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Blind Prediction of Natural Video Quality
Michele A. Saad, Alan C. Bovik, Fellow, IEEE, and Christophe Charrier, Member, IEEE

Abstract— We propose a blind (no reference or NR) video
quality evaluation model that is nondistortion specific. The
approach relies on a spatio-temporal model of video scenes in
the discrete cosine transform domain, and on a model that
characterizes the type of motion occurring in the scenes, to
predict video quality. We use the models to define video statistics
and perceptual features that are the basis of a video quality
assessment (VQA) algorithm that does not require the presence
of a pristine video to compare against in order to predict a
perceptual quality score. The contributions of this paper are
threefold. 1) We propose a spatio-temporal natural scene statistics
(NSS) model for videos. 2) We propose a motion model that
quantifies motion coherency in video scenes. 3) We show that the
proposed NSS and motion coherency models are appropriate for
quality assessment of videos, and we utilize them to design a blind
VQA algorithm that correlates highly with human judgments
of quality. The proposed algorithm, called video BLIINDS, is
tested on the LIVE VQA database and on the EPFL-PoliMi
video database and shown to perform close to the level of top
performing reduced and full reference VQA algorithms.

Index Terms— Video quality assessment, discrete cosine trans-
form, egomotion, generalized Gaussian.

I. INTRODUCTION

T
ODAY’S technology permits video content to be ubiq-

uitously created, stored, transmitted, and shared between

users on a multitude of devices ranging from hand-held PDAs

and tablets, to very large high definition screens. Video con-

tent is being transmitted in exponentially increasing volumes

via wireless and wired networks. The limited availability of

bandwidth, and the physical properties of the transmission

media and capture and display devices means that some

information from the original source is likely to be lost. It is,

however, important that the perceived visual quality at the

end-user be maintained at an acceptable level, given rising

consumer expectations of the quality of multimedia content

delivered to them.

Image and video quality assessment (I/VQA) researchers

have been working to understand how distortions introduced
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throughout the lossy path between the source and destination

affect the statistics of multimedia signals and how these

distortions affect perceived signal quality. The most accurate

way to assess the quality of an image or a video is to collect

the opinions of a large number of viewers of the image/video

in the form of opinion scores that rate the visual quality of the

image or video. These opinion scores are then averaged (usu-

ally after normalization with respect to each individual’s score

average). This average is known as the mean-opinion-score

(MOS), and the overall process is referred to as subjective

I/VQA. While subjective I/VQA is cumbersome, expensive,

impractical and for many important applications infeasible

(e.g. for real-time monitoring of video quality in a network),

it is valuable for providing ground truth data for the evaluation

of objective I/VQA algorithms.

Objective I/VQA refers to models that seek to predict the

visual quality of a signal automatically, in the absence of

human raters. Objective quality assessment methods fall into

three categories: 1) full-reference (FR), 2) reduced-reference

(RR), and 3) blind or no-reference (NR) approaches.

FR-I/VQA refers to I/VQA models that require the pres-

ence of a reference signal to predict the quality of a test

signal. FR-IQA models now exist that achieve excellent levels

of performance, as demonstrated by high correlations with

human subjective judgments of visual quality. SSIM [1],

MS-SSIM [2], VSNR [3], MAD [4], and the VIF index [5]

are examples of successful FR-IQA algorithms. Promi-

nent FR-VQA algorithms include MOVIE [6], VSSIM [7],

VQM [8], DVQ [9], Tetra VQM [10], ST-MAD [11], and the

work in [12] and [13]. These methods require the availability

of a reference video against which to compare the test signal.

In many applications, however, the reference is not available

to perform a comparison against, which severely limits the

application domain of FR-IQA algorithms.

RR-I/VQA refers to I/VQA models that require partial infor-

mation about the reference signal in order to predict the quality

of a test signal. Successful RR-I/VQA algorithms include

the wavelet-based RR-IQA algorithm in [14], the divisive

normalization transform-based RR-IQA algorithm in [15], the

information theoretic RRED index in [16], and the wavelet-

based RR-VQA method in [17].

NR-I/VQA models have potentially much broader applica-

bility that FR and RR models since they can predict a quality

score in the absence of a reference image/video or any specific

information about it. The problem of “blindly” assessing the

visual quality of images and videos requires dispensing with

older ideas of quality such as fidelity, similarity, and metric

comparison. Only recently have NR-IQA algorithms been

devised that correlate highly with human judgments of quality.
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Some are distortion-specific, i.e. they quantify one or more

specific distortions such as blockiness [18], blur [19], [20],

or ringing [21] and score the image accordingly. There are

considerably fewer algorithms that work well across multiple

classes of distortions. Examples of such NR-IQA approaches

can be found in [22]–[25].

There are even fewer blind VQA algorithms than blind IQA

algorithms. The problem is much more challenging owing to

a lack of relevant statistical and perceptual models. Certainly,

accurate modeling of motion and temporal change statistics in

natural videos would be valuable, since these attributes play an

important role in the perception of videos [26]–[28]. Indeed,

considerable resources in the human visual system (HVS) are

devoted to motion perception [26]–[28].

In [29] an H.264-specific algorithm was proposed that

extracts transform coefficients from encoded bitstreams.

A PSNR value is estimated between the quantized transform

coefficients and the predicted non-quantized coefficients prior

to encoding. The estimated PSNR is weighted using the

perceptual models in [30] and [31]. The algorithm, however,

requires knowledge of the quantization step used by the

encoder for each macroblock in the video, and is hence not

applicable when this information is not available. The authors

of [32] propose a distortion-specific approach based on a

saliency map of detected faces. However, this approach is both

semantic dependent and distortion dependent.

There do not yet exist NR-VQA algorithms that have been

shown to consistently correlate well with human judgments

of temporal visual quality. Towards designing such a model,

we have developed a framework that utilizes a spatio-temporal

model of DCT coefficient statistics to predict quality scores.

