follows: for any given performance

level, fewer prices need to be tested when using π3 as opposed to π2.
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5 Concluding Remarks

This paper formulates a class of network revenue management problems where the demand function

is unknown to the decision-maker. Two main settings are analyzed: one where the decision-maker

may only select prices from a finite set fixed a priori; and another where s/he can use any of a

continuum of prices. For both settings, we develop pricing policies and characterize their theoretical

performance. In particular, we show that some of these policies achieve near-optimal performance

by providing lower bounds on the performance of any policy, and proving that our policies come

“close” to said bounds. The paper highlights a general approach to solving dynamic optimization

problems with very limited prior information, but leaves the challenge of designing practical and

implementable algorithms to future research. Another interesting direction of study would be to

build on the price testing insights that have been developed in this paper, and verify whether they

can be translated into practical guidelines. While the paper focuses solely on the setting where

the demand function is time homogeneous, it lays out foundations for studying the more complex

case of time-varying demand. Here the recent work of Besbes and Zeevi (2010) may be useful as

it develops an approach to on-line detection of changes in the market environment, and hence may

be combined potentially with the ideas developed in the present paper. Developing pricing policies

that can deal with limited prior information on demand as well as the possibility of temporal

variation would constitute an important step towards bridging the gap between current theory and

practice.
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Online Companion:

Blind Network Revenue Management

Omar Besbes∗ Assaf Zeevi†

A Preliminaries and Proofs for Section 3

Notation. In what follows, if x and y are two vectors, x 6≤ y if and only if xi > yi for at least

one component i; x+ will denote the vector in which the ith component is max{xi, 0}. We define

ā := max{aij : 1 ≤ i ≤ m, 1 ≤ j ≤ d}, where aij are the entries of the capacity consumption matrix

A. Ci, i ≥ 1 will denote positive constants which are independent of a given demand function, but

may depend on the parameters of the class of admissible demand functions L and on A, x and T .

Recall that e denotes the vector of ones in Rℓ. For a sequence {an} of real numbers, we will say

it converges to infinity at a polynomial rate if there exist β > 0 such that lim infn→∞ an/n
β > 0.

With some abuse of notation, for a vector, y ∈ Rd
+ and a d-vector of unit rate Poisson processes

N(·), we will use for N(y) to denote the vector with ith component N i(yi), i = 1, . . . , d.

Comment 1. Recall the definition of problem (4). Since Dp is bounded, the price charged for any

product never exceeds, say M̄ . Consider a system where backlogging is allowed in the following

sense: for each unit of resource backlogged the system incurs a penalty of M̄ . Recall that A is

assumed to be integer valued with no zero column, and hence anytime the new system receives a

request such that no sufficient resources are available to fulfill it, a penalty of at least M̄ is incurred.

Consider any admissible policy π that applies p∞ for the remaining time horizon as soon as one

resource is out of stock. (Note that all the policies introduced in the main text are of this form.)

Since M̄ exceeds the price that the system receives, the expected revenues of such a policy π in

the original system Jπ(x, T ;λ) are bounded below by the ones in the new system (note that in the

latter, π does not apply p∞ if the system runs out of any resource).

Comment 2. We will denote by JD(x, T |λ) the optimal value of the deterministic relaxation (17).

First note that JD
n = nJD. We will also use the fact that

inf
λ∈L

JD(x, T |λ) ≥ mD,

where mD = mT ′ > 0, and T ′ = min{T,min1≤i≤ℓ xi/(āMd)}. Indeed, for any λ ∈ L, there is a

price q ∈ Dp such that r(q) ≥ m. Consider the policy that applies q on [0, T ′] and then applies

p∞ up until T . This solution is feasible since Aλ(q)T ′ ≤ dāMT ′e ≤ x. In addition the revenues

generated from the policy above are given by mT ′.

We provide below a lemma that will be used in the upcoming proofs. Its proof can be found in

Appendix C.

∗Graduate School of Business, Columbia University. (ob2105@columbia.edu)
†Graduate School of Business, Columbia University. (assaf@gsb.columbia.edu)
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Lemma 1 Fix η > 0. Suppose that µj ∈ (0,M), j = 1, ..., d. and rn = nβ with β > 0. Then, if

ǫn = C(η)(log n)1/2r
−1/2
n with C(η) = 2dη1/2āM1/2, then the following holds

P
(
A(N(µrn)− µrn) 6≤ rnǫne

)
≤
C1

nη
,

P
(
A(N(µrn)− µrn) 6≥ −rnǫne

)
≤
C1

nη
,

where C1 > 0 is an appropriately chosen constant.

Proof of Theorem 1. Fix λ ∈ L and η ≥ 1. Denote by {λ1, ..., λk} the intensities corresponding

to the prices {p1, ..., pk}. Let (P0) denote the following linear optimization problem

max
{ k∑

i=1

pi · λiti :
k∑

i=1

Aλiti ≤ x,
k∑

i=1

ti ≤ T, ti ≥ 0, i = 1, ..., k.
}

The optimal value of (P0), V
∗
(P0)

is known to be an upper bound to J∗ (cf. Gallego and van Ryzin

(1997, Theorem 1)). For a system with “size” n, the optimal value is just n times the optimal value

of the system with size 1, and the optimal solutions are the same. In what follows, for any feasible

vector t, we use V(P0)(t) to denote the value of the objective function.

Step 1. We first focus on the the learning and optimization phases. Let τn be such that τn = o(1)

and nτn → ∞ as n→ ∞ at a polynomial rate. Divide τn into k intervals of equal length ∆n = τn/k.

Apply each feasible price during ∆n time units. Let

λ̂(pi) =
N
(
n∆n

∑i
j=1 λj

)
−N

(
n∆n

∑i−1
j=1 λj

)

n∆n
, i = 1, ..., k.

Let (P̂ ) denote the following linear optimization problem

max
{ k∑

i=1

pi · λ̂(pi)ti :
k∑

i=1

Aλ̂(pi)ti ≤ x,
k∑

i=1

ti ≤ T − τn, ti ≥ 0, i = 1, ..., k.
}
.

For n sufficiently large, the feasible set of (P̂ ) is nonempty (since τn = o(1)) and compact and

hence the latter admits an optimal solution, say t̂. In what follows, for any feasible vector t, we

use V(P̂ )(t) to denote the value of the objective function.

Step 2. Here, we derive a lower bound on the expected revenues under the policy π. Consider ap-

plying the solution t̂ to the stochastic system on the interval (τn, T ]. Let M̄ := max{‖p1‖, ..., ‖pk‖}

and define X
(L)
n :=

∑k
i=1 nλ(pi)∆n, X

(i)
n :=

∑i
j=1 nλj t̂j , i = 1, . . . , k. Finally put Yn = AN(X

(L)
n +

X
(k)
n ). As noted in the preamble of the appendix, one can lower bound Jπ

n as follows

Jπ
n ≥ E

[
k∑

i=1

pi ·
[
N
(
X(L)

n +X(i)
n

)
−N

(
X(L)

n +X(i−1)
n

)]]
− M̄e · E

[
(Yn − nx)+

]

= n
k∑

i=1

pi · λiE[t̂i]− M̄e · E
[
(Yn − nx)+

]
, (A-1)

where the equality follows from the fact that that given t̂, N
(
X

(L)
n +X

(i)
n

)
−N

(
X

(L)
n +X

(i−1)
n

)
is

distributed as a Poisson random variable with mean λit̂i.
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Let δn := C1(log n)
1/2(n∆n)

−1/2 with C1 > 0 to be specified later and H :=
{
ω : max1≤i≤k ‖λi−

λ̂(pi)‖T ≤ δn

}
. Since revenues are non-negative, we can lower bound the first sum in (A-1) above

as follows

k∑

i=1

pi · λiE[t̂i] ≥ E
[ k∑

i=1

pi · λit̂i

∣∣∣H
]
P(H).

