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 
Abstract—In this paper, we discuss in detail the performance of 

different blind phase noise estimation schemes for coherent 

optical orthogonal frequency division multiplexing transmissions. 

We first derive a general model of such systems with phase noise. 

Based on this model, the phase cycle slip probability in blind 

phase noise estimation is calculated. For blind phase tracking, we 

present and discuss the implementation of feedback loop and 

digital phase tracking. We then analyze in detail the performance 

of a decision-direct-free blind scheme, in which only three test 

phases are required for phase noise compensation. We show that 

the decision-direct-free blind scheme is transparent to QAM 

formats and can provide a similar performance to the 

conventional blind phase search employing 16 test phases. We 

also propose two novel cost functions to further reduce the 

complexity of this scheme. 

 

Index Terms — Coherent, phase noise, orthogonal frequency 

division multiplexing, phase estimation. 

I. INTRODUCTION 

oherent optical orthogonal frequency division 

multiplexing (CO-OFDM) has attracted a lot of attention 

recently as a promising candidate for long-haul optical 

communication systems because of its inherent spectral 

efficiency (SE) and excellent tolerance towards residual linear 

fiber impairments [1]. However, compared to single carrier 

system, traditional CO-OFDM system with cyclic prefix (CP) 

has relatively long symbol duration (tens of ns), and therefore 

is sensitive to laser phase noise, which introduces both 

common phase error (CPE) and intercarrier interference (ICI) 

[2]. To increase the system’s SE and reduce the impact of ICI, 

reduced-guard-interval (RGI) CO-OFDM transmission scheme 

has been proposed in [3], where the overhead due to CP can be 

significantly reduced as fiber chromatic dispersion is 

compensated for within the receiver rather than using the CP. 

In this case, the impact of laser phase noise on the system 

performance is dominated by the CPE rather than ICI [3]. 

The CPE in RGI CO-OFDM transmission can be effectively 

compensated by inserting pilot subcarriers across the OFDM 

band [4]. However, this technique reduces the system spectral 
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efficiency as the overhead due to pilot subcarriers can be up to 

10% due to the small number of subcarriers (< 200) in RGI 

CO-OFDM transmissions. To address this issue, a data-

dependent pilot-aided (quasi-pilot-aided) technique was 

introduced in [5, 6] to reduce the overhead due to pilot 

subcarriers by a factor of 2, without compromising the 

performance. In addition, a pre-emphasized pilot subcarrier 

technique was considered in [7], significantly reducing the 

pilot subcarrier overhead at a cost of increasing the pilot 

subcarrier power overhead (up to 10%). However, it is still 

desirable to remove completely the overhead due to pilot 

subcarriers to maximize the system’s SE and power 

consumption. 

Blind phase noise estimation for CO-OFDM with a small 

number of subcarriers (up to 200) has attracted a lot of 

attention recently [8-10]. In [8], a blind phase noise estimation 

(PNE) method based on a decision-directed (DD) algorithm 

has been considered for CO-OFDM. A major advantage of 

DD-based PNE scheme is that it is compatible with any 

modulation format. However, this technique suffers 

significantly from error propagation, and thus, it cannot be 

applied directly in the presence of a large laser phase noise. In 

[11] the concept of blind phase search (BPS) was proposed, 

which can be applied effectively without suffering from error 

propagation. However, the BPS technique also relies on DD 

(to estimate the mean-square-error) and a large number test 

phases (16 to 32) are required to achieve good performance 

and thus, being too complex for practical implementation. 

To address the drawbacks of both BPS and DD-based PNE 

schemes, a novel decision-directed-free (DDF) blind PNE 

technique has been proposed and experimentally demonstrated 

recently in [12]. This DDF blind PNE scheme provides several 

advantages. Firstly, it offers a high performance without 

decision feedback, avoiding error propagation. Secondly, it 

requires only three test phases and thus significantly reduces 

the computational complexity in comparison to BPS. Finally, 

DDF blind scheme is also transparent to QAM formats. 

In this paper, we provide a detailed analysis of DDF blind 

PNC technique and investigate its performance for high order 

modulation formats up to 64QAM. We also propose here two 

novel cost functions to further reduce the complexity of DDF 

blind PNC scheme.  