The attributes of this new blind VQA model are that it

1) characterizes the type of motion in the video, 2) models

temporal as well as spatial video attributes, 3) is based on

a model of natural video statistics, 4) is computationally

fast, and 5) extracts a small number of interpretable features

relevant to perceptual quality. Finally, we provide a Matlab

implementation of the developed algorithm, which we have

dubbed Video BLIINDS owing to its genesis from ideas on

spatial IQA [25], which can be downloaded from the Lab-

oratory of Image and Video Engineering (LIVE) website at

http://live.ece.utexas.edu/.

The remainder of the paper is organized as follows.

In Section 2 we describe the overall framework of the model.

In Section 3 we discuss relevant attributes of motion and

motion perception. In Section 4 we explain the temporal

statistics model that underlies many of the features that are

extracted for quality prediction. We also show how to assemble

the overall quality prediction model there. In Section 5 we

report and analyze experiment results, and we conclude in

Section 6.

II. ALGORITHM FRAMEWORK

We shall refer to pristine/undistorted videos that have not

been subjected to distortions as natural video scenes, and sta-

tistical models built for natural video scenes as NVS (natural

video statistics) models. Deviations from NVS models, caused

by the introduction of distortions, can be used to predict the

perceptual quality of videos. The study of the statistics of nat-

ural visual signals is a discipline within the field of perception.

It has been shown that static natural scenes exhibit highly

reliable statistical regularities. The general philosophy follows

the premise that the human vision system has evolved in

response to the physical properties of the natural environment

[26], [28], and hence, the study of natural image statistics is

highly relevant to understanding visual perception.

The field of NVS has not developed nearly as far as the

study of still image statistics. Most authors have focused on

trying to find models of optical flow statistics but with limited

success [33], [34]. For example, the authors of [33] developed

a limited model exhibiting regularities, but only under the

assumption that the camera is in motion, yet no objects in

the imaged scene move independently. Our own experiments

on optical flow modeling have encountered similar difficulties,

with some limited success on the perceptual side [35]. Yet,

confident that the moving world does indeed exhibit statistical

regularities, we have relied upon Occam’s Razer and directed

our modeling efforts to the simpler case of frame-differences

only, where we have indeed found that regularities appear

to exist, and more importantly, that these regularities are

predictably disturbed by the presence of distortions. Thus, our

approach to blind VQA design leverages the fact that natural,

undistorted videos exhibit statistical regularities that distin-

guishes them from distorted videos where these regularities

are destroyed. Specifically, we propose an NVS model of DCT

coefficients of frame-differences.

The statistics of frame-differences have previously been

explored. The authors of [36] found that frame-differenced

natural videos reliably obey a (global) space-time spectral

model. We have also found that a simple and regular local

natural video statistic (NVS) model nicely describes filtered

or transformed time-differential (or frame differenced) videos

in the wavelet and DCT domains [25], [37].

Fig. 2 plots an example of the statistics of DCT coefficient

frame differences. Specifically, the empirical probability dis-

tributions of frame difference coefficients (from 5 × 5 spatial

blocks) in a pristine video and in a video distorted by a

simulated wireless channel are shown. Fig. 1 shows a sample

frame from the pristine and distorted videos corresponding

to the distributions in Fig. 2. Notice how the distribution

of the pristine video DCT coefficients is more heavy-tailed

than that of the distorted video DCT coefficients. Examples

similar to this one are consistently observed over a wide

range of pristine and distorted videos [25], [37]. In Fig. 3

we show plots of the frame difference DCT coefficient his-

tograms obtained from multiple frames of pristine and dis-

torted videos. Similar histogram deviations are observed on the

four distortions on which the algorithm was tested (MPEG-2

distortions, H.264 distortions, IP packet-loss, and wireless

distortions).

The new blind VQA model is summarized in Fig. 5. A local

2-dimensional spatial DCT is applied to frame-difference-

patches, where the term patch is used to refer to an n×n block

of frame differences. This captures spatially and temporally

local frequencies. The frequencies are spatially local since the
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Fig. 1. Left: frame from pristine video. Right: frame from distorted video.

Fig. 2. Empirical probability distribution of frame-difference DCT coeffi-
cients of pristine and distorted videos. Dashed line: pristine video. Solid line:
distorted video.

DCT is computed from n × n blocks, and they are temporally

local since the blocks are extracted from consecutive frame

differences. The frequencies are then modeled as generated

from a specific family of probability density functions. It is

observed that the parameters of this family differ for pristine

and distorted videos. Fig. 4 is an example of how the para-

meters of the spatio-temporal NVS model vary according to

the level of perceived distortion. It is a plot of one parameter

(γ ) of the NVS model (to be described in the following

sections) for each frame-difference in three 250 fps, 10 second

videos having three broadly different quality levels. It may

be observed that γ decreases as the amount of perceived

distortion in the video increases.

The interaction between motion and spatio-temporal change

is of particular interest, especially with regards to whether

motion is implicated in the masking of distortions. The

type of motion which occurs in a video is a function

of object and camera movement. In our model, image

motion is characterized by a coherency measure which we

define and use in conjunction with the parameters derived

from the spatio-temporal NVS model of DCT coefficients.

These features extracted under the spatio-temporal NVS

model are then used to drive a linear kernel support vector

regressor (SVR), which is trained to predict the visual quality

of videos.

In this new model, the spatial and temporal dimensions of

video signals are jointly analyzed and assessed. The behavior

of a video is analyzed along the temporal dimension in

two distinct ways: 1) By frame differencing: the statistics

of frame differences are analyzed under the NVS model,

and 2) By analyzing the types of motion occurring in the

video and quantifying the motion in terms of a coherency

measure.

