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Introduction

Massive MIMO

Massive MIMO mimics the idea of spread spectrum.

Spread spectrum:
I Massive use of bandwidth

I Large processing gain

Massive MIMO:
I Massive use of antenna elements

I Large array gain

Both systems can operate in arbitrarily strong noise and interference.
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Introduction

Uplink (Reverse Link) System Model

R

L

T

R � T L ∼ T
Y = HX + Z
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Introduction

Pilot Contamination

For T transmit antennas and R receive antennas, even for a static channel, RT
channel coefficients must be estimated.

Linear channel estimation:
I The array gain, can be utilized for data detection, but not for channel

estimation.

I Channel estimation ultimately limits performance.

General channel estimation:
I Can the array gain can be utilized for both channel estimation and data

detection?

I Is the performance limited by channel estimation?

How to estimate a massive MIMO channel appropriately?
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Algorithm

Blind Interference Rejection

This topic was well studied in the ’90s in context of spread-spectrum, see e.g.
U. Madhow: ”Blind adaptive interference suppression for direct sequence CDMA,“
Proceedings of the IEEE, Oct. 1998.

Idea:
I The signal of interest and the interference are almost orthogonal.

I We need not know the channel coefficients of the interference, but only the
subspace the interference occupies.

Implementation:

I Project onto the orthogonal complement of the interference subspace.

How to find the interference subspace or its orthogonal complement?
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Algorithm

Matched Filter Projection

Let us start the considerations with a SIMO system and white noise only.

Let yc be the column vector received at the receive array at time c and
Y = [y1, . . . , yC ] with C denoting the coherence time.
We would like to find a linear filter m, such that m†Y has high SNR.
We get

m = argmax
m0

||m†
0Y||2

||m0||2
= argmax

m0

m†
0YY†m0

m†
0m0

is that eigenvector of YY† that corresponds to the largest eigenvalue.
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Algorithm

Matched Filter Projection II

Next, consider a MIMO system with T > 1 transmit antennas and white noise.

Now, we look for a basis M of the T -dimensional subspace containing the
signal of interest.
We find it by an eigenvalue decomposition of YY† picking those eigenvectors
which correspond to the T largest eigenvalues.
We now project the received signal onto that subspace

Y′ = M†Y

and dismiss all noise components outside that subspace.
By the massive MIMO philosophy, i.e. T � R, this subspace is much smaller
than the full space.

We have utilized the array gain without estimating the channel.
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Algorithm

Matched Filter Projection III

Consider now the general case (noise, interference and a MIMO system with
T > 1 transmit antennas and R � T receive antennas).

While white noise is small in all components if

SNR� T
R

� 1,

the interference typically concentrates in few signal dimensions where it is
strong.

How to distinguish the signal of interest from interference?
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Algorithm

Power Controlled Hand-Off

Consider power-controlled hand-off and perfect received power control.

I
P

I

Interfering signals cannot be stronger than signals of interest, i.e. P ≥ I.
Most interfering signals are noticeably weaker than the signals of interest.
For vanishing load α = T/R → 0, the signals of interest can be separated
from the interference.

What if the load is small, but not vanishing?
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Algorithm

Asymptotic Eigenvalue Distribution

The exact asymptotic eigenvalue distribution can be given implicitly in terms of its
Stieltjes transform

G(s) =
∫ dP(x)

x − s .

For an iid. channel, we find

sG(s) + 1 =−
PTCα

(
sG(s) + 1− κ

)
G(s)

ακ− PTC
(
sG(s) + 1− κ

)
G(s)

−
∫ xLTCα

(
sG(s) + 1− κ

)
G(s) dPI(x)

ακ pI(x)− xTC
(
sG(s) + 1− κ

)
G(s)

−
WCα

(
sG(s) + 1− κ

)
G(s)

κ

with W denoting the noise power, κ = C
R , and PI(x) denoting the power

distribution of the interference.
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Algorithm

Asymptotic Eigenvalue Distribution

Assuming that all LT interferers have power I, i.e. pI(x) = δ(x − I), the
fixed-point equation for the Stieltjes transform simplifies to

sG(s) + 1 =−
PTCα

(
sG(s) + 1− κ

)
G(s)

ακ− PTC
(
sG(s) + 1− κ

)
G(s)

−
ILTCα

(
sG(s) + 1− κ

)
G(s)

ακ− ITC
(
sG(s) + 1− κ

)
G(s)

−
WCα

(
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)
G(s)

κ
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Algorithm

Empirical Eigenvalue Distribution
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Algorithm

Uplink vs. Downlink

We have detected the uplink data without estimating the full channel.
For energy concentration on the downlink (forward link), we need a good estimate
of the full channel matrix H.

1 We use time-division duplex.
2 We project the received signal Y onto the orthogonal complement of the

interference.
3 We use all uplink data to estimate the downlink (forward link) channel to

high accuracy.
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Analysis

Eigenvalue Spread

Assume an i.i.d. channel matrix and R � T →∞.

The eigenvalues of the signal of interest are confined in an interval centered at the
received power P with width

4P
√

T
R +

T
C .

The eigenvalues of the interference are confined in an interval centered at the
interference power I with width

4I
√

LT
R +

LT
C

where L denotes the number of interfering cells.

For massive MIMO, the two widths are quite small.
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Analysis

Eigenvalue Separation

The two intervals do not overlap if

P
I >

1+ 2
√

LT
R + LT

C

1− 2
√

T
R + T

C

.

If the two intervals do not overlap, we can totally reject the interference by means
of eigenvalue decomposition.

For finite number of receive antennas, the interval boundaries are not sharp, but
have exponentially decaying tails.
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Simulation Results

BER vs. Array Size
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Simulation Results

BER vs. Power Margin
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Power Margin

How to guarantee a sufficient power margin between the signal of interest and the
interference?

Two antennas per user.

If a user experiences equally good channel conditions to several base
stations/access points, the user forms a beam that favors one of the base
stations/access points over the others.

If the power margin is sufficient without beam forming, the user can use the two
antennas for spatial multiplexing.

Pro: A sufficient power margin can be established (with high probability).
Con: Users at cell boundaries may suffer from reduced data rate.
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Conclusions

Pilot contamination is not a fundamental effect, but an artefact of linear
channel estimation.

Pilot decontamination based on power control works well under the simulated
conditions.
The algorithm requires real-time eigenvalue or singular value decompositions.
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