The remainder of the paper is organized as follows. The 

system model is described in Section II. In Section III blind 

phase tracking with feedback loop (FL) and digital phase 

tracking (DPT) are discussed. In Sections IV-VI, the 

performances and complexities of DDF blind PNE with 
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different cost functions are analyzed and compared with pilot-

aided (PA) and BPS techniques. Section VII concludes the 

paper. 

II. SYSTEM MODEL 

In this section, we introduce the models of laser phase noise, 

fiber channel, and a general RGI CO-OFDM system with 

phase noise (Fig. 1). For simplicity, the impact of fiber 

nonlinearity is not considered. In addition, we assume that 

perfect FFT window synchronization and frequency offset 

compensation are achieved. Furthermore, we consider a 

baseband system with single polarization signals noting that 

the analysis can be readily extended to passband systems with 

dual polarized signals without any difficulties. 

A. Phase noise model 

The laser phase noise ϕ(t), generated at both transmitter and 

receiver, can be modeled as a continuous Brownian motion or 

a Wiener process with zero mean and variance σ2
 = 2πβt, 

where β denotes the combined laser linewidth, i.e., frequency 

spacing between 3-dB points of the Lorentzian power spectral 

density function [13, 14]. The discrete-time model of the laser 

phase noise on the n
th

 sample of the m
th

 OFDM symbol can be 

expressed as 

  1( ) ( 1) ( )

CP

n

m m CP

i N

n N u m N N i  


      (1) 

where u(i) represents the independently incremental movement 

of phase noise at time instant i and is Gaussian distributed with 

zero mean and variance σ2
 = 2πβdt, where dt is the sampling 

time, N and NCP are the DFT length and cyclic prefix length, 

respectively. 

B. Fiber channel model 

We consider here only dispersion-compensation-free fiber 

transmission links (highly dispersed channels). In addition, we 

assume here that the fiber loss is perfectly compensated using 

optical amplifiers such as erbium doped fiber amplifiers or 

Raman-based amplifiers. As a result, the fiber channel model 

can be simply expressed in the frequency domain as 

 
2

2( , ) exp ,
4

D z
H z j

c

 


 
  

 
 (2) 

where ω is the angular frequency, z is the transmission 

distance, D is the fiber chromatic dispersion parameter, c is the 

speed of light and λ is the carrier wavelength. 

C. CO-OFDM system model 

In OFDM systems, the m
th

 symbol in the time domain is 

generated from the modulated data in the frequency domain 

using the inverse discrete Fourier transform (IDFT) operation 

as follows 

 

1

0

1 2
( ) ( )exp

N

m m

k

j nk
x n X k

NN





   
   (3) 

where the samples n range from - NCP to N-1. 

Due to the ASE noise, chromatic dispersion and phase noise 

the received OFDM signal can be written as 

  1( ) exp( ( )) ( ) ( ) ( )
m m m m m

y n j n x n F H k w n       (4) 

where   and F
-1(·) denote the circular convolution and IDFT, 

respectively, while wm(n) indicates the total ASE noise 

generated from inline optical amplifiers, Hm(k) is the channel 

gain in the frequency domain of the k
th

 subcarrier defined as 

(2). We assume here that the intersymbol interference is 

absent, after taking the DFT operation we obtain 

 ( ) ( ) ( ) (0) ( ) ( ),
m m m m m m

Y k X k H k I ICI k W k    (5) 

where the intercarrier interference ICIm(k) is defined as 

 
1

0,

( ) ( ) ( ) ( ),
N

m m m m

l l k

ICI k X l H l I l k


 

   (6) 

where Im(k) is given by 

  
1

0

1 2
( ) exp ( ) exp

N

m m

n

kn
I k j n j

N N






   
 

  (7) 

From (6) and (2) the system model can be written as 

 ( ) ( ) ( ) (0) ( ),
m m m m m

Y k X k H k I k   (8) 

where the accumulated noise is defined as 

 ( ) ( ) ( )
m m m

k ICI k W k    (9) 