Lemma 2 For ω ∈ H, t̂ is feasible for (P0) and for C2, C3 > 0 suitably large, we have

V(P0)(t̂) ≥ V(P̂ )(t̂)− C2δn, (A-2)

V(P̂ )(t̂) ≥ V ∗
(P0)

− C3max{δn, τn}. (A-3)

We deduce that

E
[ k∑

i=1

pi · λit̂i

∣∣∣H
]
= E

[
V(P0)(t̂)

∣∣H
] (a)

≥ E
[
V(P̂ )(t̂)− C2δn

∣∣H
] (b)

≥ V ∗
(P0)

− (C2 + C3)max{δn, τn},

where (a) follows from (A-2) and (b) follows from (A-3). We now turn to bound the probability of

the event Hc

P(Hc)
(a)

≤ P( max
1≤i≤k

‖λi − λ̂(pi)‖T > δn)
(b)

≤
k∑

i=1

P(‖λi − λ̂(pi)‖T > δn)
(c)

≤
C4

nη
,

where C4 > 0 is suitable large, (a) and (b) follow from union bounds and (c) follows from an

application of Lemma 1 with an appropriate choice of C1, by noting that P(‖λi − λ̂(pi)‖T > δn) =

P(I[N(λi∆n)− λi∆n] � ∆nδn/T ), where I is the identity matrix. Hence,

n
k∑

i=1

pi · λiE[t̂i] ≥ n
[
V ∗
(P0)

− (C2 + C3)max{δn, τn}
](

1−
C4

nη

)
. (A-4)

We now look into the penalty term, i.e., the second term on the RHS of (A-1). To that end, let

C ′ > 0 to be a constant to be specified, δ′n = C ′δn and put E :=
{
ω : Yn − nx ≤ nδ′ne

}
and note

that

E
[
(Yn − nx)+

]
= E

[
(Yn − nx)+

∣∣∣ E
]
P(E) + E

[
(Yn − nx)+

∣∣∣ Ec
]
P(Ec)

≤ nδ′ne+ E
[
(Yn − nx)+

∣∣∣ Ec
]
P(Ec)

(a)

≤ nδ′ne+ (nδ′n + 1 + nMT )P(Ec)e,

where (a) follows from the definition of E and the fact that for a Poisson random variable Z with

mean µ, E[Z | Z > a] ≤ a+ 1 + µ. Now,

P(Ec) = P

(
k∑

i=1

A
[
N
(
X(L)

n +X(i)
n

)
−N

(
X(L)

n +X(i−1)
n

)]
+

k∑

i=1

Anλ̂(pi)∆n 6≤ nx+ nδ′n

)

≤ P

(
k∑

i=1

A
[
N
(
X(L)

n +X(i)
n

)
−N

(
X(L)

n +X(i−1)
n

)]
6≤ nx+

1

2
nδ′n

)

+P

(
k∑

i=1

Anλ̂(pi)∆n 6≤
1

2
nδ′n

)
. (A-5)
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Using Lemma 1, the second term on the RHS of (A-5) is seen to be bounded by C5/n
η. On the

other hand, the first term on the RHS of (A-5) can be bounded as follows

P

(
k∑

i=1

A
[
N
(
X(L)

n +X(i)
n

)
−N

(
X(L)

n +X(i−1)
n

)]
6≤ nx+

1

2
nδ′n

)

≤ P

(
k∑

i=1

A
[[
N
(
X(L)

n +X(i)
n

)
−N

(
X(L)

n +X(i−1)
n

)]
− nλit̂i

]
6≤

1

4
nδ′n

)

+P

(
k∑

i=1

An[λi − λ̂(pi)]t̂i 6≤
1

4
nδ′n

)
+ P

(
k∑

i=1

Anλ̂(pi)t̂i 6≤ nx

)
. (A-6)

Note that the feasibility of t̂ for (P̂ ) implies that the last term on the RHS above is equal to zero.

With an appropriate choice of C ′, Lemma 1 yields that the first two terms on the RHS of (A-6)

are bounded by C6/n
η for C6 > 0 suitably large. We deduce that

E
[
(Yn − nx)+

]
≤ nδ′ne+ (nδ′n + 1 + nMT )

C5 + C6

nη
e,

Combining the above with (A-1) and (A-4), we have

Jπ
n ≥ n

k∑

i=1

pi · λiE[t̂i]− M̄e · E
[
(Yn − nx)+

]

≥ n
[
V ∗
(P0)

− (C2 + C3)max{δn, τn}
](

1−
C4

nη

)
− M̄ [nδ′ne+ (nδ′n + 1 + nM)]

C5 + C6

nη

≥ nV ∗
(P0)

− C9n(max{δn, τn}+ 1/nη).

Step 3. We now conclude the proof. Recalling that mD > 0 bounds below V ∗
(P0)

for all λ ∈ L,

we have

Jπ
n

J∗
n

≥
Jπ
n

nV ∗
(P0)

≥ 1−
C9(max{δn, τn}+ 1/nη)

mD
,

implying that uniformly over λ ∈ L

lim inf
n→∞

Jπ
n

J∗
n

≥ 1.

This, in conjunction with the inequality Jπ
n ≤ J∗

n, completes the proof.

To obtain the rate of convergence stated in (12) note that the orders of the terms δn and τn are

balanced by choosing τn ≍ n−1/3. With this choice we have

sup
λ∈L

lim sup
n→∞

1− Jπ
n/J

∗
n

(log n)1/2n−1/3
<∞.

Proof of Theorem 2. Consider a system with scale n. The proof is organized around two

main parts. We first define a pair of “worst case” demand functions which will then be used in

the performance analysis of an arbitrary admissible policy. In particular, we establish that any

admissible policy must fall in one of two categories and in each category, no policy can achieve a

4



faster convergence rate than 1/n1/2 when nature is restricted to select one of the two “worst case”

demand functions.

Since L is assumed to be non-empty, it is possible to select two demand functions µ1, µ2 in L

such that

p1µ1(p1) = p1µ2(p1) = r̄,

p2µ1(p2) = r̄ − γn−1/2,

p2µ2(p2) = r̄ + γn−1/2,

for some appropriate r̄ and γ > 0. When there are no inventory constraints, the optimal policy

just consists of selecting the best price, i.e., J∗
n(∞, T |µi) = nmaxi,j=1,2{pjµi(pj)}T .

Performance analysis of an arbitrary policy. Consider an arbitrary admissible policy π

and let ψt(t) denote the associated price at time t (which might be history dependent). For i = 1, 2,

let Pπ
i denote the probability measure associated with the observations when λ(·) = µi(·) and Eπ

i

denote the corresponding expectation. Define

κ(p) =
µ1(p)

µ2(p)
=

{
1 if p = p1,

(r̄ − βn−1/2)(r̄ + γn−1/2)−1 if p = p2.

Then the Kulback-Leibler (KL) divergence between the two measures Pπ
1 and Pπ

2 over [0, T ] is given

by (cf. Brémaud (1980))

K(Pπ
1 ,P

π
2 ) = Eπ

1

[∫ T

0
nµ2(p(s))

[
κ(p(s)) log κ(p(s)) + 1− κ(p(s))

]
ds

]

= nµ2(p2)
[
κ(p2) log κ(p2) + 1− κ(p2)

]
Eπ
1

[∫ T

0
1{p(s) = p2}ds

]

Fix β > 0. We consider two cases.

Case 1. K(Pπ
1 ,P

π
2 ) ≤ β. Here, we follow an argument similar to that in the proof of Theorem 3

(Case 2). Consider the following two hypotheses:

H1 : λ(·) = µ1(·),

H2 : λ(·) = µ2(·).

