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Abstract—Fiber-induced intra- and inter-channel nonlinearities 

are experimentally tackled using blind nonlinear equalization 

(NLE) by unsupervised machine learning based clustering 

(MLC) in ~46-Gb/s single-channel and ~20-Gb/s (middle-

channel) multi- channel coherent multi-carrier signals (OFDM-

based). To that end we introduce, for the first time, Hierarchical 

and Fuzzy-Logic C-means (FLC) based clustering in optical 

communications. It is shown that among the two proposed MLC 

algorithms, FLC reveals the highest performance at optimum 

launched optical powers (LOPs), while at very high LOPs 

Hierarchical can compensate more effectively nonlinearities only 

for low-level modulation formats. FLC also outperforms K-

means, fast-Newton support vector machines, supervised 

artificial neural networks and a NLE with deterministic Volterra 

analysis, when employing BPSK and QPSK. In particular, for the 

middle channel of a QPSK WDM coherent optical OFDM system 

at optimum ‒5 dBm of LOP and 3200 km of transmission, FLC 
outperforms Volterra-NLE by 2.5 dB in Q-factor. However, for a 

16-quadrature amplitude modulated single-channel system at 

2000 km, the performance benefit of FLC over IVSTF reduces to 

~0.4 dB at a LOP of 2 dBm (optimum). Even when using novel 

sophisticated clustering designs in 16 clusters, no more than 

additional ~0.3 dB Q-factor enhancement is observed. Finally, in 

contrast to the deterministic Volterra-NLE, MLC algorithms can 

partially tackle the stochastic parametric noise amplification. 
 

Index Terms—Machine learning, clustering, coherent 

detection, nonlinearity mitigation, coherent optical OFDM. 

I. INTRODUCTION 

urrent optical networks are based on standard single-mode 

fiber (SSMF) cables as opposed to more futuristic, high- 
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capacity multiple spatial modes (few-mode) fibers. Employing 

few-mode could form the most plausible alternative towards 

the desirable bandwidth capacity increase [1, 2]. The Kerr 

effect is a nonlinear phenomenon which causes distortion to 

the propagated optical signal and it is proportional to its power 

[1, 2], resulting in the deceleration of the data transmission. 

Attempts to combat fiber-induced nonlinearities have been 

performed by nonlinearity compensators [3–5] which tackle 

deterministic nonlinearities. These techniques however, result 

in modest improvements because the interaction between 

nonlinearity and random noises in a long-distance network 

such as from concatenated erbium doped fiber amplifiers 

(EDFAs) (i.e. the parametric noise amplification phenomenon 

[6]) add significant stochastic nonlinear distortion. Especially 

at low transmitted powers, the received data reveal more 

entropy meaning they have higher randomness due to EDFAs 

non- deterministic noise. Moreover, all proposed nonlinearity 

compensators present high complexity [3–5] being impractical 

for real-time communications. The aforementioned random 

noises of the network can be partially tackled by digital 

machine learning algorithms that perform nonlinear 

equalization (NLE), such as unsupervised and supervised 

algorithms: machine learning clustering (MLC) using K-

means and Gaussian mixture [7–9], and classification 

machines[10], e.g. artificial neural networks (ANN) [11–13] 

and convolutional neural network-based deep learning [14, 

15]. 

Multi-carrier technologies such as coherent optical OFDM 

(CO-OFDM) was proposed to enhance flexibility in the 

network and compensate both fiber chromatic dispersion and 

polarization mode dispersion (PMD) without adding 

sophisticated digital algorithms. Unfortunately, the unsortable 

high peak-to-average power ratio (PAPR) causes a number of 

problems such as high-power consumption, in-band distortion, 

and spectrum spreading. A high PAPR causes crosstalk effects 

in subcarrier-based OFDM appearing more random rather 

deterministic [13]. ANN has resulted in improved signal 

quality(Q)-factor in both single-channel [10, 11] and 

wavelength division multiplexing (WDM) CO-OFDM [12]. 

However, ANN is optimized using multiple convergence-steps 

and a high amount of training data (≥10% [10–12]) is also 

required which adds complexity and limit signal capacity, 

respectively. 