The channel response in CO-OFDM systems can be obtained 

by periodically inserting training sequences. By assuming 

perfect channel estimation, the recovered data after 

equalization can be expressed as 

 ( ) ( ) / ( )m m mZ k Y k H k  (10) 

As a result, we have 

 ( ) ( ) (0) ( ),m m m mZ k X k I k   (11) 

IDFT
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)(kX m ( )mY k( )mx n

exp( ( ))mj n ( )mw n

( )my n ( )mZ k

Fiber channel

 

Fig. 1. Block diagram of the CO-OFDM system with laser phase noise and nonlinear phase noise acquired during optical fiber transmission 
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where the equalization-enhanced phase noise (EEPN) is 

defined as 

 ( ) ( ) / ( )m m mk k H k   (12) 

Due to the complicated interplay among laser phase noise, and 

fiber dispersion, most of ICI compensation techniques 

developed for OFDM systems in linear (radio or open space) 

channels [15-17] cannot be effectively applied for CO-OFDM 

transmission systems. In addition, except the pulse shaping 

approach [18], ICI compensation techniques are usually highly 

complex and thus, cannot be applied effectively in high speed 

CO-OFDM transmission systems. A recent study [7] has 

shown that the EEPN term in the expression (11) can be 

simply treated as a zero mean Gaussian noise. 

In the expression (11), Im(0) is usually referred to the common 

phase error as it corresponds to the time-average of the laser 

phase noise over the m
th

 OFDM symbol 

  
1

0

1
(0) exp ( ) exp( ( )),

N

m m

n

I j n j m
N






    (13) 

where Φ(m) is the CPE of the m
th

 OFDM symbol defined as: 

 
1

0

1
( ) ( )

N

m

n

m n
N






    (14) 

Finally, the system model can be simplified as 

  ( ) ( )exp ( ) ( )m m mZ k X k j m k    (15) 

In this case, the CO-OFDM system model with phase noise 

converges to the linear OFDM system model with constant 

phase offset [2]. As a result, even though we focus our 

discussions in this paper on RGI CO-OFDM systems for fiber 

link, all the techniques and results presented here are fully 

applicable for traditional OFDM systems in radio frequency 

domain. 

III. BLIND PHASE NOISE TRACKING 

In CO-OFDM systems, in general, blind PNE can be 

implemented without differential bit encoding. This is due to 

the fact that known training sequences are periodically inserted 

for channel estimation, after which the phase drift is “reset” to 
0, providing the initial phase value. However, if square 

mQAM formats are considered, blind PNE algorithms can 

only estimate the phase wrapped in the interval [-π/4, π/4]. As 

a result, a phase tracking scheme is required for phase 

unwrapping to avoid the phase uncertainty issue. This can be 

done with a feedback loop (FL) or a digital phase tracking 

(DPT) algorithm implemented in a feed forward architecture. 

A. Feedback loop 

In CO-OFDM systems, due to the relatively long symbol 

duration, one symbol-delay feedback loop can be effectively 

applied for phase tracking as shown in Fig. 2 [12]. In this case, 

the laser phase noise is compensated in a two-stage algorithm. 

In the first stage, the received m
th

 OFDM symbol is first 

rotated using the estimated CPE from the previous symbol as 

 

1 ( ) ( )exp( ( 1))

( )exp ( ) ( )exp( ( 1))

m m

m m

Z k Z k j m

X k j m k j m

   

     
 (16) 

where ∆Φ(m) is the residual CPE after equalization. Note that 

this equalization stage does not change the noise statistics and 

variance as χm(k) is Gaussian distributed. As a result, adding 

this equalization stage does not affect the performance of blind 

PNE algorithms. In the second stage of equalization, the 

residual CPE is estimated, compensated for and the phase is 

tracked as 

 ( ) ( 1) ( )m m m     (17) 

Note that in this scheme, the phase can only be tracked if the 

residual CPE ∆Φ(m) after equalization lines in the interval 

[ π/4, π/4]. Otherwise, phase cycle slip occurs, which may lead 

to a catastrophic failure at the receiver. 