Let φ denote a decision rule based on the observations up to time T , i.e., a mapping from the set of

price and demand realizations in [0, T ] into {1, 2}: φ = 1 will denote that H1 is selected and φ = 2

will denote that H2 is selected. By Tsybakov (2004, Theorem 2.2), the worst case probability error

of any decision rule can be lower bounded by (1/4) exp{−β}, i.e.,

inf
φ

max{Pπ
1{φ = 2},Pπ

2{φ = 1}} ≥ (1/4) exp{−β}. (A-7)

We now establish that this necessarily implies that the losses in performance throughout the horizon

must be of order O(n1/2). Let C1, C2 be a positive constant defined as follows

C1 = γT/2, C2 = C1
1

16
exp{−β}, (A-8)

and suppose that n is sufficiently large so that n ≥ 1/f(α) and

C0

C1n1/2
≤

1

16
exp{−β}.
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Suppose for a moment that we have

sup
i=1,2

[J∗
n(x, T |µi)− Jπ

n (x, T ;µi)] ≤ C2n
1/2. (A-9)

For i = 1, 2, let J π,i
n denote the random variable

J π,i
n = n

∫ T

0
ψs(s)µi(ψs(s))ds,

and consider the following decision rule φ:

φ =

{
1 if np1µ1(p1)T − J π,1

n ≤ C1n
1/2,

2 if np1µ1(p1)T − J π,1
n > C1n

1/2.

We next analyze the error probabilities associated with this rule.

Pπ
1{Φ = 2} = Pπ

1

{
np1µ1(p1)T − J π,1

n > C1n
1/2

}

(a)

≤
1

C1n1/2
Eπ
1

[
np1µ1(p1)T − J π,1

n

]

≤
1

C1n1/2

[
[J∗

n(x, T |µ1)− J π
n (x, T ;µ1)] + C0

]

(b)

≤
C2

C1
+

C0

C1n1/2

(c)

≤
1

8
exp{−β}

where (a) follows from Markov’s inequality; (b) follows from the assumption that (A-9) holds; and

(c) follows from the definitions of C1 and C2 (see (A-8)).

We now turn to Pπ
2{Φ = 1}. First suppose that φ = 1 and note that in that case, necessarily

∫ T

0
1{ψs(s) = p2}ds ≤ C1/γ ≤ T/2,

and

np2µ2(p2)T − J π,2
n = n

∫ T

0
[p2µ2(p2)− p1µ2(p1)]1{ψs(s) = p1}ds

≥ nγn−1/2(T −

∫ T

0
1{ψs(s) = p2}ds)

≥ γn1/2(T/2)

= C1n
1/2.

We deduce, using a similar reasoning as above that

Pπ
2{Φ = 1} ≤ Pπ

2

{
np2µ2(p2)T − J π,2

n > C1n
1/2

}
≤

1

8
exp{−β}

As a result, the rule φ defined earlier should satisfy

max{Pπ
1{φ = 2},Pπ

2{φ = 1}} ≤ (1/8) exp{−β} < (1/4) exp{−β},
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which is in contradiction with (A-7). We deduce that (A-9) cannot hold and hence, in the current

case, we necessarily have

sup
i=1,2

[J∗
n(x, T |µi)− Jπ

n (x, T ;µi)] > C2n
1/2. (A-10)

Case 2. K(Pπ
1 ,P

π
2 ) > β. In this case, we analyze the performance of the policy π when λ = µ1.

np1µ1(p1)T − Jπ
n (x, T ;µ1) = Eπ

1

[
np1µ1(p1)T − J π,1

n

]

= nEπ
1

[∫ T

0
1{ψs(s) = p2}γn

−1/2ds
]

= γn1/2K(Pπ
1 ,P

π
2 )
[
nµ1(p2)

[
κ(p2) log κ(p2) + 1− κ(p2)

]]−1

≥ γn−1/2β
[
µ1(p2)

[
κ(p2) log κ(p2) + 1− κ(p2)

]]−1
.

Now, letting un = −2βn−1/2/(r̄ + βn−1/2), note that κ(p2) = 1 + un and

κ(p2) log κ(p2) + 1− κ(p2) = (1 + un) log(1 + un) + 1− (1 + un)

≤ (1 + un)un − un

≤ u2n.

Since u2n ≤ (4β2/r̄2)n−1, we deduce that

np1µ1(p1)T − Jπ
n (x, T ;µ1) ≥ γn−1/2 β

µ1(p2)
4
r̄2
βn−1

= γn1/2
r̄2

µ1(p2)4β
.

This implies that

J∗
n(x, T |µ1)− Jπ

n (x, T ;µ1) ≥ γn1/2
r̄2

µ1(p2)4β
− C0.

From both cases, we conclude that for some C > 0,

sup
i=1,2

[J∗
n(x, T |µi)− Jπ

n (x, T ;µi)] > C2n
1/2. (A-11)

This concludes the proof.

Proof of Theorem 3. In the setting considered where x = ∞, one first notes that the oracle

policy would just apply the price that maximizes the revenue rate, i.e., a price in argmax{piλ(pi) :

i = 1, 2}.

Fix a given scale parameter n ≥ 2. Let π denote an arbitrary policy in P ′ and suppose without

loss of generality that p(0) = p1. For any such policy, let τ1 = inf{t > 0 : p(t) = p2} if the set is

non-empty and τ1 = T otherwise. Similarly, let τ2 = inf{t > τ1 : p(t) = p1} if the set is non-empty

and τ2 = T otherwise. τ1 and τ2 are the (possibly random) times at which the policy switches

prices.

For some constants r̄ > 0, γ ∈ (0, r̄/2), select three arbitrary demand function λ1, λ2, λ3 ∈ L

such that:

p1λ1(p1) = p1λ3(p1) = r̄ + γn−1/3,

p1λ2(p1) = r̄ − γn−1/3,

p2λ1(p2) = p2λ2(p2) = r̄,

p2λ3(p2) = r̄ + γ.
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Note that the selection of such demand functions is possible since L is non-empty, and that λ1
and λ3 are equal at p1 and λ1 and λ2 are equal at p2. We next establish a lower bound on the

performance of π when nature is restricted to select one of the three demand functions above, which

will yield the general lower bound. For i = 1, 2, 3, let Pπ
i denote the probability measure associated

with the observations when λ(·) = λi(·) and let Eπ
i denote the corresponding expectation. We

distinguish two cases for the policy π.

Case 1. Eπ
1 [τ1] > n−1/3. In this case, note that since the price is held at p1 up to τ1, the

probability measures under λ = λ1 and λ = λ3 coincide and hence Eπ
3 [τ1] = Eπ

1 [τ1] > n−1/3. Note

that under λ = λ3, it is optimal to apply p2 throughout the horizon and hence

J∗
n(∞, T |λ3)− Jπ

n (∞, T ;λ3) = nEπ
3

[∫ T

0

[
p2λ3(p2)− p(s)λ3(p(s))

]
ds

]

≥ nEπ
3

[∫ τ1

0

[
p2λ3(p2)− p1λ3(p1)

]
ds

]

= nγ(1− n−1/3)E3[τ1].

Since (1−n−1/3) ≥ 1/2 for n ≥ 2 and that E3[τ1]n
−1/3, one obtains J∗

n(∞, T |λ3)− Jπ
n (∞, T ;λ3) >

γ
2n

2/3. Hence,

sup
i=1,2,3

[J∗
n(∞, T |λi)− Jπ

n (∞, T ;λi)] >
γ

2
n2/3.

Case 2. E1[τ1] ≤ n−1/3. In this case, define

κ(p) =
λ1(p)

λ2(p)
=

{
(r̄ + γn−1/3)(r̄ − γn−1/3)−1 if p = p1,

1 if p = p2.