In this work we experimentally demonstrate, for the first 

time, MLC-based Hierarchical and Fuzzy-logic C-means 

(FLC) in single-channel and WDM CO-OFDM for up to 3200 
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km of SSMF for single-polarization. Hierarchical and FLC 

essentially are compared with the benchmark K-means 

clustering or simply K-nearest neighbors [9], the advanced 

classification supervised fast-Newton support vector machine 

(F-SVM) [13] and ANN-NLE [10–12] and the reduced 

complexity Volterra-based NLE using the 3rd order Kernel-

based inverse Volterra-series transfer function (IVSTF)-NLE 

[4]. It is shown that FLC reveals the highest performance at 

optimum launched optical power (LOP), outperforming both 

K-means and ANN based NLE. FLC also compensates more 

effectively fiber- induced nonlinearities than the deterministic 

IVSTF, especially for low number of clusters, i.e. for binary 

phase-shift keying (BPSK) and quaternary PSK (QPSK). For a 

~20-Gb/s QPSK middle ‘worst-case’ WDM channel (the 
channel suffering the most from inter-channel nonlinearities) 

at 3200 km and optimum ‒5 dBm of LOP, FLC outperforms 
IVSTF by 2.5 dB in Q-factor. However, for 16 quadrature 

amplitude modulation (16-QAM) in ~46-Gb/s single-channel 

CO-OFDM at 2000 km, the Q-factor improvement provided 

by FLC reduces to ~0.4 dB. Even when using alternative more 

sophisticated clustering designs in 16 clusters, no more than 

additional ~0.3 dB of Q- factor improvement is observed. 

Finally, in contrast to the deterministic IVSTF, MLC 

algorithms can partially tackle the stochastic nonlinearity of 

parametric noise amplification [6]. 

In Section II we analyze the principles of the proposed 

(Hierarchical & Fuzzy-logic C-means) MLC algorithms for 

optical communication systems with procedures similar to 

other scientific research areas (e.g. economics). Section III 

summarizes the experimental and simulated setups which are 

similar to our previous setups reported in Refs. [10–13] with 

the exception of implementing the proposed MLC algorithms 

as new NLEs at the receiver side. Section IV presents the 

experimental results using MLC (including the benchmark K- 

means [9]), the traditional machine learning based ANN [11], 

and the deterministic IVSTF [4] in single-channel QPSK CO- 

OFDM and WDM 16-QAM CO-OFDM at 3200 and 2000 km, 

respectively. In this Section, we also investigate the impact of 

alternative novel advanced clustering designs on 16-QAM 

CO- OFDM. Finally, in Section V we provide the conclusion 

to this work. 

II. PRINCIPLE OF MLC ALGORITHMS FOR CO-OFDM 

The new adopted clustering algorithms of Hierarchical, Fuzzy 

logic C-means are discussed in this Section. The adopted 

MLC algorithms are performed in frequency domain in the 

CO- OFDM receiver just before decoding and after the fast-

Fourier transform (FFT) processing, thus avoiding an 

additional time- to-frequency domain conversion block. 

Moreover, clustering processing is performed directly on 

complex data in contrast to ANN-NLE [11], thus further 

reducing the complexity of the system. It should be noted 

however, that when performed MLC separately on real and 

imaginary part the performance of the algorithms was 

degraded since they were unable to account for cross-

information between the amplitude and phase of the signal. 

 

A. Hierarchical clustering 

Clustering using a Hierarchical approach in OFDM is a multi-

step process. It is essentially segmented into agglomerative 

techniques, being processed by a number of n symbols mixed 

into sub-groups, and divisive approaches, which isolate n 

OFDM symbols into multiple effective groups for each 

subcarrier [14–16]. Due to the statistical structure of 

agglomerative methods, they most commonly characterized by 

a two-dimensional (2-D) diagram. This diagram is widely 

identified as dendrological (from the Greek word ‘tree’). An 
illustration of such dendrogram is depicted in Fig. 1, 

demonstrating the divisions or fusions made at each 

successive stage of analysis. Hierarchical clustering 

harnessing agglomerative processing harvests a number of 

symbol partitions (P): Pn, Pn-1, …, P1. Where n corresponds to 

single symbol-based clusters and l to one group encompassing 

the total n cases. During each step, this technique merges the 

nearest two clusters. However, there are many agglomerative 

approaches to estimate the distance between clusters [14]. In 

this work, the least complex single-linkage (D) clustering is 

implemented in which as mentioned in Ref. [15]: “the distance 

between groups is defined as the distance between the closest 

pair of objects/symbols, where only pairs consisting of one 

object/symbol from each group are considered”. In single- 

linkage, D(r,s) is described by Eq. (1) in which a symbol i 

belongs to a cluster r and vice-versa. Afterwards, the shortest 

(min.) distance for each ‘symbol pair (i,j)’ is calculated among 
cluster s and r. At every step, these clusters are combined 

together so that the new developed cluster to reach the 

“minimum pairwise distances between the symbols” [15]. 
 