B. Digital Phase tracking  

The evolution of laser phase noise can also be tracked without 

a feedback loop using the following digital phase tracking 

algorithm 

  
1

( ) ( ) ( ) ( 1)

m

u

k

m m f k k



        (18) 

where the function f(x) keeps count of the phase cycles and is 

defined as 

 Blind CPE 

Estimation
exp(-j(·))

exp(-j(·))
Feedback 

loop

1 Sym. Delay

( )mZ k

1 Sym. Delay

1 ( )mZ k 2 ( )mZ k

( 1)m 

( )m

( )m

 

Fig. 2. Block diagram of blind PNE with a feedback loop for phase 

tracking 
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( )u m
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/ 2, / 4

( ) 0, / 4

/ 2, / 4

x

f x x

x

 


 

 
 
 

exp(-j(·))

 

Fig. 3 (a) – block diagrams of (a) – blind PNE schemes without feedback 

loop, (b) – phase unwrapping block 
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/ 2, / 4

( ) 0, / 4

/ 2, / 4

x

f x x

x

 


 

 
 
 

 (19) 

The general implementation block diagrams of blind PNE 

schemes without feedback loops and the phase unwrapping 

block are shown in the Fig. 3. This scheme employs only a 

single stage of compensation, and thus, can be much more 

computationally efficient in comparison to the previous 

scheme with FL. It can also be shown that the DPT algorithm 

(18) will fails if Φ(m) - Φ(m-1) lines outside in the interval 

[ π/4, π/4]. 

C. Cycle slip probability 

For mQAM formats, it has been discussed above that phase 

tracking algorithm may fail if the difference between the CPEs 

of the two neighbouring OFDM symbols (Φ(m) - Φ(m-1)) line 

outside the interval [ π/4, π/4], leading to phase cycle-slip.  

Taking into account Eq. (15) we have 

  
1

1

0

1
( ) ( 1) ( ) ( )

N

m m

n

m m n n
N

 





      (20) 

As the laser phase noise ϕ(t) is modelled as a Wiener process, 

ϕm(n) - ϕm-1(n) can be modeled as a random Gaussian 

distributed variable with zero mean and a variance  

 2 2 ST   (21) 

where TS is the total OFDM symbol duration (including cyclic 

prefix). Therefore, Φ(m) - Φ(m-1), which is the mean value of  

ϕm(n) - ϕm-1(n), is also a random Gaussian distributed variable 

with the same variance. As a result, the phase cycle-slip 

probability of blind PNE schemes can be calculated as 

 Pr 2 2
4 4 2 s

Q Q
T

 


           
 (22) 

where Q is the Q-function defined as 

 21
( ) exp( / 2)

2



 
x

Q x jz dz  (23) 

The cycle slip probability is shown in Fig. 4 as a function of 

the symbol duration linewidth product (βTS). In CO-OFDM 

systems, when cycle slip occurs it causes all bits to be in error 

until the end of the OFDM frame, where the phase drift is reset 

due to training sequence. For single carrier transmission, an 

acceptable cycle slip probability (without requiring differential 

logical detection) might be 10
-18

 [19]. However, in CO-OFDM 

systems, because of training sequence, an acceptable cycle slip 

probability can be much higher. It has been shown in [7] that 

occurrence of cycle slip has little influence on the performance 

provided that is at least two order of magnitude less than the 

BER. As a result, for CO-OFDM system employing soft-

decision forward error correction, we conclude that an 

acceptable cycle slip probability might be 10
-5

. As shown in 

Fig. 4, the cycle slip probability of 10
-15

 occurs at βTS=5×10
-3

. 

This particularly highlights the challenge for implementing 

blind PNE techniques in CO-OFDM systems with long symbol 

duration. As shown in Fig. 5, when the OFDM symbol 

duration TS=10ns, the laser linewidth β must be below 

500 kHz in order to implement a fully blind PNE technique 

without differential bit encoding. However, for such systems, 

differential bit encoding and cycle slip can also be effectively 

avoided with quasi-blind PNE techniques where two bits are 

allocated in each OFDM symbol for phase tracking after blind 

PNE. This simple technique almost does not reduce the 

spectral efficiency and increase the complexity while 

significantly relaxing the requirements for transceivers’ lasers. 
The linewidth requirement of quasi-blind PNE technique is out 

of scope of this paper and is open for future research. 