III. RELEVANT PROPERTIES OF MOTION AND

MOTION PERCEPTION

Both spatial and temporal distortions afflict videos. Exam-

ples of commonly occurring spatial distortions include block-

ing, ringing, false contouring, and blur. Blocking effects

result from block-based compression techniques such as

MPEG-1, MPEG-2, MPEG-4, and H.264. Ringing distortions

are often visible around edges or contours of processed videos,

manifesting as a rippling effect in the neighborhood of edges.

Ringing occurs, for example, in wavelet based compression

systems such as Motion JPEG-2000. False contouring arises

from inadequate quantization. Blur is the loss of high fre-

quency information and can occur as a result of compression-

induced loss of high frequencies or as a by-product of the

video acquisition system.

Many temporal distortions are highly annoying. Examples

of commonly occurring temporal artifacts include ghosting,

motion-compensation mismatch, jitter, mosquito noise, and

stationary area fluctuations [38]. Ghosting appears as a

blurred remnant trailing behind fast moving objects. Motion-

compensation mismatch occurs as a result of the assumption

that all constituents of a macroblock undergo identical motion

shifts from one frame to another. Jitter may occur due to

transmission delays in a network. Mosquito noise is a temporal

artifact seen as fluctuations in smooth regions surrounding

high contrast edges or moving objects, while stationary area

fluctuations resemble the mosquito effect but occur in textured

regions of scenes.

Temporal content and the type of motion occurring in videos

plays a major role in the visibility of distortions and in

the perception of the quality of dynamic image sequences.

A major unresolved question affecting VQA model design



SAAD et al.: BLIND PREDICTION OF NATURAL VIDEO QUALITY 1355

Fig. 3. Empirical probability distribution of frame-difference DCT coefficients of pristine and distorted videos for 4 distortions (MPEG-2, H.264, IP, and
wireless distortions). Dashed line: pristine video. Solid line: distorted video.

Fig. 4. Plot of video quality parameter γ over time for three videos. Stars
(top): pristine video, DMOS = 0. Thin black (middle): medium quality video,
DMOS = 56.1328. Gray (bottom): low quality video, DMOS = 72.1356.

is whether a phenomenon of temporal masking of distortions

exists, and if it does, whether it can be modeled and measured.

While there is a ’standard model’ of spatial contrast masking

[39], [40], no such model exists that has been observed to

accurately predict temporal masking of local temporal video

perturbations. However, very recently Suchow et al. demon-

strated a powerful temporal change silencing phenomenon that

is triggered by the presence of large temporal image flows [41].

In a series of ’illusions’ they devised, objects changing

in hue, luminance, size, or shape appear to stop changing

Fig. 5. Blind VQA framework.

when they move in concert with other objects. Although this

phenomenon is not yet well-modeled, our theory seeks to

predict temporal change visibility as a function of cohesive,

collective motion [42]. Highly localized space-time changes in

video appearance (brightness, hue, size, shape) are rendered

much less conspicuous or even invisible by large coherent

motions in the scene. This suggests that localized space-

time distortions in videos may be masked/silenced by large

motions.

The presence of highly visible, predominantly tempo-

ral artifacts in videos and the complexity of perceptual

motion processing are major reasons why still image quality

assessment algorithms applied on a frame-by-frame basis

fail to accurately predict human visual judgments of video

quality. The type of motions in a scene may serve to
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either mask or enhance the visibility of distortions. It is

hence important to take the type of motion into account

in the design of VQA algorithms. Our model characterizes

motion by utilizing a coherencey measure, which we describe

next.

A. Motion Coherency

The experiments in [41] strongly suggest that large, coherent

motion silences transient temporal change or “flicker”, which

is a reasonable description of many temporal video distortions.

Following this observation, we characterize motion coherence

using a 2D structure tensor model applied to a video’s

computed motion vectors. If motion vectors are not readily

available, then a simple motion vector estimation algorithm

is applied on n × n blocks to determine the corresponding

spatial location of the blocks in one frame in the consecutive

frame in time. The motion estimation is performed via a simple

three-step search algorithm [43].

The motion coherence tensor summarizes the predominant

motion directions over local neighborhoods, as well as the

degree to which the local directions of motion flow are

coherent. The 2D motion coherence tensor at a given pixel

is given by:

S =

[

f (Mx ) f (Mx .My)

f (Mx .My) f (My)

]

(1)

where

f (V ) =
∑

l,k

w[i, j ]V (i − l, j − k)2, (2)

and Mx (i, j) and My(i, j) are horizontal and vertical motion

vectors at pixel (i, j) respectively, and w is a window of

dimension m ×m over which the localized computation of the

tensor is performed. The eigenvalues of the motion coherence

tensor convey information about the spatial alignment of the

motion vectors within the window of computation. The relative

discrepancy between 2 eigenvalues is an indicator of the degree

of anisotropy of the local motion (in the window), or how

strongly the motion is biased towards a particular direction.

This is effectively quantified by the coherence measure

C =

(

λ1 − λ2

λ1 + λ2

)2

, (3)

where λ1 and λ2 are the eigenvalues of the motion coherence

tensor. We use this measure in Video BLIINDS to characterize

motion coherence over spatial patches of frame differences.

The average value of these parameters, over all the frame

differences in the video sequence, is computed and used as

a feature for quality prediction.

B. Egomotion

In addition to object motion, global motion or egomotion

may be present due to the motion of the camera or other

large dominating motion. The velocity of global motion can

affect the perception of scene content. Accordingly, our model

accounts for the magnitude of global motion. This is computed

simply as the mode of the motion vector magnitudes between

every two consecutive frames. Motion vectors are computed

according to the three-step-search algorithm in [43]. The

absolute value of the difference between the mode and average

motion vector magnitude per frame is computed and divided

by the average motion magnitude per frame. In other words, let

MX(i) and MY (i) be the horizontal and vertical motion vector

components of motion vector i respectively (corresponding to

one frame difference). Also, let M and E be the mode and

mean of the motion vector magnitudes (corresponding to two

consecutive frames) respectively.