 
 

Fig. 1. Conceptual dendrogram for agglomerative and divisive Hierarchical 

based clustering [15]. 

 

Hierarchical clustering is comprised of six steps [16]: 

1. Enter the number of targeted clusters, e.g. four for QPSK. 

2. Initiate disjoint cluster having zero level (L(0) = 0) and 

order (m =0). 

3. Identify the least unrelated pair of clusters (r, s) w.r.t. 
 

                                       D(r,s)=min{d[i,j]}                           (1) 

4. Increase the order by m=m+1 and the clusters r and s 

into one cluster, creating a new cluster m. The level of 

such cluster is formed by 
 

L(m)=d[r,s]                                 (2) 

5. Upgrade the D “proximity matrix”, thus erasing the 
corresponding rows/columns from clusters r and s, while 

adding a single row/column related to the new created 

cluster. The proximity between the old, k, and new 

cluster, (r,s), is given from Eq. (3) 
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d{k, (r,s)} =min{d[(k),(r)],d[(k,s)]                    (3) 

6. Stop process if total OFDM symbols are located in a 

single cluster, otherwise, return to second step. 

B. FLC: Fuzzy-logic C-means clustering 

FLC permits OFDM symbols to fluctuate their membership 

degree (MD) while being allocated into many clusters [17–
21]. FLC minimizes an objective function of the form: 

𝐹𝑚 = ∑ ∑ ∑ µ𝑖𝑗𝑚𝐿
𝑗=1 ‖𝑡𝑖 − 𝑐𝐽‖2                                    (4)𝑅

𝑖=1
𝑁
𝐼,𝐽  

where N, R, L, and m, are the total number of subcarriers, 

symbols, clusters, and a “Fuzzy partition matrix (FPM) 

exponent”, respectively. FPM regulates the ‘degree’ of 
clusters overlapping, for m greater than unity. Such 

overlapping is related to a Fuzzy one, denoting the degree of 

boundaries’ fuzziness between clusters. Where ti is referred 

the i-th symbol, cj is the centre of a j-th cluster, and μij refers 

to the MD of ti into j-th cluster. Given a random symbol ti, 

the sum of MD for the total clusters is unity. 

 
(a) 

 

 
(b) 

 

 
(c) 

 

Fig. 2. Operation of FLC on OFDM symbols (circles): (a) Single-dimension 

data. (b) Hard clustering. (c) Fuzzy clustering. MD: membership degree. 

 

FLC is comprised by the following six steps [21, 22]: 

1. Enter the number of targeted clusters. 

2. Initiate the cluster MD, μij. 

3. Estimate the center of the cluster by the following 

expression 
 𝐶𝑗 = ∑ (∑ µ𝑖𝑗𝑚𝑡𝑖𝑅

𝑖=1 ∑ µ𝑖𝑗𝑚𝑅
𝑖=1⁄ )𝑁

𝑖,𝑗                               (5) 

 

4. Update μij using Eq. (6) 
 𝐶𝑗 = 1 (∑ ∑ ‖𝑡𝑖 − 𝑐𝐽‖ ‖𝑡𝑖 − 𝑐𝑘‖⁄𝐿

𝑘=1
𝑁
𝑖,𝑗 )⁄ 2 𝑚−1⁄                (6) 

 

5. Compute Fm using Eq. (4). 

6. Return and perform second to fourth step until Fm is 
converged for a specified threshold. 

A typical example of the FLC processing is illustrated in Fig. 