IV. DECISION DIRECTED FREE BLIND PNE 

In this section we provide a detailed theoretical analysis of the 

decision-directed-free (DDF) blind PNE technique, which was 

proposed and experimentally demonstrated in [12]. This 

technique uses the following cost function, which is the mean 

value of the squared product of the projections of real and 

imaginary parts after rotation by a phase angle ϕ 

    2 2

1( ) Re ( ) Im ( )j j
m m

k

J E Z k e Z k e
      

 
 (24) 

where E stands for the averaging operation over a portion or 

all of the subcarriers in the m
th

 symbol. 

For squared QAM formats (e.g. QPSK, 16QAM, 32QAM) 

with identical probabilities of constellation points, the 

10
-3

10
-2

10
-1

10
-25

10
-20

10
-15

10
-10

10
-5

10
0

C
y

cl
e 

S
li

p
 P

ro
b

a
b

il
it

y

ST
 

Fig. 4. Phase cycle-slip probability as a function of symbol-duration-

linewidth product in CO-OFDM systems with blind PNE 
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Fig. 5. Maximum allowable laser linewidth as a function of symbol duration 

for implementing blind PNE in CO-OFDM systems  
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proposed cost function reaches its maximum value at ϕ = Φ(m) 
This phenomenon can be explained by the fact that ideal 

squared QAMs provide a “balance” between the real and 
imaginary parts of constellation points, thus, maximizing the 

mean value of the squared product of the projections of real 

and imaginary parts [12]. A similar cost function called 

dispersion minimization derotator (DDM), which is the 

dispersion of the projection of the constellation onto the real 

axis, was also considered in [20]. 

In a similar way with [20], the well-known stochastic gradient 

algorithm can be applied to maximize the cost function (24) as 

 

   
   

1

2 2

Re ( ) Im ( )

Im ( ) Re ( )

j j
k k m m

j j
m m

E Z k e Z k e

Z k e Z k e

 

 

    


 

  

     

 (25) 

which exploits the fact that 

 
     
     

/ Re ( ) Im ( )

/ Im ( ) Re ( )

j j
m m

j j
m m

Z k e Z k e

Z k e Z k e

 

 





 

 

  

   
 (26) 

However, stochastic gradient algorithm usually requires tens of 

iterative steps upon convergence. In this case, the complexity 

is still an issue, especially in high-speed RGI CO-OFDM 

systems. Therefore, it is desirable to calculate the CPE without 

iterative algorithms. We will show that this is possible using 

the cost function (24). 

Herein, we focus our analysis on square QAM formats. If the 

probabilities of constellation points are identical, which 

usually the case for modern transmission systems, it is easily to 

show that the following assumptions are valid [20]. 

Assumptions 

 i) The second cross-moment is separable, i. e., 

          2 2 2 2
Re ( ) Im ( ) Re ( ) Im ( )m m m mE X k X k E X k E X k   

 ii) Most cross-moments vanish 

    Re ( ) Im ( ) 0
h v

m mE X k X k  , 

if 2h  , 2v   and 0 , 3h v   

 iii) The variances of the real and imaginary parts of the 

signal are the same 

     2 2
Re ( ) Im ( )m mE X k E X k  

 iv) ( )mX k and ( )m k are statistically independent 

Under these assumptions, straightforward calculations show 

that 

 
2 2

2 4
1

1 1
( ) cos(4 4 ( ))

8 8 2 4

X X
X

P P
J m P            (27) 

where 2
XP  is the signal power, and 

2
  is the variance of the 

noise term ( )m k . 

As a result, the cost function J1(ϕ) can be written in this form 

 1( ) cos(4 4 ( )) ,J A m B      (28) 

where A, B, Φ(m) are three variables to be determined. 

Knowing the form of the cost function, the CPE (Φ(m)) can be 

easily defined using just three test phases, for example, 0, π/4 
and π/8 as follows 
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Fig. 6. Calculated cost functions J1(ϕ), J2(ϕ) and J3(ϕ) and its estimations 

using three test phases as function of phase offsets for 16QAM with N=200 

subcarriers and SNR=6 dB 
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  1 1(0) ( / 4) / 2B J J    (29) 

    2 2

1 1(0) ( / 8)A J B J B     (30) 

   1 1( ) 0.25 ( ( / 8)) acos (0) / ,m sgn B J J B A       (31) 

where sgn() is the sign function. 