The Kulback-Leibler (KL) divergence between the two measures Pπ
1 and Pπ

2 , up to time τ2, is given

by (cf. Brémaud (1980))

K2(P
π
1 ,P

π
2 ) = Eπ

1

[∫ τ2

0
nλ2(p(s))

[
κ(p(s)) log κ(p(s)) + 1− κ(p(s))

]
ds

]

= nλ2(p1)
[
κ(p1) log κ(p1) + 1− κ(p1)

]
Eπ
1 [τ1],

where the last equality follows from the fact that the two measures coincide on (τ1, τ2). Letting

un = 2γn−1/3/(r̄ − γn−1/3), one has that κ(p1) = 1 + un and

κ(p1) log κ(p1) + 1− κ(p1) = (1 + un) log(1 + un) + 1− (1 + un) ≤ (1 + un)un − un = u2n.

This, in conjunction with the fact that u2n ≤ 4n−2/3 yields

K2(P
π
1 ,P

π
2 ) ≤ β,

where β = 4r̄/p1. We next establish that the claimed lower bound on performance must hold given

that it is not possible to distinguish reliably between the two demand functions λ1 and λ2 after τ2.

Consider the following two hypotheses:

H1 : λ(·) = λ1(·),

H2 : λ(·) = λ2(·).
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Let φ denote a decision rule based on the observations up to τ2, i.e., a mapping from the set of

price and demand realizations in [0, τ2] into {1, 2}: φ = 1 will denote that H1 is selected and φ = 2

will denote that H2 is selected. By Tsybakov (2004, Theorem 2.2), the worst case probability error

of any decision rule can be lower bounded by (1/4) exp{−β}, i.e.,

inf
φ

max{Pπ
1{φ = 2},Pπ

2{φ = 1}} ≥ (1/4) exp{−β}. (A-12)

We now establish that this necessarily implies that the losses in performance throughout the horizon

must be of order O(n2/3).

Define the constants C1, C2 as follows

C1 = γT/2, C2 = C1
1

8
exp{−β}. (A-13)

Suppose for a moment that we have

sup
i=1,2

Eπ
i [J

∗
n(∞, T |λi)− Jπ

n (∞, T ;λi)] ≤ C2n
2/3. (A-14)

For i = 1, 2, define Iπ
i = n

[
p1λi(p1)[τ1 + T − τ2] + p2λi(p2)(τ2 − τ1)

]
and consider the following

decision rule φ:

φ =

{
1 if J∗

n(∞, T |λ1)− Iπ
1 ≤ C1n

2/3,

2 if J∗
n(∞, T |λ1)− Iπ

1 > C1n
2/3.

Note that since the policy π cannot switch prices after τ2, the decision rule φ is only based on

observations up to τ2. We next analyze the error probabilities associated with this rule.

Pπ
1{Φ = 2} = Pπ

1

{
J∗
n(∞, T |λ1)− Iπ

1 > C1n
2/3

}

(a)

≤
1

C1n2/3
Eπ
1

[
J∗
n(∞, T |λ1)− Iπ

1

]

(b)

≤
1

C1n2/3

[
J∗
n(∞, T |λ1)− Jπ

n (∞, T ;λ1)
]

(c)

≤
C2

C1

(d)

≤
1

8
exp{−β},

where (a) follows from Markov’s inequality; (b) follows from the fact that Eπ
1 [I

π
1 ] = Jπ

n (∞, T ;λ1);

(c) follows from the assumption that (A-14) holds; and (d) follows from the definitions of C1 and

C2 (see (A-13)).

We now turn to Pπ
2{Φ = 1}. First suppose that φ = 1. Noting that in that case, it always holds

that (τ2 − τ1) ≤ C1/γ ≤ T/2, we necessarily have

J∗
n(∞, T |λ2)− Iπ

2 = n[p2λ2(p2)− p1λ2(p1)](T − (τ2 − τ1)] ≥ nγn−1/3(T/2) = C1n
2/3.

Using the latter and a similar reasoning as in the analysis of Pπ
1{Φ = 2}, we obtain

Pπ
2{Φ = 1} ≤ Pπ

2

{
J∗
n(∞, T |λ2)− Iπ

2 ≥ C1n
1/3

}
≤

1

8
exp{−β}.
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We deduce that the rule φ defined earlier satisfies

max{Pπ
1{φ = 2},Pπ

2{φ = 1}} ≤ (1/8) exp{−β} < (1/4) exp{−β},

which is in contradiction with (A-12). We deduce that (A-14) cannot hold and hence, in the current

case, we necessarily have

sup
i=1,2

[J∗
n(∞, T |λi)− Jπ

n (∞, T ;λi)] > C2n
2/3. (A-15)

We conclude from both cases that

sup
i=1,2,3

[J∗
n(∞, T |λi)− Jπ

n (∞, T ;λi)] > Cn2/3. (A-16)

for C = min{γ/2, C2}, which yields the result.

B Proofs for Section 4

Proof of Theorem 4. Fix λ ∈ L and η ≥ 2. For simplicity, we restrict attention to the product

set Dp =
∏d

i=1[p
i, pi]. Let M̄ = max1≤i≤d p

i be the maximum price a customer will ever pay for

a product. It is easy to verify that the deterministic optimization problem given (17) is a convex

problem whose solution is given by a constant price vector p̃ (cf. Gallego and van Ryzin (1997)).

Let π be the policy defined by means of Algorithm 2.

Step 1. We first focus on the the learning and optimization phases. Let τn be such that

τn = o(1) and nτn → ∞ at a polynomial rate. Let κn be a sequence of integers such that κn → ∞

and n∆n := nτn/κn → ∞ at a polynomial rate. Divide each interval [pi, pi], i = 1, ..., d into
⌊
κ
1/d
n

⌋

equal length intervals and consider the resulting grid in Dp. The latter has κ′n =
⌊
κ
1/d
n

⌋d
hyper

rectangles. For each one, let pi be the largest vector (where the largest vector of a hyper rectangle∏d
i=1[ai, bi] is defined to be (b1, ..., bd)) and consider the set P κ′

n = {p1, p2, ..., pκ′
n
}. Note that

κ′n/κn → 1 as n→ ∞ and with some abuse of notation, we use both κn and κ′n interchangeably.

Now partition [0, τn] into κn intervals of length ∆n and apply the price vector pi on the ith

interval. Define

λ̂(pi) =
N
(
n∆n

∑i
j=1 λ(pj)

)
−N

(
n∆n

∑i−1
j=1 λ(pj)

)

n∆n
, i = 1, ..., κn,

where N(·) is the d-vector of unit rate Poisson processes. Thus λ̂(pi) denotes the number of requests

for each product over successive intervals of length ∆n, normalized by n∆n.

We now choose the “best” price among “almost feasible prices.” Specifically, we let δn =

C1(log n)
1/2max{1/κ

1/d
n , (n∆n)

−1/2} with C1 = 2max{1, p̄}C(η) where C(η) is defined in Lemma

1. Set r̂(pi) = pi · λ̂(pi) if Aλ̂(pi)T ≤ x+ eδn; otherwise set r̂(pi) = 0. The objective of this step is

to discard solutions of the deterministic problem which are essentially infeasible. (The slack term

δn allows for “noise” in the observations.) Let

p̂ = pi∗ where i∗ = argmax{r̂(pi), i = 1, ..., κn}. (B-17)

Step 2. Here, we derive a lower bound on the expected revenues under the policy π. We will

need the following lemma whose proof is deferred to Appendix C.
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Lemma 3 Let Pn
f = {pi ∈ P κn : Aλ̂(pi)T ≤ x+ δne}. Then for a suitably large constant C3 > 0

P
(
r(p̃)− r(p̂) > δn

)
≤
C3

nη
,

P
(
p̂ /∈ Pn

f

)
≤
C3

nη
.