2. In Fig. 2(a) single-dimension symbols are given with a MD 

of either one or zero that can be formed in two distinct 

clusters. The MD is formed exclusively between one and zero 

and presented by the y-axis as shown in Figs. 2(b), 2(c), 

corresponding to Hard and Fuzzy clustering, respectively. In 

comparison to clustering with Hard decisions, the adopted 

FCL sets a new threshold between the two clusters with an 

updated MD for each symbol, that are based on the centroids 

of the clusters and the distance between the clusters’ centroids 
[17]. 

III. EXPERIMENTAL AND SIMULATION SETUP 

The experimental setup (identical to Ref. [12]) for multi-

channel QPSK is shown in Fig. 3(a). It comprised a laser grid 

of 5 standard distributed feedback lasers (DFBs) on 100 GHz 

grid with the help of polarization maintaining multiplexer 

(PMM), which were substituted in turn by a 100 kHz 

linewidth laser. The 100 kHz linewidth DFBs are located 

between 193.5–193.9 THz. Additional loading channels (10 

GHz of bandwidth) were generated using an amplified 

spontaneous emission (ASE) source that were spectrally 

shaped using a wavelength selective switch (WSS). The 20 

loading channels were spread symmetrically around the test 

wavelengths so that the total bandwidth of the transmitted 

signal was 2.5 THz (see inset spectrum in Fig. 3(a)). A 

wideband filter was used to filter out-of-band ASE noise at the 

transmitter. The transmission path was an acousto-optic 

modulator (AOM) based re-circulating loop consisting of 

4×100 km spans of Sterlite OH-LITE (E) SSMF, having 18.9–
19.5 dB insertion loss. The loop switch was located in the 

mid-stage of the 1st Erbium-doped fiber amplifier (EDFA) and 

a gain flattening filter (GFF) was placed in the mid stage of 

the 3rd EDFA. After propagation, the signal was filtered using 

a 4.2 nm flat topped filter and coherently detected. Fig. 3(b) 

depicts the single-channel experimental setup (identical to 

Refs. [10], [13]) whereas 100 kHz linewidth DFB was 

modulated using a dual-parallel Mach-Zehnder modulator in 

IQ configuration fed by offline OFDM I-Q components. The 

transmission path at 1550.2 nm was a recirculating loop 

consisting of 20×100 km spans of E-SSMF controlled by 

AOM. The loop switch was located in the mid-stage of the 

1stEDFA and a GFF was placed in the mid-stage of the 

3rdEDFA. The optimum LOP was swept by controlling the 

output power of the EDFAs.  

Table I. Single- and multi-channel experimental OFDM parameters 

Parameter  Value 

Net bit-rate  

Net bit-rate for ANN 

Raw bit-rate 

Format of modulation 

Number of symbols 

Symbol time duration 

Generated subcarriers 

CP 

Size of FFT & inverse(I)FFT 

ANN Training overhead  

 ANN Train. symbol length 

DFB linewidth  

OH-LITE (E) fiber attenuation 

Number of spans 

Length-per-span 

Center wavelength   

18.2 Gb/s(WDM), 40 Gb/s(1-ch.) 

16.84 Gb/s(WDM), 38 Gb/s(1-c.) 

20 Gb/s(WDM), 46 Gb/s(1-ch.) 

QPSK(WDM), 16-QAM(1-ch.) 

400 

20.48 ns 

210 

2 % 

512 

10 % 

40 symbols 

100 KHz 

18.9–19.5 dB/100 km 

30(WDM), 20(1-chan.) 

100 km 

1550.2 nm 

 



 4 

For both cases at the receiver, the incoming channel was 

combined with another 100 kHz linewidth DFB acting as local 

oscillator (LO). After down-conversion, the baseband signal 

was sampled using a real-time oscilloscope operating at 80 

GS/sand processed offline in Matlab®. 400 OFDM symbols 

(20.48 ns length) were generated using a 512-point IFFT in 

which 210 subcarriers were modulated using QPSK (WDM) 

and 16-QAM (single-channel). To eliminate inter-symbol-

interference from linear effects, a CP of 2% was included. The 

ANN and F-SVM training overheads were set at 10% 

(optimum value for linear equalization, LE, similarly to Refs. 

[10], [12], [13]) resulting in a training length of 40 symbols. 