M = mode{i=1...m}

(

√

(MX (i))2 + (MY (i))2

)

, (4)

E =
1

m

m
∑

i=1

(

√

(MX (i))2 + (MY (i))2

)

, (5)

where m is the number of motion vectors per frame.

The quantities M and |E − M| are then averaged over the

frames of a video sequence resulting in Mave and |E − M|ave,

respectively. Then the global motion characterization measure

is given by

G =
|E − M|ave

1 + Mave

(6)

This quantity represents the fraction of motion attributed to

non-global motion (|E − M|ave) over global motion (Mave).

By subtracting M (global motion) from the average motion E ,

we get a residual, and determine what fraction of the average

motion is contributed to by that residual. G is used as a feature

during the score prediction phase.

IV. NVS MODEL-BASED FEATURES

A good NVS (natural video statistics) model should capture

regular and predictable statistical behavior of natural videos.

Such models could be used to measure the severity of distor-

tions in video signals since distortions may predictably modify

these statistics. NVS models may be regarded as duals of

low-level perceptual models since the HVS is hypothesized to

have evolved with respect to the statistics of the surrounding

visual environment over the millennia [26], [40], [44].

In the following we propose an NVS model of

frame-differences that is expressed in the DCT domain and

define a number of perceptually relevant features that are

extracted from the model parameters. We begin by describ-

ing an NVS model of the DCT coefficients of patch frame

differences. We then discuss the motion analysis process and

how it is used to weight the parameters of the spatio-temporal

DCT model.

A. Spatio-Temporal Statistical DCT Model

Consider a video sequence containing M frames. Each

frame indexed i + 1 is subtracted from frame i , for i ∈

{1, ..., M − 1}, resulting in M − 1 difference-frames.

Each difference frame is then partitioned into n ×n patches

or blocks. The 2-D DCT is then applied to each n × n patch.

The DCT coefficients from every block in each difference

frame are modeled as following a generalized Gaussian prob-

ability distribution. Given an m × l video frame, there are
m×l
n×n

DCT blocks per frame, each containing n × n frequency
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Fig. 6. Empirical distribution of DCT coefficients at 5 different frequencies
from an n × n DCT decomposition of a frame-difference.

coefficients. Thus each of the n × n frequency coefficients in

a DCT block occurs m×l
n×n

times per difference-frame. We fit

the histogram of each frequency coefficient from all n × n

patches in each difference frame with a parametric density

function. Fig. 6 shows a histogram of the DCT coefficients

at five different spatial frequencies F1, F2, ... F5 in an n × n

DCT decomposition of difference frames from a video that

was not distorted. It may be observed that the coefficients are

symmetrically distributed around zero and that the coefficient

distributions at different frequencies exhibit varying levels of

peakedness and spread about their support. This motivates the

use of a family of distributions that encompasses a range of

tail behaviors. The 1D generalized Gaussian density is a good

fit to these coefficient histograms:

f (x |α, β, γ ) = αe−(β|x−µ|)γ , (7)

where µ is the mean, γ is the shape parameter, and α and β

are normalizing and scale parameters given by

α =
βγ

2Ŵ(1/γ )
, (8)

β =
1

σ

√

Ŵ(3/γ )

Ŵ(1/γ )
, (9)

where σ is the standard deviation, and Ŵ denotes the ordinary

gamma function

Ŵ(z) =

∫ ∞

0

t z−1e−t dt . (10)

This family of distributions includes the Gaussian distribution

(γ = 2) and the Laplacian distribution (γ = 1) [45].

As γ → ∞ the distribution converges to a uniform distri-

bution. Fig. 7 shows the generalized Gaussian distribution for

a variety of values of the shape parameter (γ ).

A variety of methods have been proposed to extract the

parameters of this model. We deploy the reliable method given

in [46].

After fitting a generalized Gaussian density to the his-

togram of each of the frequency coefficients from frame-

difference patches across the image, we form an n × n matrix

of shape parameters1 per difference-frame. The motivation

1The other parameters of the GGD did not contribute to higher quality
prediction. We hence only retained the shape parameters of the model fits.

Fig. 7. Generalized Gaussian density plots for different values of the shape
parameter γ .

Fig. 8. n × n matrix of the shape parameter γ values is obtained for each
frame-difference, by fitting a GGD model to the histogram of each frequency
in the n × n DCT block over all blocks in a frame-difference.

behind this approach is to characterize the statistical behavior

of each of the frequencies in the local DCT blocks over

time, as well as interactions among those frequencies. This

is captured in the matrix of shape parameters obtained from

each of the difference-frames. Fig. 8 depicts the matrix of

shape parameter values obtained for each frame difference.

This characterization is typically different for natural videos

as opposed to distorted ones. The Video BLIINDS model

aims to capture this statistical disparity and quantify it for

perceptual video quality score prediction. We do not fit a

GGD to the histograms of the DC values. These are however

utilized for quality prediction as will be described shortly in

Section IV-C.

B. Model-Based Sub-Band Features: Spectral Ratios

In order to capture the spectral signatures of videos (pris-

tine and distorted), each n × n matrix of shape-parameters

per difference frame is partitioned into three sub-bands as

depicted in Fig. 9, where the top left band corresponds

to shape-parameters modeling low-frequency coefficients,

the middle partition corresponds to mid-band frequencies,

and the lower right partition corresponds to high-frequency

coefficients.
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Fig. 9. Frequency band partition of frame differences. Top left: low frequency.
Bottom right: high frequency.

Fig. 10. Snapshots of the pristine and distorted Tractor sequence,
along with the computed γ matrices from corresponding frame-difference
DCT coefficients. Notice how the γ values differ between the pristine and
distorted sequences.

Fig. 11. Snapshots of the pristine and distorted Ice-Skating sequence, along
with the computed γ matrices from corresponding frame-difference DCT
coefficients. Notice how the γ values differ between the pristine and distorted
sequences.