We defineX
(L)
n =

∑κn
i=1 λ(pi)n∆n,X

(P )
n = λ(p̂)n(T−τn) and put Yn = AN(X

(L)
n +X

(P )
n ). In the rest

of the proof, we will use the fact that given p̂, Yn =
∑κn

i=1Aλ̂(pi)n∆n+AN(X
(L)
n +X

(P )
n )−AN(X

(L)
n )

and that N(X
(L)
n +X

(P )
n )−N(X

(L)
n ) has the same distribution as N(X

(P )
n ). Recalling Comment 1

in the preamble of the appendix, note that Yn is the total potential demand (for resources) under

π if one would never use p∞ and that one can lower bound the revenues under π as follows

Jπ
n ≥ E

[
p̂ · [N(X(L)

n +X(P )
n )−N(X(L)

n )]
]
− M̄e · E

[(
Yn − nx

)+]
. (B-18)

The first term on the RHS of (B-18) can be bounded as follows

E
[
p̂ · [N(X(L)

n +X(P )
n )−N(X(L)

n )]
]

= E
[
E
[
p̂ ·N(λ(p̂)n(T − τn))

∣∣∣ p̂
]]

= E
[
r(p̂)

]
n(T − τn)

(a)
=

{
r(p̃) + E

[
r(p̂)− r(p̃)

∣∣∣ r(p̂)− r(p̃) > −δn

]
P
(
r(p̂)− r(p̃) > −δn

)

+E
[
r(p̂)− r(p̃)

∣∣∣ r(p̂)− r(p̃) ≤ −δn

]
P
(
r(p̂)− r(p̃) ≤ −δn

)}
n(T − τn)

(b)

≥
[
r(p̃)− δn −

C4

nη

]
n(T − τn), (B-19)

where C4 is a suitably large positive constant. Note that (a) follows from conditioning and (b)

follows from Lemma 3 and the fact that r(·) is bounded say by dM̄M . Let us now examine the

second term on the RHS of (B-18). Let C ′ > 0 be a constant to be specified later and δ′n = C ′δn.

E
[(
Yn − nx

)+]
= E

[(
Yn − nx

)+ ∣∣∣ Yn − nx ≤ nδ′ne
]
P(Yn − nx ≤ nδ′ne)

+E
[(
Yn − nx

)+ ∣∣∣ Yn − nx 6≤ nδ′ne
]
P(Yn − nx 6≤ nδ′ne)

≤ nδ′ne+ E
[
Yn

∣∣∣ Yn 6≤ nx+ nδ′ne
]
P(Yn − nx 6≤ nδ′ne),

Now, for a Poisson random variable Z with mean µ, it is easy to see that E[Z |Z > a] ≤ a+1+ µ.

In particular, each component of Yn is a Poisson random variable with rate less than nMT and

hence

E
[
Yn

∣∣∣ Yn 6≤ nx+ nδ′ne
]

≤ nx+ (nδ′n + 1 + nMT )e.
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Let us evaluate the probability to run out of some resource by more than nδ′n. Specifically,

P
(
Yn − nx 6≤ nδ′ne

)

≤ P
(
AN(nλ(p̂)(T − τn))−Anλ(p̂)(T − τn) 6≤

1

3
nδ′ne

)

+P
(
Aλ(p̂)n(T − τn) 6≤ n(x+ e

δ′n
3
)
)
+ P

( κn∑

i=1

Aλ̂(pi)n∆n 6≤
1

3
nδ′ne

)
(B-20)

Consider the first term on the RHS of (B-20). We have nδ′n > n(T − τn)3C(η)(log n)
1/2(n(T −

τn))
−1/2 for n large enough and hence, if C ′ ≥ 3T , one can condition on p̂ and apply Lemma 1

(with µ = λ(p̂), rn = n(T − τn)) to get

P
(
AN(λ(p̂)n(T − τn))−Aλ(p̂)n(T − τn) 6≤

1

3
nδ′ne

)

≤ E
[
P
(
AN(λ(p̂)n(T − τn))−Aλ(p̂)n(T − τn) 6≤ n(T − τn)(C1C

′/3T )(log n)1/2(n(T − τn))
−1/2e | p̂

)]

≤
C3

nη
.

Consider now the second term on the RHS of (B-20)

P
(
Aλ(p̂)n(T − τn) 6≤ n(x+

δ′n
3
e)
)

= P
(
A[λ(p̂)T − λ̂(p̂)T ] +Aλ̂(p̂)T 6≤

1

1− τn/T
(x+

δ′n
3
e)
)

≤ P
(
A[λ(p̂)T − λ̂(p̂)T ] 6≤

δ′n
6
e
)
+ P

(
Aλ̂(p̂)T 6≤ x+

δ′n
6
e
)

= P
(
A(λ(p̂)n∆nT − λ̂(p̂)n∆nT ) 6≤ n∆n

δ′n
6
e
)
+ P

(
Aλ̂(p̂)T 6≤ x+

δ′n
6
e
)
. (B-21)

Suppose that C ′ ≥ 6. Then by Lemma 3, the second term above is bounded by C5/n
η for a large

enough choice of C5 > 0. The first term on the RHS of (B-21) is upper bounded by C3/n
η by

Lemma 1. Consider the third term on the RHS of (B-20).

P

(
κn∑

i=1

Aλ̂(pi)n∆n 6≤
1

3
nδ′ne

)
≤

κn∑

i=1

P
(
Aλ̂(pi)n∆n 6≤

1

3

n

κn
δ′ne
)

=

κn∑

i=1

P
(
A[N(λ(pi)n∆n)− λ(pi)n∆n] 6≤ n∆n

(1
3

δ′n
τn
e−Aλ(pi)

))
.

Now if δ′n/τn → ∞ (which holds, for example if τn = n−1/(d+3), κn = nd/(d+3)), then for n sufficiently

large, we have (1/3)δ′n/τne−Aλ(pi) ≥ 1 for all i = 1, ..., κn and Lemma 1 yields

P

(
κn∑

i=1

Aλ̂(pi)∆n 6≤
1

3
nδ′ne

)
≤ κn

C3

nη
≤

C3

nη−1
.

We conclude that with C ′ = max{3T, 6} and for some C6 > 0, P(Yn 6≤ nx+ nδ′ne) ≤ C6/n
η−1, and

in turn

E
[(
Yn − nx

)+]
≤ nδ′ne+ E

[
Yn

∣∣∣ Yn 6≤ nx+ nδ′ne
] C6

nη−1
. (B-22)
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Combining (B-18), (B-19) and (B-22) we have

Jπ
n ≥

[
r(p̃)− δn −

C4

nη

]
n(T − τn)− M̄nδ′n − M̄(nx · e+ nδ′n + 1 + nMT )

C6

nη−1

= r(p̃)nT − n
[
(T − τn)δn + (T − τn)

C4

nη
+ M̄C ′δn + (M̄x · e+MT )

C6

nη−1
+ C ′δn

C6

nη−1
+

C6

nη−2

]

(a)

≥ r(p̃)nT − nC7

[
τn + δn + 1/nη−2

]
,

where (a) follows from the fact that δn → 0 and by choosing C7 > 0 is suitably large.

Step 3. We now conclude the proof. Note that under the current assumptions, Dλ is convex.

Gallego and van Ryzin (1997, Theorem 1) show that under these conditions the optimal value

of problem (17) say JD
n serves as upper bound to J∗

n. Note that JD
n = nr(p̃)T . Define f(n) :=

C7

[
τn + δn + 1/nη−2

]
and note that f(n) ≥ 0 for all n ≥ 0 and that f(n) → 0 as n → ∞. In

addition f(n) does not depend on the specific underlying demand λ. By the remark in the preamble,

JD
n ≥ nmD > 0 and hence

Jπ
n

J∗
n

≥
Jπ
n

JD
n

≥ 1−
f(n)

mD

implying that uniformly over λ ∈ L

lim inf
n→∞

Jπ
n

J∗
n

≥ 1.