The calculated cost function J1(ϕ) and its estimation using 3 

test phases for 16-QAM with a SNR of 6 dB and a typical 

value of subcarrier N = 200 are compared in Fig. 6(a), 

showing no mismatch. Similar results (not shown here) were 

obtained for QPSK, 32QAM and 64QAM. This confirms that 

the cost function J1(ϕ) can be very well approximated using 

three parameters A, B, Φ(m) as shown in Eq. (28). As a 

consequence, with decision-directed-free (DDF) blind PNE 

technique, the CPE can be effectively calculated using only 

three test phases regardless of the modulation formats. This 

significantly reduces the implementation complexity in 

comparison with BPS, where 16-32 tests phases are required, 

depending on modulation formats. 

To calculate the cost function J1(ϕ), 3 real multiplications per 

symbol are required. To further reduce the implementation 

complexity, we propose here two novel cost functions with 

similar properties 

     2 ( ) Re ( ) Im ( )j j
m m

k

J E Z k e Z k e
      (32) 

     3( ) Re ( ) Im ( )j j
m m

k

J E Z k e Z k e
      (33) 

Unfortunately, there are no simple close-form expressions for 

the two cost functions J2(ϕ) and J3(ϕ). However, in a similar 

way to J1(ϕ), the cost functions J2(ϕ) and J3(ϕ) reach their 

maximum values at ϕ = Φ(m) for squared QAM formats. In 

addition, both cost functions J2(ϕ) and J3(ϕ) can be 

approximated well using the Eq. (28). As a result, the CPE can 

also be defined with the help of J2(ϕ) and J3(ϕ) using Eq. (29-

32) with reduced complexities. To calculate the cost function 

J2(ϕ) only one real multiplication/symbol is required thus, 

reduces the complexity by 3 times in comparison to J1(ϕ). 

Furthermore, in the case of J3(ϕ), no multiplications are 

required, offering very low complexity in implementation. A 

comparison on the complexities of blind PNE techniques is 

given in section VI. 

However, the complexity reductions associated with the use of 

the cost functions J2(ϕ) and J3(ϕ) also come with a price. As 

shown in Fig. 6(b)-(c) the deviations of the calculated and 

approximated functions for J2(ϕ) and J3(ϕ) can be observed. 

This mismatch can degrade the performance of DDF PNE 

techniques employing J2(ϕ) and J3(ϕ). 

The root-mean-square-error (RMSE) of CPE as a function of 

SNR for DDF blind PNE techniques employing J1(ϕ), J2(ϕ) 

and J3(ϕ) for 16QAM CO-OFDM transmission with 100 

subcarriers are presented in Fig. 7. Herein, the RMSE is 

calculated using Monte-Carlo simulation of the model (16) 

with 10000 runs. In Fig. 7, the best performance is achieved 

with J1(ϕ), showing that a small RMSE of 0.1 rad can be 

achieved at SNRs > 5.3 dB. This result clearly indicates the 

high tolerance of the DDF blind PNE technique to Gaussian 

noise. However, when J2(ϕ) and J3(ϕ) are employed the 

required SNRs for a RMSE of 0.1 rad are 5.8 dB (0.5 dB SNR 

penalty) and 6.8 dB (1.5 dB SNR penalty), respectively. 

However, the SNR penalties associated with the uses of J2(ϕ) 

and J3(ϕ) reduce if the number of subcarrier N is increased. As 

shown in Fig. 8, at a low value of N of 50, the SNR penalties 

of J2(ϕ) and J3(ϕ) are 1.1 dB and 2.4 dB, respectively. 

However, if N = 1000, SNR penalties of J2(ϕ) and J3(ϕ) are 

reduced to only 0.1 dB and 0.3 dB, respectively. This result 

indicates that if the number of OFDM subcarrier is large, J2(ϕ) 

and J3(ϕ) can be used efficiently instead of J1(ϕ) to offer a very 

low complexity blind PNE. 