Before we describe the sub-band NSS features, we pause

to show some examples of γ -matrix values obtained from a

couple ’pristine’ and distorted videos.

Fig. 10 shows the γ -matrices from one frame-difference

of the ’pristine’ Tractor video and a distorted counterpart of

the same video. The shape-parameters changed significantly,

indicating a distortion-induced modification of the shape of

the distribution of the coefficients.

Fig. 11 depicts the same thing as Fig. 10 on a different

video sequence.

It is instructive to observe the way the parameters became

modified by distortion. First, it is more noticeable in the

higher frequency band. Also, the ranges of the γ values

are highly dependent on the nature of the content of the

video. For the Tractor sequence, which is rich in spa-

tial activity, the γ values (for both reference and distorted

videos) ranged between 0.4 and 0.65, whereas the γ values

corresponding to the spatially smooth Ice-Skating sequence

fell in a completely different range. This is not surprising

since frame difference DCT coefficients may be expected to

have a more peaky distribution on highly smooth regions/

sequences.

This kind of content-dependency however, poses a challenge

in blind quality assessment since the absolute parameter values

are less important than relative values between bands. To cap-

ture the inter-relationships of features between the different

bands (low, medium, and high frequency) in a less content-

dependent manner, we compute ratios of parameters between

the bands. Ratios tend to reduce content-dependency (since

the γ parameters in different bands fall in comparable ranges

within similar content while still maintaining sensitivity to

distortion).

The geometric mean of the shape parameters in each of the

low, mid, and high frequency bands is first computed as

G f = (

m
∏

i=1

γi )
1/m, (11)

where f ∈ {low, mid, high}.

The low frequency band γ ’s in each 5 × 5 matrix depicted

in Fig. 8 are denoted {γ12, γ13, γ21, γ22, γ23, γ31, γ32, γ33}.

The γ -parameters corresponding to the mid-band are

notated as {γ14, γ15, γ24, γ33, γ42, γ43, γ51, γ52}, while the

γ -parameters corresponding to the high frequency band are

{γ25, γ34, γ35, γ44, γ45, γ53, γ54, γ55}. Once Glow, Gmid , and

Ghigh are computed the following spectral ratios are obtained

per shape-parameter matrix (i.e per frame difference):

R1 =
Ghigh

Glow
, (12)

R2 =
Ghigh

Gmid

, (13)

R3 =
Gmid

Glow
, (14)

R4 =
(Ghigh + Gmid )/2

Glow
, (15)

and

R4 =
Ghigh

(Glow + Gmid )/2
, (16)

Finally, the geometric mean of each ratio is computed

over all frame differences. The geometric mean makes it

possible to account for changes in parameter values that fall in

different ranges because of content differences without having

to attempt alignment of these parameter ranges.

C. Temporal Variation of Mean DC Coefficients

To track temporal variations in the average intensity of

differenced video frames (from all n × n DCT blocks), the

discrete temporal derivative of the average intensity per video
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Fig. 12. Plot of the temporal derivative of mean DC coefficients for a pristine
and a distorted video.

frame is also computed. An example is shown in Fig. 12. This

is a simple measure of sudden local changes which may arise

from various temporal distortions that result in local ’flicker.

’Let Di be the average DC coefficient value per frame i . The

absolute discrete temporal derivative of Di is estimated then

as

Ti = |Di+1 − Di |, (17)

where Di+1 and Di are the average DC coefficients at frames

indexed i + 1 and i respectively. The mean of the absolute

discrete temporal derivatives is computed as a feature for

prediction along with the other extracted features.

D. Spatial Naturalness

In addition to the above described spatio-temporal features

(which are based on frame-differences), we also utilize the

image naturalness index NIQE features described in [47],

to predict crude frame-by-frame naturalness scores. These

naturalness scores are predicted from the frame statistics in

the pixel domain. While these features do not yield high

video quality prediction performance when used in isolation,

they do capture spatial aspects of distortion that are not

contained in the other features and thereby boost prediction

performance.

E. Prediction

Given a database of distorted videos and associated human

judgments, the extracted features are used to train a linear

kernel support vector regressor (SVR) to conduct video quality

score prediction. The SVR based on the implementation in

[48] was used to conduct quality score prediction.

The complete list of features used for video quality pre-

diction is: the motion coherency measure and the global

motion measure which are key characterizations of the tem-

poral behavior exhibited by a video sequence, the five NVS

γ (shape-parameter) spectral ratios, absolute temporal deriv-

ative of mean DC coefficients, and the purely spatial frame-

naturalness measure described in [47].

Each feature is computed from each frame difference

(except the spatial naturalness measure), then temporally

pooled over a 10 second interval. Prior to feeding the features

into the SVR, the spatio-temporal features (other than the

Fig. 13. The spatio-temporal features (DC feature, coherency measure,
global motion measure, and shape-parameter spectral ratios are logarithmically
transformed before being used as features for quality prediction by the SVR).

naturalness index) are subjected to a logarithmic nonlinearity,

as depicted in Fig. 13. Quality prediction is then performed

on the entire video segment.

V. EXPERIMENTS AND RESULT

The algorithm was evaluated on the publicly available

LIVE VQA database [38]. The LIVE VQA database has

a total of 160 videos derived from 10 reference videos

of highly diverse spatial and temporal content. The data-

base contains videos distorted by four distortion types: 1)

MPEG-2 compression, 2) H.264 compression, 3) wireless

distortions, and 4) IP distortions. We first evaluated Video

BLIINDS by applying it on each distortion type in isola-

tion, then we mixed the distortions together and applied the

method on the mixture. We split the database into content-

independent train and test sets: 80% of the content was used

for training and the remaining 20% was used for testing.

We compute the Spearman rank order correlation coefficient

(SROCC) between predicted scores and the subjective scores

of the database for every possible combination of train/test

split.