This, in conjunction with the inequality Jπ
n ≤ J∗

n, completes the proof.

To obtain the rate of convergence stated in (19), note that the orders of the terms τn and δn are

balanced by choosing τn = n−1/(d+3) and κn = nd/(d+3). With this choice we have for C8 = C7/m
D,

f(n)/mD = C8[(log n)
1/2/n1/(d+3) + 1/nη−1], implying that

sup
λ∈L

lim sup
n→∞

1− Jπ
n/J

∗
n

(log n)1/2n−1/(d+3)
<∞.

Proof of Theorem 5. The proof follows three steps. In the first step, we bound the error

between a function λ ∈ L and an approximation based on the observations available. The latter is

done using local polynomials along the lines provided in Nemirovski (2000, Chap. 1). The main

difference is that the noise associated with observations of the demand function is the deviation of

Poisson increments from their mean rather than Gaussian random variables. In the second step,

we bound below the expected revenues achieved by the proposed policy and the last step concludes

with balancing all error sources.

Step 1. Choose the sequences τn, κn and P κn = {p1, ..., pκn} as in Step 1 in the proof of

Theorem 4 . Let

zi =
N
(
n∆n

∑i
j=1 λ(pj)

)
−N

(
n∆n

∑i−1
j=1 λ(pj)

)

n∆n
, i = 1, ..., κn,

where N(·) is the d-vector of unit rate Poisson processes. Thus zi denotes the number of requests

for each product over successive intervals of length ∆n, normalized by n∆n.

Let us focus on the first component of the demand function which we denote by f(·) to simplify

notation (f(·) := λ1(·)). Let y denote the vector (z11 , ..., z
1
κn
). Let hn = o(1) such that hnκ

1/d
n ≥ s+1.

13



We provide below some properties that the weights defined in (22) satisfy. In Nemirovski (2000,

Lemma 1.3.1), it is established that

γ(p) =
∑

i:pi∈Bp

ωB
i (p)γ(pi) for every polynomial γ of degree k ≤ s− 1, (B-23)

‖ωB(p)‖22 :=
∑

i:pi∈Bp

(ωB
i (p))

2 ≤
C1

κnhdn
, (B-24)

‖ωB(p)‖1 :=
∑

i:pi∈Bp

|ωB
i (p)| ≤ C1, (B-25)

for some positive constant C1 > 0. In other words, one is able to reproduce the value of any

polynomial of degree k through its value at the points in G and the weights ωB(p). In addition,

one is able to control uniformly the norms of the weights. The approximation for the function f(·)

was defined as

f̂(p; y) =
∑

i:pi∈Bp

ωB
i (p)yi. (B-26)

In what follows we bound the difference between the function f(·) and its approximation f̂(p; y).

Let θ(p) be a Taylor expansion of order k of f(p) around a point in Bp.

∣∣∣f(p)− f̂(p; y)
∣∣∣ =

∣∣∣f(p)−
∑

i:pi∈Bp

ωB
i (p)yi

∣∣∣

=
∣∣∣f(p)−

∑

i:pi∈Bp

ωB
i (p)

[
θ(pi) + f(pi)− θ(pi) + yi − f(pi)

]∣∣∣

(a)

≤
∣∣∣f(p)− θ(p)

∣∣∣+
∣∣∣
∑

i:pi∈Bp

ωB
i (p)(f(pi)− θ(pi))

∣∣∣+
∣∣∣
∑

i:pi∈Bp

ωB
i (p)(yi − f(pi))

∣∣∣

≤ sup
q∈Bp

∣∣∣f(q)− θ(q)
∣∣∣
[
1 +

∑

i:pi∈Bp

|ωB
i (p)|

]
+
∣∣∣
∑

i:pi∈Bp

ωB
i (p)(yi − f(pi))

∣∣∣, (B-27)

where (a) follows from the fact that θ(·) is a polynomial of degree k, the property (B-23) and the

triangular inequality.

Let ξi = yi − f(pi) and ζ
Bp
p = 1

‖ωB
p ‖2

∑
i:pi∈Bp

ωB
i (p)ξi and Θn = supp∈Dp

|ζ
Bp
p |. Note that (22)

implies that every component ωB
i (p) is a polynomial in p of degree less or equal than k and hence

can be written as ωB
i (p) =

∑
j:pj∈Bp

ωB
j (p)ω

B
i (pj). Now, we have

sup
p∈Dp

|ζ
Bp
p | = sup

p∈Dp

1

‖ωB(p)‖2

∣∣∣
∑

i:pi∈Bp

ωB
i (p)ξi

∣∣∣

= sup
p∈Dp

1

‖ωB(p)‖2

∣∣∣
∑

i:pi∈Bp

∑

j:pj∈Bp

ωB
j (p)ω

B
i (pj)ξi

∣∣∣

(a)

≤ sup
p∈Dp

1

‖ωB(p)‖2
‖ωB

p ‖2

[ ∑

j:pj∈Bp

( ∑

i:pi∈Bp

ωB
i (pj)ξi

)2]1/2

= sup
p∈Dp

[ ∑

j:pj∈Bp

( ∑

i:pi∈Bp

ωB
i (pj)ξi

)2]1/2
,

14



where (a) follows from Cauchy-Schwarz inequality. Let

βj =
1

‖ωB(pj)‖2

∑

i:pi∈Bp

ωB
i (pj)ξi.

Note that as p coversDp, there are only n
′ ≤ κ2n possible values for

[∑
j:pj∈Bp

(∑
i:pi∈Bp

ωB
i (pj)ξi

)2]1/2
.

Let k = 1, ..., n′ index those random variables and denote by γk the kth possible value. Note that

for some p,

γk :=
[ ∑

j:pj∈Bp

( ∑

i:pi∈Bp

ωB
i (pj)ξi

)2]1/2
=
[ ∑

j:pj∈Bp

‖ωB(pj)‖
2
2β

2
j

]1/2
.

Let un = (C log n)1/2(n∆n)
−1/2 where C is a constant to be defined. Let α > 0 and define

α′
j = α/‖ωB(pj)‖2. We have

P
(
βj > un

)

(a)

≤ exp(−αun)E
[
exp(αβj)

]

= exp(−αun)E

[
exp
(
α′
j

∑

i:pi∈Bp

ωB
i (pj)ξi

)]

= exp(−αun)
∏

i:pi∈Bp

E
[
exp(α′

jω
B
i (pj)ξi)

]

= exp(−αun)
∏

i:pi∈Bp

exp
(
−α′

jω
B
i (pj)f(pi)

)
exp
(
f(pi)n∆n

[
exp
(
(α′

j/n∆n)ω
B
i (pj)

)
− 1
])

(b)

≤ exp(−αun)
∏

i:pi∈Bp

exp
(
Λn∆n(3/2)

(
(α′

j/n∆n)ω
B
i (pj)

)2)

= exp(−αun) exp
(
Λ(3/2)α2(n∆n)

−1
)

where (a) follows from the Chernoff bound, (b) follows from the fact that exp(x)− 1 ≤ x+(3/2)x2

as long as x ≤ 1, that α will be chosen to shrink to zero and that λ(pi) ≤ Λ. Now choosing

α = (1/(3Λ))unn∆n, we obtain

P
(
βj > un

)
≤ exp(−(6Λ)−1u2nn∆n) ≤ exp(−(6Λ)−1C log n).

Similarly,

P
(
βj < −un

)
≤ exp(−(6Λ)−1C log n).