For LE, IVSTF, ANN, and F-SVM the net bit-rate for the 

WDM system was fixed at 18.2 Gb/s after CP and removed, 

and 16.84 Gb/s after 10% of ANN and F-SVM training 

overhead is removed, while the raw bit-rate was 20 Gb/s. For 

the single-channel system the net and raw bit-rates were~40 

Gb/s and ~46Gb/s, respectively. The offline OFDM 

demodulator included timing synchronization, frequency 

offset compensation, channel estimation and equalization with 

the assistance of an initial training sequence, as well as I-Q 

imbalance and CD compensation using an overlapped 

frequency domain equalizer employing the overlap-and-save 

method. The CO-OFDM transceiver and transmission 

parameters are depicted on Table I. The NLEs performances 

were assessed by Q-factor measurements averaging over 10 

recorded traces (~106 bits), which was estimated from the bit-

error-rate (BER) obtained by error counting after hard-

decision decoding. The Q-factor is related to BER byQ = 

20log10[√2𝑒𝑟𝑓𝑐−1(2𝐵𝐸𝑅)]. 
For the simulated analysis, we used a co-simulated 

environment with VPI-transmission-makerTM and Matlab®.The 

former simulated the optical components including the SSMF 

by the well-known split-step Fourier method via the nonlinear 

Schrödinger equation, and the latter simulated the digital 

signal processing units including OFDM modulation and 

demodulation. For the numerical analysis, a 9.1 Gb/s BPSK 

single-polarization and single-channel CO-OFDM system was 

consideredandtransmittedat500kmwith100kmspan-length. The 

reason for not increasing the bit-rate of such low modulation 

format order was to relax the digital-to- analogue/analogue-to-

digital converter bandwidth (sampling rate/analogue 

bandwidth) to a more realistic value. 
 

 
Fig.4.Transmission performance comparison for all adopted MLC 

algorithms, ANN, F-SVM, IVSTF, and without (w/o) using NLE (i.e. LE) in 

terms of launched optical power (LOP) per channel for QPSK WDM CO-

OFDM at 3200 km of fiber propagation. 

IV. RESULTS AND DISCUSSION 

In Fig.4 results for QPSK WDM CO-OFDM at 3200 km are 

depicted, related to the Q-factor against the LOP per channel. 

From Fig. 4 it is evident that MLC can effectively tackle inter- 

channel (cross-phase modulation, XPM, four-wave mixing, 

FWM) and intra-channel nonlinearities (self-phase modulation 

and inter-subcarrier XPM and FWM). In comparison to 

IVSTF, MLC can enhance the Q-factor up to ~2.5dB at 

optimum LOPs. Among FLC, Hierarchical, and K-means 

clustering, FLC outperforms within the range of optimum and 

very low LOPs, the latter which is partially contributed to the 

stochastic parametric noise amplification. However, at very 

high LOPs per channel (i.e. –1 dBm) Hierarchical clustering 

can tackle more effectively the strong nonlinear crosstalk 

effects. An example of the FLC improved performance at a 

very low power is depicted in Fig. 5, where the received 

 

Fig. 3. Experimental setup of CO-OFDM equipped with clustering, ANN, SVM or IVSTF based NLE for: (a) multi-channel 20 Gb/s QPSK (middle 

channel) at 3200 km; (b) single-channel 40 Gb/s 16-QAM at 2000 km. AWG: arbitrary waveform generator, PMM: polarization maintaining multiplexer, 

WSS: wavelength selective switch, DFB: distributed feedback laser, AOM: acousto-optic modulator, GFF: gain-flatten filter, BPF: band-pass filter. 
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constellation diagrams for FLC and K-means are compared at 

a LOP per channel of –8 dBm. Fig. 5 shows that FLC 

improves the Q- factor by 0.3 dB by making some versatile 

nonlinear decisions on “rotated” (distorted) OFDM symbols in 

contrast to K-means which is limited to linear decision 

boundaries. Essentially, FLC allocates the distorted symbols 

more effectively on the valid clusters using the minimum 

distance from the centroid values (white ‘x’ in Fig. 5). In 
comparison to the advanced supervised classification-based F-

SVM and ANN-NLE, FLC can combat inter-channel 

nonlinearities more effectively leading to a Q-factor 

enhancement of ~0.6 dB at the optimum LOP per channel of – 

5 dBm as depicted in Fig. 4. Moreover, FLC and the rest of 

adopted MLC algorithms can tackle parametric noise 

amplification better than F-SVM and ANN, without the need 

of capacity-consuming training data, showing the great 

potential of clustering algorithms for QPSK signals. 

