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Abstract

Phonemic segmentation of speech is a crit-

ical step of speech recognition systems.

We propose a novel unsupervised algo-

rithm based on sequence prediction mod-

els such as Markov chains and recurrent

neural networks. Our approach consists

in analyzing the error profile of a model

trained to predict speech features frame-

by-frame. Specifically, we try to learn

the dynamics of speech in the MFCC

space and hypothesize boundaries from lo-

cal maxima in the prediction error. We

evaluate our system on the TIMIT dataset,

with improvements over similar methods.

1 Introduction

One of the main difficulty of speech processing

as opposed to text processing is the continuous,

time-dependent nature of the signal. As a conse-

quence, pre-segmentation of the speech signal into

words or sub-words units such as phonemes, syl-

lables or words is an essential first step of a variety

of speech recognition tasks.

Segmentation in phonemes is useful for a num-

ber of applications (annotation of speech for

the purpose of phonetic analysis, computation of

speech rate, keyword spotting, etc), and can be

done in two ways. Supervised methods are based

on an existing phoneme or word recognition sys-

tem, which is used to decode the incoming speech

into phonemes. Phonemes boundaries can then

be extracted as a by-product of the alignment of

the phoneme models with the speech. Unsuper-

vised methods (also called blind segmentation)

consist in finding phonemes boundaries using the

acoustic signals only. Supervised methods depend

∗This work was done when the author was an intern at
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on the training of acoustic and language models,

which requires access to large amounts of linguis-

tic resources (annotated speech, phonetic dictio-

nary, text). Unsupervised methods do not require

these resources and are therefore appropriate for

so-called under-resourced languages, such as en-

dangered languages, or languages without consis-

tent orthographies.

We propose a blind phoneme segmentation

method based on short term statistical properties

of the speech signal. We designate peaks in the

error curve of a model trained to predict speech

frame by frame as potential boundaries. Three dif-

ferent models are tested. The first is an approx-

imated Markov model of the transition probabili-

ties between categorical speech features. We then

replace it by a recurrent neural network operating

on the same categorical features. Finally, a recur-

rent neural network is directly trained to predict

the raw speech features. This last model is espe-

cially interesting in that it couples our statistical

approach with more common spectral transition

based methods (Dusan and Rabiner (2006) for in-

stance).

We first describe the various models used and

the pre- and post-processing procedures, before

presenting and discussing our results in the light

of previous work.

2 Related work

Most previous work on blind phoneme segmenta-

tion (Esposito and Aversano, 2005; Estevan et al.,

2007; Almpanidis and Kotropoulos, 2008; Rasa-

nen et al., 2011; Khanagha et al., 2014; Hoang

and Wang, 2015) has focused on the analysis of

the rate of change in the spectral domain. The

idea is to design robust acoustic features that are

supposed to remain stable within a phoneme, and

change when transitioning from one phoneme to
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the next. The algorithm then define a measure

of change, which is then used to detect phoneme

boundaries.

Apart from this line of research, three main

approaches have been explored. The first idea

is to use short term statistical dependencies. In

Räsänen (2014), the idea was to first discretize

the signal using a clustering algorithm and then

compute discrete sequence statistics, over which a

threshold can be defined. This is the idea that we

follow in the current paper. The second approach

is to use dynamic programming methods inspired

by text segmentation (Wilber, 1988), in order to

derive optimal segmentation (Qiao et al., 2008). In

this line of research, however, the number of seg-

ments is assumed to be known in advance, so this

cannot count as blind segmentation. The third ap-

proach consists in jointly segmenting and learning

the acoustic models for phonemes (Kamper et al.,

2015; Glass, 2003; Siu et al., 2013). These mod-

els are much more computationally involved than

the other methods. Interestingly they all use a sim-

pler, blind segmentation as an initialization phase.

Therefore, improving on pure blind segmentation

could be useful for joint models as well.

The principal source of inspiration for our work

comes from previous work by Elman (1990) and

Christiansen et al. (1998) published in the 90s. In

the former, the author uses recurrent neural net-

works to train character-based language models on

text and notices that ”The error provides a good

clue as to what the recurring sequences in the in-

put are, and these correlate highly with words.”

(Elman, 1990). More precisely, the error tends

to be higher at the beginning of new words than

in the middle. In the latter, the author uses El-

man recurrent neural networks to predict bound-

aries between words given the character sequence

and phonological cues.