Now,

P
(
γk > C

1/2
1 un

)
≤ P

( ∑

j:pj∈Bp

‖ωB(pj)‖
2
2β

2
j > C1u

2
n

)

(a)

≤ P
( ∑

j:pj∈Bp

κ−1
n h−d

n β2j > u2n

)

≤
∑

j:pj∈Bp

[
P
(
βj > un

)
+P
(
βj < −un

)]

≤ 2κnh
d
n exp(−(6Λ)−1C logn),
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where (a) follows from (B-24). Focusing on Θn, we have

P
(
Θn > C

1/2
1 un

)
≤ n′P

(
γk > C

1/2
1 un

)

≤ n′2κnh
d
n exp(−(6Λ)−1C log n)

≤ 2κ3nh
d
n exp(−(6Λ)−1C log n).

By choosing C sufficiently large, we have

P
(
Θn > un

)
≤

1

n2
.

Coming back to (B-27), and noting that by the assumptions on f , the difference between θ(p) and

f(p) is uniformly bounded by C2h
s
n on Bp, we have

sup
p∈Dp

∣∣∣f(p)− f̂(p; y)
∣∣∣

(a)

≤ C2h
s
n + κ−1/2

n (hn)
−d/2un

Θn

un

(b)
= C2h

s
n + (nτn)

−1/2(hn)
−d/2(C log n)1/2

Θn

un
,

where (a) follows from (B-24) and (b) follows from the definition of un and ∆n = τn/κn. The

choice hn = (nτn)
−1/(2s+d) balances the error terms above and with such a choice, we have for some

C3 > 0,

sup
p∈Dp

∣∣∣f(p)− f̂(p; y)
∣∣∣ ≤ C3(log n)

1/2(nτn)
−s/(2s+d)

[
1 +

Θn

un

]
.

We have just established that

Lemma 4 Suppose κn ≥ (s+ 1)(nτn)
1/(2s+d), then following Step 1 of Algorithm 2, one can con-

struct an estimate of the demand function λ̂(·; y) such that for some C4 > 0, for all n ≥ 1,

P

(
sup
λ∈L

sup
p∈Dp

‖λ̂(p; y)− λ(p)‖∞ > C4
(log n)1/2

(nτn)
s

2s+d

)
≤
C4

n2
. (B-28)

Steps 2 and 3. Following a similar reasoning as the one in Steps 2 and 3 in the proof of

Theorem 4 , one arrives at the following inequality

Jπ
n

J∗
n

≥ 1− C5[τn + δn + 1/nη−1],

where C5 is a positive constant and δn = (log n)1/2(nτn)
−s/(2s+d) and η ≥ 2 is fixed. The choice of

τn ≍ n−s/(3s+d) leads to

sup
λ∈L

lim sup
n→∞

1− Jπ
n/J

∗
n

(log n)1/2n−(1/(3+d/s))
<∞.

C Proofs of Auxiliary Results

In what follows C ′
i, i ≥ 1 will denote positive constants that depend only on A, x, T and the

parameters of the class L, but not on a specific function λ ∈ L.
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Proof of Lemma 1. Let Ji = {j ∈ {1, ..., d} : aij 6= 0}. We proceed with the following inequalities

P
(
A[N(µrn)− µrn] 6≤ rnǫn

) (a)

≤
ℓ∑

i=1

P

(
d∑

j=1

aij [N(µjrn)− µjrn] > rnǫn

)

≤

ℓ∑

i=1

∑

j∈Ji

P
(
N(µjrn)− µjrn >

rnǫn
daij

)

≤ ℓ
d∑

j=1

P
(
N(µjrn)− µjrn >

rnǫn
dā

)

(b)

≤ ℓ
d∑

j=1

exp
{
−θjrn(µj +

ǫn
dā

) + (exp{θj} − 1)µjrn

}
, (C-1)

where (a) follows from a union bound and (b) follows from the Chernoff bound. The expression in

each of the exponents is minimized for the choice of θj > 0 defined by

θj = log
(
1 +

ǫn
dāµj

)
. (C-2)

Plugging back into (C-1) yields

P
(
A[N(µrn)− µrn] 6≤ rnǫn

)
≤ ℓ

d∑

j=1

exp
{
− log

(
1 +

ǫn
dāµj

)
(µj +

ǫn
daij

) +
ǫn
dā

}

≤ ℓd exp
{
rn

(
− log

(
1 +

ǫn
dāM

)
(M +

ǫn
dā

) +
ǫn
dā

)}
. (C-3)

For the last inequality, note that the derivative of the term in the exponent with respect to µj
is given by − log(1 + ǫn/µj) + ǫn/µj , which is always positive for ǫn > 0. Now, using a Taylor

expansion we get that for some ξ ∈ [0, ǫn
dāM ],

−M
[
log
(
1 +

ǫn
dāM

)
(1 +

ǫn
dāM

)−
ǫn
dāM

]
= −

1

2

1

1 + ξ

ǫ2n
d2ā2M

≤ −
ǫ2n

4d2ā2M
,

where the last inequality holds only if ǫn/(dāM) ≤ 1 (which is valid for sufficiently large n).

Substituting for ǫn, we get

P
(
A[N(µrn)− µrn] 6≤ rnǫn

)
≤ ℓd exp

{
−
(C(η))2 logn

4d2ā2M

}

=
ℓd

nη
,

Hence the first result follows. The other inequality goes through in a similar fashion. This completes

the proof.

Proof of Lemma 2. Suppose first that for all i = 1, ..., k, Aλit̂i ≤ x/k, then
∑k

i=1Aλit̂i ≤ x.

Suppose now that there exists i∗, 1 ≤ i∗ ≤ k such that Aλit̂i∗ > x/k. Note that this implies that

t̂i∗ > x/(kM‖Ae‖) where M is the constant that bounds the demand rate at any price (cf. the
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definition of L in the problem formulation). Let t̂′ be defined as follows: t̂′i = t̂i for all i 6= i∗ and

t̂′i∗ = (t̂i∗ −C ′
1δn)

+ with C ′
1 = kT max1≤i≤k{(Ae)i/xi} and (Ae)i denotes the i

th component of the

vector Ae. t̂′ is clearly feasible for (P̂ ). In addition, for ω ∈ H, we have

k∑

i=1

Aλit̂
′
i =

k∑

i=1

Aλ̂(pi)t̂i +
k∑

i=1

A(λi − λ̂(pi))t̂i −Aλi∗C
′
1δn

(a)

≤ x+ max
1≤i≤k

‖λi − λ̂(pi)‖TAe−
x

kT
C ′
1δn

(b)

≤ x+ δn(Ae−
x

kT
C ′
1)

(c)

≤ x,

where (a) follows from the feasibility of t̂ for (P̂ ) and the fact that Aλi∗ t̂i∗ > x/k implies that

Aλi∗ > x/kT ; (b) follows from the fact that ω ∈ H; and (c) follows from the choice of C ′
1. We

deduce that for ω ∈ H, t̂′ is feasible for (P0). In addition the revenues achieved by t̂′ in (P0) can

be lower bounded as follows (where C ′
2 > 0 is suitable large)

V(P0)(t̂
′) =

k∑

i=1

pi · λit̂i

=
k∑

i=1

pi · λ̂(pi)t̂i +
k∑

i=1

pi · (λi − λ̂(pi))t̂i − pi∗ · λi∗C
′
1δn

≥ V(P̂ )(t̂)− dM̄ max
1≤i≤k

‖λi − λ̂(pi)‖T − M̄MC ′
1δn

≥ V(P̂ )(t̂)− C ′
2δn.

On the other hand, consider an optimal solution t∗ to (P0). We can proceed with a similar

reasoning. If for all i = 1, ..., k, Aλ̂(pi)t
∗
i ≤ x/k, then

∑k
i=1Aλit̂i ≤ x. Now, consider the case

where for some i′, Aλ̂(p′i)t
∗
i′ > x/k. By the definition of H, we have that t∗i′ > x/(k(M + δn)‖Ae‖).