The patch size for the DCT computation that was used is

5 × 5. This is similar to the feature extraction block size

chosen in BLIINDS-2 [25]. The motion vectors involved in

the computation of the motion coherency tensor and the global

motion characterization measure are derived from 10×10 pixel

blocks.

A. Feature Contribution to Prediction Performance

In order to understand the contribution of each individual

conceptual feature to the overall prediction performance of

Video BLIINDS, each was used in isolation of the other fea-

tures to predict quality, and the correlation between predicted

and actual quality scores was computed. Table I shows the

Spearman rank order correlation coefficients obtained when

using each conceptual feature in isolation of the other features

for prediction of video quality. The NVS parameter ratios

result in the highest prediction performance among the all

features. Note that the coherency and global motion measures

are not quality features per se. In fact, these are features that

help identify and characterize the type of the video content,

which can affect the perception of video quality.

B. Algorithm Prediction Performance

There are no existing blind VQA approaches that are

non-distortion specific, which makes it difficult to compare our

algorithm against other methods. Full-reference and reduced

reference approaches have the enormous advantage of access
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TABLE I

SROCC CORRELATION ON EVERY POSSIBLE COMBINATION OF TRAIN/TEST SET SPLITS (SUBJECTIVE DMOS VS PREDICTED DMOS)

USING EACH CONCEPTUAL FEATURE IN ISOLATION OF OTHER FEATURES, FOR QUALITY PREDICTION.

80% OF CONTENT USED FOR TRAINING

TABLE II

FULL-REFERENCE AND REDUCED-REFERENCE MEDIAN SROCC

CORRELATIONS ON EVERY POSSIBLE COMBINATION OF TRAIN/

TEST SET SPLITS (SUBJECTIVE DMOS VS PREDICTED DMOS).

80% OF CONTENT USED FOR TRAINING

to the reference video or information about it. Blind algorithms

generally require that the algorithm be trained on a portion of

the database. We do however, compare against the naturalness

index NIQE in [47], which is a blind IQA approach applied

on a frame-by-frame basis to the video, and also against top

performing full-reference and reduced reference algorithms.

The algorithms were separately tested on those portions

of the LIVE VQA database that contain specific distortions

(MPEG2, H264, wireless distortions, and IP distortions), as

well as on the entire database containing all the distor-

tions mixed together in “the same bucket.” Consequently,

Video BLIINDS was trained and tested on each distortion

of the database separately, and on all of the distortions

mixed together. The median SROCCs (Spearman rank order

correlation coefficient) and PLCCs2 (Pearson’s linear corre-

lation coefficient) between subjective and predicted scores

for the top-performing full-reference and reduced reference

VQA algorithms are given in Tables II and III respectively,

(including full-reference PSNR and SSIM image quality

indices). VQM [8] and Video RRED [37] are top-performing

reduced reference VQA approaches, with VQM being a

standardized approach. On the other hand, MOVIE [6] and

ST-MAD [11] are highly competitive (in terms of prediction

performance) full-reference VQA algorithms. The median

SROCCs and PLCCs for the blind IQA approach NIQE and

Video BLIINDS are shown in Table IV. We chose to report the

results for the full and reduced reference methods in separate

tables than those of the no-reference methods. The reason

for this is to allow a fairer comparison of algorithms. Full

and reduced reference approaches utilize a reference video

for quality prediction. Hence the reference videos cannot be

included in the test sets as including them would lead to

misleadingly higher correlations. On the other hand, it is

informative to include the pristine/reference videos in the test

2Since the relationship between predicted and actual scores is not neces-
sarily a linear one, a nonlinear function between the predicted and actual
variables is fit prior to computing the PLCC.

TABLE III

FULL-REFERENCE AND REDUCED-REFERENCE MEDIAN LCC

CORRELATIONS ON EVERY POSSIBLE COMBINATION OF TRAIN/TEST SET

SPLITS (SUBJECTIVE DMOS VS PREDICTED DMOS).

80% OF CONTENT USED FOR TRAINING

TABLE IV

NO-REFERENCE MEDIAN SROCC AND LCC CORRELATIONS ON EVERY

POSSIBLE COMBINATION OF TRAIN/TEST SET SPLITS (SUBJECTIVE

DMOS VS PREDICTED DMOS). 80% OF CONTENT USED FOR TRAINING

sets of no-reference algorithms since one needs to know how

well the algorithm is able to predict the quality of a relatively

“pristine” video.

Video BLIINDS clearly outperforms the blind NIQE index

and the full-reference PSNR and SSIM measures. Video

BLIINDS does not quite attain the performance level of

state-of-the-art full-reference VQA measures, (MOVIE and

ST-MAD), but its performance is nearly as good and with

much less computational cost. Of course, Video BLIINDS

does not rely on any information from the pristine version of

the video to make quality predictions. It does, however, rely

on being trained a priori on a set of videos with associated

human quality judgments.

A statistical analysis of the SROCCs obtained for each of

the QA approaches (PSNR, SSIM, VQM, NIQE, and Video

BLIINDS) was performed using a multi-comparison analysis

of variance (ANOVA) test. Fig. 14 shows the spreads of distri-

butions of the SROCCs for each algorithm. The plot shows that

the reduced-reference VQM and Video BLIINDS perform very

similarly on the LIVE VQA database, and outperform PSNR,

SSIM, and NIQE. Table V shows the results of the ANOVA

test indicating whether each algorithm is superior than another

by a statistically significant SROCC margin.

In addition to testing on the LIVE VQA database, we

also tested the performance of Video BLIINDS on the 4-CIF



SAAD et al.: BLIND PREDICTION OF NATURAL VIDEO QUALITY 1361

Fig. 14. Plot of median SROCC distribution for PSNR, SSIM, VQM, NIQE,
and Video BLIINDS.

TABLE V

MULTI-COMPARISON ANOVA TEST RESULTS. −1 MEANS COLUMN

OUTPERFORMS ROW BY A STATISTICALLY SIGNIFICANT DIFFERENCE.