 
Fig. 5. Example of FLC and K-means boundaries on received constellation 

diagrams at –8 dBm of LOP per channel for middle-channel QPSK WDM 

CO-OFDM (white ‘crosses’ denote the centroid per cluster). 
 

 
 

Fig. 6. Q-factor vs. LOP of 16-QAM CO-OFDM at 2000 km for adopted 

MLC algorithms, F-SVM,ANN, IVSTF and w/o NLE. 

In Fig. 6, results from the 16-QAM single-channel CO- 

OFDM are illustrated at 2000 km of fiber transmission. For 16 

clusters, MLC is not as effective as previously in 4 clusters 

(QPSK). This can be explained from Fig.7, where the Q-factor 

distribution for the middle subcarriers is plotted using the best 

MLC algorithm, i.e. the FLC, and IVSTF for QPSK WDM 

CO- OFDM and 16-QAM CO-OFDM at optimum LOPs of –5 

and 2dBm, respectively. Essentially, this comparison is 

contributed to the ‘stochastic vs. deterministic’ nonlinear 
effects on centre subcarriers which suffer the most from inter-

subcarrier XPM and FWM. As shown from Fig. 7(a), FLC in 

4 clusters can improve the Q-factor up to 3.8 dB on middle 

subcarriers compared to IVSTF. This performance 

improvement is mainly due to the partial compensation of 

ASE noise and inter-subcarrier intermixing deterministic 

nonlinear effects that appear random due to the high PAPR 

[10]. In Fig. 7(b), the stochastic nonlinear effects on middle 

subcarriers cannot be effectively compensated because the 

accumulated random phase noise for 16 clusters is much 

higher than 4 clusters. Nevertheless, from Fig. 6, even 

marginally it is evident that FLC outperforms Hierarchical 

clustering, K-means, ANN and IVSTF, while reaching the 

transmission performance of an F-SVM at optimum 2 dBm of 

LOP. An example of the FLC performance improvement is 

depicted in inset of Fig. 6, where the received 16-QAM 

constellation diagrams for FLC and K-means are shown at 

optimum2dBmofLOP.InthelinearregimeofFig.6,FLCimproves 

the Q-factor which is  connected to the tolerance improvement 

of parametric noise amplification; where in contrast, 

Hierarchical clustering and K-means are not effective having 

worst performance than linear equalization. 

In Fig. 8, a simulated analysis is performed for lower level 

than QPSK format, i.e. BPSK, to evaluate the performance of 

the adopted and benchmark MLC algorithms in comparison to 

ANN and IVSTF. As depicted in Fig. 8, the performance 

improvement of the adopted MLC algorithms from benchmark 

NLEs increases for BPSK CO-OFDM. In particular, a Q-

factor improvement of 3.2 dB is achieved at optimum LOP of 

–10 dBm using the best MLC algorithm of FLC. This 

confirms the fact that less amount of constellation clusters 

contributes to enhanced transmission performance by MLC. 
 

 
(a) 

 
(b) 

Fig. 7. Middle subcarrier index Q-factor distribution for FLC and IVSTF over 

(a) QPSK WDM at 3200 km of transmission and optimum LOP per channel 

of–5 dBm; (b) 16-QAM single-channel at 2000 km and optimum LOP of 2 

dBm. 

 

Due to the modest improvement of MLC algorithms in 16 

clusters for 16-QAM OFDM modulation, alterative novel 

clustering grouping designs have been tested. These designs 

are based on groups of two or four clusters due to the 

remarkable performance of MLC on BPSK and QPSK. The 

novel designs feature two extra cases: Case-1, where a single 
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“large” group of four clusters and subsequent four groups of 
four clusters are considered; and Case-2, in which a single 

group of four clusters and six groups of two clusters are 

performed. The latter case was inspired by the well-known 

accumulation of nonlinear phase noise on outer clusters in16-

QAM.Fig.9illustratesthe adopted clustering designs in which 

the grouping centroids (denoted with ‘x’) are also depicted: 
light-blue on step 1 and white on step2 for Case-1; black for 

single-step Case-2. Fig. 10 shows the performance of the best 

MLC algorithm, i.e. the FLC, for experimental 16-QAM CO-

OFDM in single-channel transmission at 2000 km. It is shown 

that both clustering designs have almost identical performance 

with the conventional clustering approach, with the exception 

of Case-2 at very high LOPs where up to ~0.3 dB increase in 

Q-factor is observed, reaching the transmission performance 

of the F-SVM. 