V. PERFORMANCE COMPARISON 

In this section, through numerical simulation, we compare the 

performance of DDF blind PNE technique with difference cost 

functions with BPS and pilot-aided techniques. We focus our 

discussion on high order modulation formats, namely 16QAM 

and 64QAM. It has been shown experimentally in [12] that 

DD-based blind PNE technique performs poorly for such high 

modulation formats. As a result, we do not take into account 

DD blind PNE in our comparison in this paper. 
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Fig. 7. Root-mean-square-error (RMSE) of CPE as a function of SNR for 

DDF PNE techniques employing J1(ϕ), J2(ϕ) and J3(ϕ) for 16QAM CO-

OFDM transmission with N=100 subcarriers 
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Fig. 9(a) –BER performances of PNE techniques, including PA-aided with 16 pilots (blue), BPS with 16 test phases (brown) and DDF blind PNE with different 

cost functions (red- J1(ϕ), green- J2(ϕ),  pink- J3(ϕ)) with feedback loop (solid) and digital phase tracking (open) for 16QAM, the symbol duration linewidth 

product is 5·10-3; (b) – BER performance of the same PNE (only showing digital phase tracking) for 64QAM, the symbol duration linewidth product is 2·10-3. 
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Fig. 10: Constellation diagrams for 16QAM at a SNR of 23 dB, before PNE (a), after PNE using PA-aided technique with 16 pilots (b), after PNE with DDF 

blind PNE technique with digital phase tracking and J1(ϕ) (c), after PNE using BPS with 16 test phases (d), after PNE DDF blind PNE technique with digital 

phase tracking and J2(ϕ) and J3(ϕ) (e, f). 
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For investigation the performance of blind PNE techniques for 

CO-OFDM systems, there are two critical parameters, namely 

the number of OFDM subcarriers N and the symbol duration 

linewidth product βTs. In our simulation, we vary βTs by 

varying the laser linewidth while the OFDM symbol duration 

is kept constant at 10ns, which is equivalent to a subcarrier 

spacing of 100 MHz. The system BER is evaluated through 

direct error counting using Monte Carlo simulation with a total 

number of symbols of 2·10
5
 (8·10

5
, 1.2·10

6
 bits for 16QAM 

and 64QAM, respectively). In the light of (16), we take into 

account here only the back-to-back transmission regime for 

simplicity to study the tolerance of PNE techniques to AWGN 

and laser linewidth. The simulation results for 16QAM and 

64QAM are presented in Fig. 9-11. 

In Fig. 9(a), the BER performances of PNE techniques, 

including PA-aided with 16 pilots, BPS with 16 test phases 

and DDF blind with FL, DPT and different cost functions are 

compared for βTs = 5·10
-3

 and N = 200. It can be seen that FL 

and DPT offer the same performance in all considered blind 

PNE techniques. Taking into account the fact that DPT is 

much more computationally efficient for practical 

implementations, we will further consider only DPT. In 

Fig. 9(a), DDF blind with the cost function J1(ϕ) shows the 

same performance in comparison to the complicated BPS with 

16 test phases. This confirms the high performance of DDF 

blind PNE technique. Even though the complexity of DDF 

blind with J1(ϕ) is relatively low in comparison to BPS, 

different cost functions, namely J2(ϕ) and J3(ϕ) can also be 

effectively applied to reduce further the complexity. In Fig. 

9(a), DDF blind with J2(ϕ) shows a similar performance in 

comparison to PA-aided with 16 pilots. On the other hand, the 

implementation of DDF blind with J3(ϕ) leads to ~ 1 dB SNR 

penalty at a BER level of 10
-3

. 

Similar results for 64QAM for βTs = 2·10
-3

 is shown in Fig. 

9(b). Here DDF with J1(ϕ) also offers a similar performance in 

comparison to BPS. However, for 64QAM, the effectiveness 

of blind PNE technique is reduced as DDF blind with J1(ϕ) 

and BPS does not offer significant performance advantage 

over PA-aided with 16 pilots. However, blind PNE techniques 

are still attractive here because of the high spectral efficiency 

offered. The constellation diagrams for 16QAM at SNR = 

23 dB before and after phase compensation with different PNE 

techniques are shown in Fig. 10. 