0 MEANS ROW AND COLUMN ARE NOT STATISTICALLY DIFFERENT.

+1 MEANS ROW OUTPERFORMS COLUMN BY A STATISTICALLY

SIGNIFICANT DIFFERENCE

TABLE VI

NO-REFERENCE MEDIAN SROCC AND LCC CORRELATIONS ON EVERY

POSSIBLE COMBINATION OF TRAIN/TEST SET SPLITS (SUBJECTIVE

DMOS VS PREDICTED DMOS). 80% OF CONTENT USED FOR

TRAINING ON THE EPFL-PoliMi DATABASE

EPFL-PoliMi database.3 The median LCC and SROCC scores

for NIQE and Video BLIINDS are shown in Table VI.

VI. ALGORITHM COMPLEXITY

Let m × k be the frame dimension, n × n the dimension of

the blocks from which the model-based features are extracted

3Regarding training and testing on EPFL, since there is so little content to
train on (6 4-CIF reference videos) 80% of the content is only 5 references.
Consequently a leave-one-out (in this case leave one ”reference and corre-
sponding distorted videos”’ out) train/test analysis is performed to predict
the video scores. Thus the scores for each reference video and corresponding
distorted versions are predicted by an SVM trained on all the other reference
videos and their corresponding distorted counterparts. Each video thus has
a predicted MOS coming from an SVM that was trained on all the content
except its own (the content is completely separate between the training and test
sets). However, when computing the SROCC, every combination of 2 different
contents/reference videos was taken and the MOS predicted in the test phase
was used to compute a median SROCC. This is to ensure that more than one
type of content/reference is present in the test set. Otherwise, homogeneous
content could result in deceptively high SROCC values.

(in our model n = 5), and let w × w be the dimension of the

motion vector structure tensor. The computational complexity

of Video BLIINDS is largely determined by the complexity

of the DCT transform, the generalized Gaussian density para-

meter estimation, and by the motion coherency computation.

The computational complexity of the DCT computation and

of the generalized Gaussian density parameter estimation is of

the order of m × k
n2 × n2logn = m × k × logn. Fast algorithms

exist for DCT computation that are of the order O(n2logn)

[49], where n is the dimension of the frame patches. Parameter

estimation of the generalized Gaussian is of the order of com-

puting moments of the data within each block (O(n2)), and of

numerically estimating the shape parameter γ . From empirical

data of natural scenes, it is observed that 0 < γ < K .

We set K = 10, since it was observed that γ << 10. The

interval [0, K ] was partitioned in steps of size ǫ, and the

parameter γ was determined by solving an inverse function

by numerically sweeping the interval [0, K ] in increments

of size ǫ [46]. The complexity of such an operation is of

the order O(log(1/ǫ)). ǫ was chosen to be 0.001 Hence

log(1/ǫ) << min(m, k).

The complexity of computing motion coherency is deter-

mined by the complexity of computing motion vectors using

the three-step search algorithm in [43], which is an O(n2)

operation, and from computing the eigenvalues of the w × w

structure tensor. In the most general case, eigenvalue compu-

tation is an O(w3) operation.

The algorithm is highly parallelizable as one can perform

computations on the image blocks in parallel. A further com-

putational advantage can be attained by bypassing DCT com-

putation when DCT coefficients have already been computed,

e.g. by an encoder. We envision that the Video BLIINDS

approach is easily extensible to scenarios involving DCT-like

transforms such as the H.264 integer transforms.

VII. SOME PRACTICAL APPLICATIONS OF

VIDEO BLIINDS

The results in the previous section demonstrate that the

Video BLIINDS features are well suited for predicting the

visual quality of videos compressed using the H.264 standard.

We now show that the Video BLIINDS features can be used

in two useful applications involving H.264 compression.

The first application addresses the following question: Given

an uncompressed video, how much can it be compressed (i.e.

what minimum bit rate is required) to achieve a desired level of

quality (as expressed by DMOS or MOS)? Note that different

videos generally require different compression bit rates to be

represented at a specific visual quality, depending on their

spatial and temporal content. In the second application we

ask: Given a video compressed by H.264, can the bit-rate at

which it has been compressed be predicted? We show that the

Video BLIINDS features can be used to address both of these

timely questions.

In the first application, which we call the Video BLIINDS

Bit Rate Selector, we design an algorithm that selects the

bit rate at which to compress a video at a given level of

perceptual quality. It takes as input an uncompressed video
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Fig. 15. Application 1: Perceptual bit rate selector.

Fig. 16. Application 2: Bit rate prediction.

Fig. 17. Application 1: Histogram of SROCC between predicted and actual
bit rates over 100 iterations of train/test splits.

and the desired quality level to be achieved by compression.

It then extracts global Video BLIINDS features (pooled over

10 second intervals), and uses a linear SVR to predict the bit

rate at which the video needs to be compressed. The overall

framework of the perceptual bit rate selection algorithm is

depicted in Fig. 15.

The second application which we call the Video BLIINDS

Bit Rate Predictor, seeks to predict the rate at which a video

has already been compressed, using Video BLIINDS quality

features. This process is summarized in Fig. 16.

At this point it is important to mention that the above two

applications assume a particular choice of the H.264 encoder

parameters. These are specified in [50]. In other words, given

a particular configuration of the H.264 encoder parameters, it

is possible to derive a mapping from desired visual quality to

an appropriate bit rate. This is inherent to the H.264 encoder

parameters used on the videos comprising the training set from

which the mapping was derived. The same assumption applies

for the second application.

Both applications were tested on the H.264 compressed

portion of the LIVE VQA database which contains a total

of 50 videos derived from 10 reference videos. The details

of the H.264 encoding parameters can be found in [38]. The

compressed videos spanned bit rates between 0.2MB to 6MB.