Our work uses the same idea, using prediction

error as a cue for segmentation, but with two im-

portant changes: we apply it to speech instead of

text, and we use it to segment in terms of phoneme

units instead of word units.

3 System

3.1 Pre-processing

We used two kinds of speech features : 13 di-

mensional MFCCs (Davis and Mermelstein, 1980)

(with 12 mel-cepstrum coefficients and 1 energy

coefficient) and categorical one-hot vectors de-

rived from MFCCs inspired by Räsänen (2014).

Figure 1: Visual representation of the various

features on 100 frames from the TIMIT corpus.

From top to bottom are the waveform, the 13-

dimensional MFCCs and the 8-dimensional one

hot encoded categorical features.

The latter are computed according to Räsänen

(2014) : K-means clustering1 is performed on a

random subset of the MFCCs (10,000 frames were

selected at random), with a target number of clus-

ters of 8, then each MFCC is identified to the clos-

est centroid. Each frame is then represented by a

cluster number c ∈ {1, . . . , 8}, or alternatively by

the corresponding one-hot vector of dimension 8.

These hyper-parameters were chosen according to

Räsänen (2014).

Figure 1 allows for a visual comparison of the

three signals (waveform, MFCC, categorical).

The entire dataset is split between a training and

a testing subset. A randomly selected subset of the

training part is used as validation data to prevent

overfitting.

3.2 Training phase

A frame-by-frame prediction model is then

learned on the training set. The three different

models used are described below :

Pseudo-markov model When trying to pre-

dict the frame xt given the previous frames

xt−1
0 := xt−1, . . . , x0, a simplifying assumption is

to model the transition probabilities with a Markov

1In particular, we use the K-means++ (Arthur and Vas-
silvitskii, 2007) algorithm, and pick the best outcome of 10
random initializations
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chain of higher order K, i.e. p(xt|x
t−1
0 ) = p(xt |

xt−1
t−K). Provided each frame is part of a finite al-

phabet, a finite (albeit exponential in K) number

of transition probabilities must be learned.

However, as the order rises, the ratio between

the size of the data and the number of transition

probability being learned makes the exact calcula-

tion more difficult and less relevant.

In order to circumvent this issue, we approxi-

mate the K-order Markov chain with the mean of

1-order markov chain of the lag-transition proba-

bilities p(xt|xt−i) for 1 6 i 6 K, so that

p(xt|x
t−1
0 ) =

1

K

K
∑

i=1

p(xt|xt−i) (1)

with p(xt|xt−i) =
f(xt,xt−i)
f(xt−i)

.

In practice, we chose K = 6, thus ensuring that

the markov model’s attention is of the same order

of magnitude than the length of a phoneme.

Compared to Räsänen (2014), this model only

uses information from previous frames and as such

is completely online.

Recurrent neural network on categorical fea-

tures Alternatively to Markov chains, the tran-

sition probability p(xt|x
t−1
0 ) can be modeled by

a recurrent neural network (RNN). RNN can the-

oretically model indefinite order temporal de-

pendencies, hence their advantage over Markov

chains for long sequence modeling.

Given a set of examples {(xt, (x
t−1
0 )) |

t ∈ {0, . . . , tmax}}, the networks parameters are

learned so that the error E(xt,RNN(xt−1
0 )) is

minimized using back propagation through time

(Werbos, 1990) and stochastic gradient descent or

a variant thereof (we have found RMSProp (Tiele-

man and Hinton, 2012) to give the best results).

In our case, the network itself consists of two

LSTM layers (Hochreiter and Schmidhuber, 1997)

stacked on one another followed by a linear layer

and a softmax. The input and output units have

both dimension 8, whereas all other layers have

the same hidden dimension 40. Dropout (Srivas-

tava et al., 2014) with probability 0.2 was used af-

ter each LSTM layer to prevent overfitting.

A pitfall of this method is the tendency of the

network to predict the last frame it is fed. This

is due to the fact that the sequences of categori-

cal features extracted from speech contain a lot of

constant sub-sequences length > 2.

As a consequence, around 80% of the data fed

to the network consists of sub-sequences where

xt = xt−1 . Despite the fact that phone bound-

aries are somewhat correlated with changes of cat-

egories (around 65% of the time), this leads the

network to a local minimum where it only tries to

predict the same characters.