 

 

Fig. 8. Simulated CO-OFDM transmission performance for 9.1 Gb/s binary 

phase-shift keying in single-channel system at 500 km using FLC, 

Hierarchical clustering, K-means, F-SVM,ANN, IVSTF and w/o NLE (i.e. 

LE). 

 

 

 

Fig. 9. Alternative clustering grouping in 16-QAM. In first case, a single 

group with four clusters is performed and afterwards four groups with four 

clusters. In second case, single-step is performed where a single group of 

four clusters and six groups of two clusters are performed. 

 
 

 
Fig. 10. Impact of alternative clustering designs (Case-1 vs. Case-2) on Q-

factor vs. LOP for FLC using 16-QAM CO-OFDM at 2000 km of fiber 

propagation. A comparison with benchmark NLEs and MLC algorithms that 

employ the conventional clustering approach is also included. 

V. CONCLUSION 

While Hierarchical and Fuzzy-logic C-means clustering (FLC) 

have been applied in medicine [19], economics [18, 21], 

wireless sensor networks [14] and other research areas, they 

have never been implemented in optical communications for 

signal quality improvement. In this work, for the first time, 

these two machine learning based clustering (MLC) 

algorithms were experimentally demonstrated for blind 

nonlinearity equalization in ~46-Gb/s single-channel and ~20-

Gb/s (middle-channel) WDM CO-OFDM. MLC tackled more 

effectively intra- and inter-channel nonlinearities at 3200 km 

compared to the supervised F-SVM/ANN and the 

Table II. Summary of key experimental results: Q-factor improvement (in dB) from linear equalization for each technique. 
 

Technique QPSK WDM 

LOP = –8 dBm 

16-QAM Single-channel 

LOP = –6 dBm 

QPSK WDM 

LOP = –5 dBm 

16-QAM Single-channel 

LOP = 2 dBm 

Fuzzy-logic Case-2 

Fuzzy-logic 

Hierarchical clustering 

K-means 

ANN 

                 F-SVM 

                  IVSTF 

– 

2.9 dB 

2.2 dB 

2.6 dB 

1.2 dB 

1.4 dB 

0.2 dB 

1. 8 dB 

1. 8 dB 

                1.2 dB 

              –0.2 dB 

0.7 dB 

0.7 dB 

0.7 dB 

– 

2.8 dB 

2.3 dB 

     2.2 dB 

     2.3 dB 

2.3 dB 

0.5 dB 

1.4 dB 

1.1 dB 

0.2 dB 

0.2 dB 

 0.3 dB 

1.4 dB 

0.8 dB 
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deterministic IVSTF for low-level modulation formats (i.e. 

BPSK, QPSK). When more clusters were considered in single-

channel 16-QAM at 2000 km, F-SVM outperformed to the 

other algorithms at high launched powers. Even when using 

sophisticated novel clustering designs in 16 clusters, no more 

than additional ~0.3 dB Q-factor enhancement by FLC was 

observed. From both simulated analysis for BPSK modulation 

and experimental QPSK/16-QAM demonstrations, FLC had 

the highest performance among all adopted MLC algorithms 

at optimum LOPs. In contrast to IVSTF, FLC revealed better 

potential in tackling the stochastic parametric noise 

amplification. Finally, it should be noted that due to 

experimental restrictions and limitations on available 

resources, 16-QAM CO-OFDM was only demonstrated for 

single-channel and BPSK CO-OFDM for simulated analysis. 

A summary of the key results for low and optimum LOPs 

are depicted in Table II, where the Q-factor improvement (in 

dB) from linear equalization (i.e. w/o NLE) is shown for each 

adopted algorithm. From Table II, it is clearly identified (in 

bold blue) that FLC, ‘FLC with clustering design of Case-2’ 
for 16-QAM have always the best performance at low powers. 

Considering the fact that MLC algorithms can potentially have 

lower complexity than IVSTF [4], F-SVM [9] and ANN [10], 

this work is very useful not only for next-generation high-

capacity core networks but also for real-time optical 

communications. 
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