In addition Aλ̂(pi′) > x/(kT ). Let ηn = max{τn, C
′
3δn} with C ′

3 = kT max1≤i≤k{(Ae)i/xi} and

define t̃i′ = t∗i′ − ηn and t̃i = t∗i for all i 6= i′. Note that for n sufficiently large t̃i ≥ 0 for i = 1, ..., k

and
∑k

i=1 t̃i ≤
∑k

i=1 t
∗
i − τn ≤ T − τn. In addition, we have for ω ∈ H

k∑

i=1

Aλ̂(pi)t̃i =
k∑

i=1

Aλ̂(pi)t
∗
i −Aλ̂(pi′)ηn

=

k∑

i=1

Aλit
∗
i +

k∑

i=1

A(λ̂(pi)− λi)t
∗
i −Aλ̂(pi′)ηn

(a)

≤ x+AeT max
1≤i≤k

‖λi − λ̂(pi)‖ −
x

kT
C ′
3δn

(b)

≤ x.

where (a) follows from the feasibility of t∗ for (P0) and the non-negativity of the elements of A;

and (b) follows from the conditions defining H and the choice of C ′
3. We see that t̃ is feasible for P̂
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(for ω ∈ H ). The revenues achieved by t̃ in (P̂ ) can be lower bounded as follows (where C ′
4 > 0 is

suitably large)

V(P̂ )(t̃) =
k∑

i=1

pi · λ̂(pi)t̃i

≥

k∑

i=1

pi · λ̂(pi)t
∗
i − C ′

4ηn

=
k∑

i=1

pi · λit
∗
i +

k∑

i=1

pi · (λ̂(pi)− λi)t
∗
i − C ′

3ηn

≥ V(P0)(t
∗)− dM̄ max

1≤i≤k
‖λi − λ̂(pi)‖T − C ′

3ηn

≥ V(P0)(t
∗)− C ′

4max{δn, τn}.

Proof of Lemma 3. The optimal vector p̃ for the deterministic problem is contained one of the

hyper-rectangles comprising the price grid. Let pj be the closest vector to p̃ in the price grid. Note

that the index j depends on n but we do not make the n-dependence explicit to avoid cluttering

the notation. We first show that pj ∈ Pn
f with high probability. Note that ‖pj − p̃‖ ≤ C ′

1/κ
1/d
n for

some C ′
1 > 0 and hence ‖λ(pj)− λ(p̃)‖ ≤ KC ′

1/κ
1/d
n . we deduce that

P
(
pj /∈ Pn

f

)
= P

(
AN(λ(pj)n∆nT ) > n∆n(x+ δne)

)

≤ P
(
AN

(
(λ(p̃) + C ′

1Kκ
−1/d
n )n∆nT

)
> n∆n(x+ δne)

)

(a)

≤ P
(
AN

(
(λ(p̃) + C ′

1Kκ
−1/d
n )n∆nT

)
−A(λ(p̃) + C ′

1Kκ
−1/d
n )n∆nT > n∆nwn

)
,

where wn = δne − C ′
1KTκ

−1/d
n Ae. Note that (a) is a consequence of the feasibility of p̃ for the

deterministic problem (in particular, Aλ(p̃)n∆nT ≤ n∆nx). Now since δnκ
1/d
n → ∞, we have that

wn = δn(e− C ′
1KT/(δnκ

1/d
n )Ae) ≥ δn/2 for n sufficiently large. By using Lemma 1 (where rn and

ǫn are here n∆n and δn/2 respectively), we deduce that the above probability is bounded above by

C ′
2/n

η for a sufficiently large C ′
2 > 0. We then have

P
(
r(p̃)− r(p̂) > δn

)

≤ P
(
r(p̃)− r(p̂) > δn ; pj ∈ Pn

f , r̂(pj) > 0
)
+ P

(
pj /∈ Pn

f

)
+ P

(
pj ∈ Pn

f , r̂(pj) = 0
)
. (C-4)

Now under the condition that pj ∈ Pn
f , we have

r(p̃)− r(p̂) = r(p̃)− r(pj) + r(pj)− r̂(pj) + r̂(pj)− r̂(p̂) + r̂(p̂)− r(p̂)

≤ r(p̃)− r(pj) + r(pj)− r̂(pj) + r̂(p̂)− r(p̂),

where the inequality follows from the definition of p̂ given in (B-17). For the first term on the RHS
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above, note that for C ′
3 > 0 suitably large

|r(pj)− r(p̃)| ≤ |pj · λ(pj)− pj · λ(p̃)|+ |pj · λ(p̃)− p̃ · λ(p̃)|

(a)

≤ d‖pj‖‖λ(pj)− λ(p̃)‖+ d‖λ(p̃)‖‖pj − p̃‖

(b)

≤ ‖pj‖K
C ′
1d

κ
1/d
n

+ ‖λ(p̃)‖
C ′
1d

κ
1/d
n

(c)

≤
C ′
3

κ
1/d
n

,

where (a) follows from Cauchy-Schwarz inequality, (b) follows from the Lipschitz condition on λ and

(c) follows from the fact that ‖p‖ ≤ M̄ for all p ∈ Dp. Now, recalling comment 2 in the preamble

of Appendix A, we have r(p̃)T ≥ mD > 0 and hence for n sufficiently large r(pj) > mD/(2T ). By

Lemma 1, we deduce that

P
(
pj ∈ Pn

f , r̂(pj) = 0
)
≤ P

(
pj · λ̂(pj) = 0

)
≤
C ′
4

nη

Coming back to (C-4), since C ′
3/κ

1/d
n < (1/4)δn for n sufficiently large,

P
(
r(p̃)− r(p̂) > δn

)

≤ P
(
r(pj)− r̂(pj) >

1

2
δn −

C ′
3

κ
1/d
n

; pj ∈ Pn
f

)
+ P

(
r̂(p̂)− r(p̂) >

1

2
δn ; pj ∈ Pn

f , r̂(pj) > 0
)

+P
(
pj /∈ Pn

f

)
+ P

(
pj ∈ Pn

f , r̂(pj) = 0
)

≤ P
(
r(pj)− r̂(pj) >

1

4
δn

)
+ P

(
p̂λ̂(p̂)− r(p̂) >

1

2
δn

)
+
C ′
2

nη
+
C ′
4

nη

By Lemma 1 the two first terms on the RHS above are bounded by C ′
5/n

η for some C ′
5 > 0 and

the proof is complete.

D A Numerical Example: Reconstructing the Revenue Surface

To complement Section 4.5, we illustrate below how local polynomials are used to reconstruct the

demand function and in turn the revenue function. We depict in Figure 1(a) the revenue function

derived from a logit model (λ(p1, p2) = 10(1+exp{−p1}+exp{−p2})
−1(exp{−p1}, exp{−p2})) and

in Figure 1(b) the approximation obtained by using local polynomials of degree 1 that is used by

the policy π3 with market size of 104. Note that this approximation is based on a single realization

of the learning phase. In particular, 36 prices are tested in the domain Dp = [0.5, 5]× [0.5, 5], and

the resulting demand observations are used to reconstruct the demand function.

If one focuses on the iso-revenue contours, it is seen that the general shape of the revenue function

is recovered reasonably well, and in particular the location of the maximizer of the revenue function

is well approximated. This is one of the reasons why the policy π3 performs so well. The main

takeaway here is that a relatively small number of prices allows for a reasonably accurate recon-

struction of the demand function on the entire price domain, and this translates to the performance

improvement reported in Table 3.
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Figure 1: Reconstructing the revenue surface. (a) revenue function derived from a logit

demand model; (b) approximation to the revenue function using local polynomials of degree 1.

Iso-revenue contours are indicated on the (p1, p2) plane. The construction is obtained by testing

36 prices.
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