To mitigate this effect, examples where xt =
xt−1 were removed with probability 0.8, so that

the number of transitions was slightly skewed to-

wards category transitions. The model still passed

over all frames during training but the error was

back-propagated for only 46% of them. This

change lead to substantial improvement.

Recurrent neural network on raw MFCCs

The recurrent neural network model can be

adapted to raw speech features simply by changing

the loss function from categorical cross-entropy to

mean squared error, which is the direct translation

from a categorical distribution to a Gaussian den-

sity (2‖x − y‖22 + d is the Kullback-Leibler diver-

gence of two d-dimensional normal distributions

centered in x and y with the same scalar covari-

ance matrix).

We used the same architecture than in the cat-

egorical case, simply removing the softmax layer

and decreasing the hidden dimension size to 20.

In this case, no selection of the samples is needed

since the sequences vary continuously.

3.3 Test phase

Each model is run on the test set and the prediction

error is calculated at each time step according to

the formula :

Emarkov(t) = − log

(

K
∑

i=1

p(xt|xt−i)

)

ERNN-cat(t) = −
d
∑

i=1

✶xt=i log(RNN(xt−1
0 ))

ERNN-MFCC(t) =
1

d

∥

∥xt − RNN(xt−1
0 )

∥

∥

2

2

(2)

In each case this corresponds, up to a scaling

factor constant across the dataset, to the Kullback-

Leibler divergence between the predicted and ac-

tual probability distribution for xt in the feature

space.

Since all three systems predict probabilities

conditioned by the preceding frames, they cannot

be expected to give meaningful results for the first
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Algorithm P R F R-val

Periodic 57.5 91.0 70.5 46.9

Rasanen (2014) 68.4 70.6 69.5 73.7

Markov 70.7 77.3 73.9 76.4

RNN (Cat.) 68.7 77.1 72.7 74.6

RNN (Cont.) 70.3 72.4 71.3 75.3

Table 1: Final results (in%) evaluated with

cropped tolerance windows

frames of each utterance. To be consistent, the first

7 frames (70 ms) of the error signal for each utter-

ance were set to 0.

A peak detection procedure is then applied to

the resulting error. As we are looking for sudden

bursts in the prediction error, a local maximum is

labeled as a potential boundary if and only if the

difference between its value and the one of the pre-

vious minimum is superior to a certain threshold δ.

4 Experiments

4.1 Dataset

We evaluated our methods on the TIMIT dataset

Fischer et al. (1986). The TIMIT dataset consists

of 6300 utterances (∼ 5.4 hours) from 630 speak-

ers spanning 8 dialects of the English language.

The corpus was divided into a training and test

set according to the standard split. The training

set contains 4620 utterances (172,460 boundaries)

and the test set 1680 (65,825 boundaries).

4.2 Evaluation

The performance evaluation of our system is based

on precision (P ), recall (R) and F -score, defined

as the harmonic mean of precision and recall. A

drawback of this metric is that high recall, low

precision results, such as the ones produces by hy-

pothesizing a boundary every 5 ms (P : 58%, R :

91%) yield high F -score (70%).

Other metrics have been designed to tackle this

issue. One such example is the R-value (Räsänen

et al., 2009) :

R-val = 1−

√

(1− R)2 + OS2 + |R+1−OS√
2

|

2
(3)

Where OS = R
P
− 1 is the over-segmentation

measure. The R value represents how close the

segmentation is from the ideal 0 OS, 1 R point and

the P=1 line in the R, OS space. Further details

can be found in Räsänen et al. (2009).

Algorithm P R F R-val

Periodic 62.2 98.3 76.2 49.8

Rasanen (2014) 74.0 70.0 73.0 76.0

Markov 74.8 81.9 78.2 80.1

RNN (Cat.) 72.5 81.4 76.7 78.0

RNN (Cont.) 77.6 72.7 75.0 78.6

Table 2: Final results (in%) evaluated with over-

lapping tolerance windows. The scores reported

for Rasanen (2014) are the paper results.

Determining whether gold boundary is detected

or not is a crucial part of the evaluation proce-

dure. On our test set for instance, which contains

65,825 gold boundaries partitioned into 1,680

files, adding or removing one correctly detected

boundary per utterance leads to a change of ±
2.5% in precision. This means that minor changes

in the evaluation process (such as removing the

trailing silence parts of each file, removing the

opening and closing boundary) yield non-trivial

variations in the end result.