80% of the content was used for training and the remaining

20% was used for testing. The process was repeated over

100 iterations of randomly selecting the train and test sets. In

Application 1 (Bit Rate Selector), a median SROCC of 0.954

was achieved between the predicted and actual bit rates. The

histogram of the obtained SROCC values is shown in Fig. 17.

Notice how there is a concentration of SROCC val-

ues between 0.8 and 1, with a few outliers below 0.5.

Fig. 18. Application 1: Scatter plot of predicted versus actual bit rates.

The performance of Application 1 depends on the cumulative

error of first predicting the visual quality of the video (DMOS),

and then using the predicted DMOS to predict the bit rate at

which the video is compressed. The median mean square error

between predicted and actual bit rates over the 100 iterations

was also computed, and it was found to be 0.374 MB. A scatter

plot of predicted versus actual bit rates is shown in Fig. 18,

depicting the linear correlation between the two. Although we

might expect subjective video quality to vary monotonically

with compression level, this relationship need not be strict. For

example, the perceived quality of a video might remain level

over a fairly wide range of compression levels. For this reason,

Video BLIINDS features may not necessarily be expected

to yield precision bit rate selection. However, they can be

expected to deliver reliable subjective quality in the resulting

compressed video.

In Application 2 (Bit Rate Predictor), a median SROCC

of 0.860 was achieved between the selected bit rate and the

bit rate of the actual compressed videos in the database. The

challenge in the second application is that the SVM that learns

a mapping from the tuple of features plus desired DMOS to bit

rate only sees the features extracted from the pristine videos

of the database and not from the compressed videos. The

histogram of the obtained SROCC values is shown in Fig. 20.

The median mean square error between predicted and actual

bit rates over the 100 iterations was also computed, and it was

found to be 0.471 MB. A scatter plot of selected versus actual

bit rates is further shown in Fig. 19. In the first application,

the Video BLIINDS features deliver excellent quality predictor

and generally correct, if imprecise, selected bit rates. Again,

this may be attributed to a non-strict monotonic relationship

between video quality and bit rate.

Similar to the results for Application 1, while the SROCC

scores are concentrated above 0.8, there are a number of
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Fig. 19. Application 1: Scatter plot of selected versus actual bit rates.

Fig. 20. Application 1: Histogram of SROCC between selected and actual
bit rates over 100 iterations of train/test splits.

outliers below 0.5, showing the challenge in learning the

mapping from desired quality to bit rate given only a few

features from the original non-compressed video.

These two applications are good examples of how Video

BLIINDS features can be used in practical ways. It remains

for future work to explore how NVS features such as those

used in Video BLIINDS can be exploited for other per-

ceptual optimization problems, such as tracking, denoising,

deblocking, and so on.

VIII. CHALLENGES AND FUTURE WORK

Several challenges remain to be tackled on the blind VQA

problem. Our aim is to achieve correlations as high as those

obtained via full-reference algorithms.

There is still much room for improvement on developing

motion models that can be effectively incorporated into blind

VQA models. Research avenues in this direction include

more complete modeling of temporal filtering in the lateral

geniculate nucleus (LGN) and motion processing in Areas

MT/V5 and MST of extrasriate cortex [27], [51], [52].

As we continue our quest to better understand the mech-

anisms of motion processing in the HVS, we also are faced

by the challenge of finding more complete models of natural

video statistics. Models that are uniform across content, while

still being predictably disturbed by distortion levels should

contribute to better predicted quality.

TABLE VII

NO-REFERENCE MEDIAN SROCC CORRELATION ON HOMOGENEOUS

CONTENT OF THE EPFL-PoliMi DATABASE

We demonstrate how this challenge manifests by showing

how our results on the EPFL database differ if tested on

individual video sequences (instead of computing correlations

on a mixture of video sequences). Table VII illustrates our

point. In Table VII, we report median SROCC between

predicted and subjective scores when the correlations are

computed using each EPFL-PoliMi sequence (pristine and

distorted counterparts) in isolation.

When content is kept homogeneous in this manner, Video

BLIINDS almost perfectly ranks the videos according to. The

problem becomes more challenging when there is significant

content variation.

Capturing temporal distortions increases the computational

complexity of VQA algorithms making real time processing

more challenging. Current FR and RR VQA algorithms that

correlate well with perception, such as those in [53], [11],

and [37], can be very slow. Yet since many applications

require real time monitoring of video quality in, there is

considerable motivation to create VQA algorithms that are

simple, perceptual, and fast.

To develop and validate accurate NVS and motion models, a

large corpus of videos is needed. For many reasons, evaluating

and benchmarking VQA algorithms is much more involved

than IQA validation. A subject can requires significantly more

time to view a video than a still image, which limits the sizes

and availability of VQA databases.

Blind VQA algorithms that are trained on a database

containing a specific set of distortions and associated human

scores, are applicable to the set of distortions present in the

training phase of the algorithm. It is also desirable that a

learning-based blind VQA model be trained on a database

containing a large number of videos of varying contents in

order to learn as accurate a mapping as possible. If however,

we were able to do away with training on human scores and

only rely on models of perceptual and dual models of natural

scenes (i.e., from a corpus of natural/pristine videos only),

then it may be possible to avoid the limitations of regression

(dependency on the distortion types in the database). This is a

direction we have begun exploring as a promising avenue for

future work.

IX. CONCLUSION

We have described a natural scene statistic model-based

approach to the no-reference/blind video quality assessment

problem. The new Video BLIINDS4 model uses a small

number of computationally convenient DCT-domain features.

4Regarding the resemblance between the IQA index BLIINDS [25] and the
spatial IQA index in Video BLIINDS: Both model the distributions of local
DCT coeffcients, but in different ways: Unlike [25], Video BLIINDS fits a
histogram to each individual frequency in the 5 × 5 DCT block, over all
blocks occurring in every frame-difference.
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The method correlates highly with human visual judgments of

quality. Additionally, we demonstrated two interesting appli-

cations of the Video BLIINDS features.
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