The power penalties at a BER of 10
-3

 as functions of βTS for 

PA-aided, BPS and DDF blind PNE with different cost 

functions for 16QAM transmission with 200 subcarriers are 

shown in Fig. 11(a). At 1 dB SNR penalty, the linewidth 

tolerance of BPS and DDF blind with J1(ϕ) is βTs = 4·10
-3

. For 
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Fig. 11 (a) – The SNR penalty at a BER of 10-3 as a function of βTS for PA-aided, BPS and DDF blind PNE with different cost functions for 16QAM 

transmission with 200 subcarriers; (b) – similar result for 16QAM and 100 subcarriers; (c) – similar result for 64QAM at a BER of 10-2 and 200 subcarriers; (d) 

– SNR penalty as a function of N at a BER of 10-2 for 64QAM and βTS of 10-3. 
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DDF blind with J2(ϕ) and J3(ϕ) the linewidth tolerances are βTs 

= 2·10
-3

 and 10
-3

, respectively. 

When the number of OFDM subcarrier is reduced to 100, DDF 

blind with J1(ϕ) still shows excellent performance, with a 

similar linewidth tolerance to the case of 200 subcarriers. 

However, the performances of DDF blind with J2(ϕ) and J3(ϕ) 

degrade significantly. At 1 dB SNR penalty, the linewidth 

tolerance of DDF blind with J2(ϕ) in this case is βTs = 5·10
-4

 

while 1 dB SNR penalty even cannot be achieved with DDF 

blind with J3(ϕ) for βTs > 10
-5

. This indicates that DDF blind 

with J3(ϕ) is not suitable for a low value of N. 

Similar results for 64QAM at a BER of 10
-2

 and N = 200 are 

shown in Fig. 11(c). At 1 dB SNR penalty, the linewidth 

tolerance of DDF blind with J1(ϕ) in this case is βTs = 10
-3

. 

The SNR penalties as functions of N at a BER of 10
-2

 for 

64QAM and βTS of 10
-3

 are shown in Fig. 11(d). It should be 

noted, unlike other blind PNE techniques, the performance of 

PA-aided technique is independent of N. Blind phase search 

and DDF blind with J1(ϕ) show excellent performance when 

N>100. On the other hand, DDF blind with J2(ϕ) and J3(ϕ) 

should be considered only if N is equal or bigger than 200. 

VI. COMPLEXITY COMPARISON 

Herein, we compare the complexities BPS and DDF blind 

PNE techniques and in term of the required number of real 

multipliers, adders, comparators and decisions. The root-

square operation is counted as one multiplier. The result is 

shown in the Table I, where M is the number of test phases in 

BPS and N1 ≤ N is the number of subcarriers used for PNE. 

The required real multipliers for DDF blind PNE with J1(ϕ) 

and J2(ϕ) are around 7 and 21 times less than those of BPS 

with 16 test phases. The numbers of adders are also reduced by 

10 times. In addition, DDF blind PNE does not require any 

comparators and decisions. This clearly indicates that DDF 

blind PNE is much more computational efficient than BPS. 

TABLE I 

COMPLEXITIES OF BSP AND DDF BLIND PNE TECHNIQUES 

PNE Multipliers Adders Comparators Decisions 

BPS 4N1M 2N1M M+1 N1M+N1 

DDF + J1(ϕ) 9N1+4 3N1+4 0 0 

DDF + J2(ϕ) 3N1+4 3N1+4 0 0 

DDF + J3(ϕ) 4 3N1+4 0 0 

VII. CONCLUSION 

In this paper, we have shown that blind PNE can be effectively 

applied for CO-OFDM transmissions with BPS and DDF blind 

PNE. Using only three test phases, DDF blind PNE technique 

can offer a comparable performance in comparison with BPS 

with 16 tests phases, and thus, offering an effective solution 

for practical implementation. In addition, when the number of 

subcarriers is sufficient (N>200) the complexity of DDF blind 

can be further significantly reduced with two novel proposed 

cost functions. 
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