A common condition for a gold boundary to be

considered as ’correctly detected’ is to have a pro-

posed boundary within a 20 ms distance on either

side. Without any other specification, this means

that a proposed boundary may be matched to sev-

eral gold boundaries, provided these are within 40

ms from each other, leading to an increase of up to

4% F-score in some of our results (74%—78%).

Unfortunately this point is seldom detailed in the

literature.

We decided to use the procedure described in

Räsänen et al. (2009) to match gold boundaries

and hypothesized boundaries : overlapping toler-

ance windows are cropped in the middle of the two

boundaries.

4.3 Results

The current state of the art in blind phoneme seg-

mentation on the TIMIT corpus is provided by

Hoang and Wang (2015). It evaluates to 78.16%

F-score and 81.11 R-value on the training part of

the dataset, using an evaluation method similar to

our own.

In Tables 1 and 2 we compare our best re-

sults to the previous statistical approach evoked in

Räsänen (2014) and the naive periodic boundaries

segmentation (one boundary each 5 ms). Since

Räsänen (2014) used an evaluation method allow-

ing for tolerance windows to overlap, we provide

65



our results with both evaluation methods (full win-

dows and cropped windows) for the sake of con-

sistency.

Another main difference with Räsänen (2014)

is that its results are given on the core test set of

TIMIT, whereas our results are given on the full

test set.

Figure 2: Precision/recall curves for our various

models when varying the peak detection threshold

δ

Figure 2 provides an overview of the preci-

sion/recall scores when varying the peak detec-

tion threshold (and, in case of periodic boundaries,

the period). This gives some insight about the ac-

tual behavior of the various algorithms, especially

in the high precision, low recall region where the

RNN on actual MFCCs seems to outperform the

methods based on discrete features.

We provide Figure 3 as a qualitative assessment

of the error profiles of all three algorithms on one

specific utterance. Notably, the error profile of

the markov model contains distinct isolated peaks

of similar height. As expected, the error curve

is much more noisy in the case of the RNN on

MFCCs, due to the greater variability in the fea-

ture space.

5 Discussion

In terms of optimal F-score and R values, the sim-

ple Markov model outperformed the previously

published paper using short term sequential statis-

tics (Räsänen, 2014), as well as the recurrent neu-

ral networks. However, these optimal values may

mask the differential behavior of these algorithms

in different sections of the precision/recall curve.

In particular, it is interesting to notice that the

neural network based model trained on the raw

MFCCs gave very good results in the low recall,

high precision domain. Indeed, the precision can

reach 90% with a recall of 40%. Such a regime

could be useful, for instance, if blind phoneme

segmentation is used to help with word segmen-

tation.

The reason of the higher precision of neural

networks may be that it combines the sensitivity

of this model to sequential statistical regularities

of the signal, but also to the spectral variations,

i.e. the error is also correlated to the spectral

changes, meaning that some peaks are associated

with a high error because the euclidean distance

‖xt+1 − xt‖2 itself is big. This is why the height

difference is much more significant in this case.

Figure 3: Comparison of error signals (gold

boundaries are indicated in red)

Although we only reported the best results, we

also tested our model on two other neural network

architectures : a single vanilla RNN and a single

LSTM cell. Both architecture did not yield signifi-

cantly different results (∼ 1—2% F-score, mainly

dropping precision). Similarly, different hidden

dimension were tested. In the extreme cases (very

low - 8 - or high - 128 - dimension), the output

signal proved too noisy to be of any significance,

yielding results comparable to naive periodic seg-

mentation.

It is worth mentioning that our approach doesn’t

make any language specific assumption, and as

such similar results are to be expected on other

languages. We leave the confirmation of this as-

sumption to future work.
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6 Conclusions

We have presented a lightweight blind phoneme

segmentation method predicting boundaries at

peaks of the prediction loss of transition probabil-

ities models. The different models we tested pro-

duced satisfying results while remaining computa-

tionally tractable, requiring only one pass over the

data at test time.

Our recurrent neural network trained on speech

features in particular hints at a way of combining

both the statistical and spectral information into a

single model.

On a machine learning point of view, we high-

lighted the use that can be made of side channel

information (in this case the test error) in order to

extract structure from raw data in an unsupervised

setting.

Future work may involve exploring different

RNN models, assessing the stability of these meth-

ods on simpler features such as raw spectrograms

or waveforms, or exploring the representation of

each frame in the hidden layers of the networks.
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