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Blind prediction of protein B-factor and flexibility
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The Debye-Waller factor, a measure of X-ray attenuation, can be experimentally observed in protein
X-ray crystallography. Previous theoretical models have made strong inroads in the analysis of beta
(B)-factors by linearly fitting protein B-factors from experimental data. However, the blind prediction
of B-factors for unknown proteins is an unsolved problem. This work integrates machine learning
and advanced graph theory, namely, multiscale weighted colored graphs (MWCGs), to blindly predict
B-factors of unknown proteins. MWCGs are local features that measure the intrinsic flexibility due to
a protein structure. Global features that connect the B-factors of different proteins, e.g., the resolution
of X-ray crystallography, are introduced to enable the cross-protein B-factor predictions. Several
machine learning approaches, including ensemble methods and deep learning, are considered in the
present work. The proposed method is validated with hundreds of thousands of experimental B-
factors. Extensive numerical results indicate that the blind B-factor predictions obtained from the
present method are more accurate than the least squares fittings using traditional methods. Published

by AIP Publishing. https://doi.org/10.1063/1.5048469

I. INTRODUCTION

The protein beta factor (B-factor) or temperature factor
(Debye-Waller factor) is a measure of atomic mean squared
displacement or uncertainty in the X-ray scattering or neu-
tron scattering structure determination. For a given protein at
a given temperature, a large B-factor is caused by the atomic
thermal fluctuation and low attenuation rate. The latter depends
also on the experimental modality. For example, the hydrogen
atom has a low attenuation rate in X-ray scattering because
of its small number of electrons but has a normal attenuation
rate for neutron scattering. For a given element type under
the same experimental condition, the B-factor of an atom
is determined by its intrinsic flexibility and possible crystal
packing effects. It has been previously shown that intrinsic
flexibility correlates with important protein conformational
variations.1 That is, protein structural fluctuation provides an
important link between the structure and function of a pro-
tein. As such, accurate prediction of protein B-factors is an
important and meaningful metric in understanding the protein
structure, flexibility, and function.2

One successful class of methods in protein B-factor pre-
diction was those that used elastic mass-and-spring networks
derived from Hooke’s Law. These models represent the alpha
carbons of biological macromolecules as a mass and spring
network to predict B-factors based on a harmonic potential.
Each alpha carbon in a protein is regarded as a node in the net-
work, and edges are weighted based on a potential function.

a)Author to whom correspondence should be addressed: wei@math.msu.edu

In these models, a pair of nodes is connected by an edge if
they fall within a predefined Euclidean cutoff distance. This
approach captures the local non-covalent interactions between
an individual alpha carbon atom and nearby alpha carbon
atoms.

Normal mode analysis (NMA) was one of the first mass-
and-spring methods used for protein B-factor prediction. This
method is independent of time and makes use of a Hamiltonian
matrix for atomic interactions. Here the modes of the system
correspond to motion where all parts of the molecule are mov-
ing sinusoidally with the same frequency and phase. Moreover,
eigenvalues of the system correspond to characteristic fre-
quencies that correlate with protein B-factors. Low-frequency
modes correlate with operative motions which can be useful
for hinge detection. NMA has also been found to be useful
in characterizing coarse grain deformation of supramolecular
complexes.1,3–5

The elastic network model (ENM) was introduced to
reduce the computational cost of NMA by using a simplified
spring network.6 One successful ENM model is the anisotropic
network model (ANM). This model uses a simplified spring
potential between each residue and then determines the modes
of the system via matrix diagonalization. ANM still retains
many of the insightful features of NMA but with a much lower
computation cost.7–9

The Gaussian network model (GNM) was introduced as a
simplified method for B-factor prediction.8 Similar to previous
models, a graph network is constructed using alpha carbon as
nodes and edges based on a prescribed cutoff distance. GNM
uses a distance-based Kirchhoff (or connectivity) matrix to
represent the interaction between each of the two alpha carbon
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atoms (nodes). The expectation values of residue fluctuations
or mean-square fluctuations are found in the diagonal terms
of a covariance matrix. GNM provides good-coarse grained
results with a relatively low computational cost.10

More recently, the flexibility and rigidity index (FRI)
methods have provided improved results. These methods
construct graph centrality based on radial basis functions
which scale distance non-linearly.11 Fast FRI (fFRI) pro-
vides a version of FRI with a very low computation cost
while still maintaining satisfactory results.12 Anisotropic FRI
(aFRI) offers a matrix version of FRI to compute protein
anisotropic motions. Moreover, the multiscale flexibility rigid-
ity index (mFRI) is able to capture protein multiscale inter-
actions using several radial basis functions with different
parameterizations.13,14

Previously the authors introduced a multiscale weighted
colored graph (MWCG) model for protein flexibility analy-
sis.15 The MWCG is a geometric graph model that offers the
most accurate and reliable protein flexibility analysis and B-
factor prediction to date. It is about 40% more accurate than
GNM.15 The basic idea of MWCG is to color (label) a pro-
tein graph based on element interaction types. Each atom of a
given element type selection represents a graph vertex, and
subgraphs are defined according to specific heavy element
types. A generalized centrality is defined for each subgraph
vertex. Using various parameterizations of radial basis func-
tions, this method is able to capture multiscale element specific
interactions. The MWCG method can be combined with vari-
ous earlier FRI approaches, such as fFRI, mFRI, and aFRI,
to further strengthen its power in the analysis of intrinsic
protein flexibility. Additionally, MWCG works well not only
for Cα carbons but also for all the atoms in a protein, i.e.,
non-Cα carbon, nitrogen, oxygen, and sulfur atoms. Hydro-
gen atoms can be treated similarly if they are available in the
dataset.15

All of the aforementioned methods are designed for the
analysis of intrinsic protein flexibility due to the protein struc-
ture and crystal packing. However, none was designed to
predict the B-factors of an unknown protein. Indeed, all of
these methods fit experimental B-factors of the given protein
by the least squares algorithm. They generally do a poor job in
predicting flexibility across proteins. Stated differently, the fit-
ting coefficients obtained from one protein are not applicable
to a different protein in general. This is largely due to the fact
that the protein B-factor depends also on a large number of
effects, including X-ray crystal quality, crystal symmetry (i.e.,
space group), data collecting method, data collecting envi-
ronment, equipment condition, etc. Consequently, the blind
prediction of protein flexibility and B-factors remains a major
challenge.

Recently, advances in graphics processing unit (GPU)
computing and optimization have led to impressive biophys-
ical predictions for various problems using machine learning
(ML), particularly, deep learning techniques. In this work, we
propose machine-learning based methods for blind protein B-
factor predictions. We introduce two sets of features, the global
ones and local ones. Global features are designed to represent
crystal and experimental conditions across different proteins,
while local features are devoted to describing structural and

atomic properties within a protein structure. We compile and
engineer local and global features from a large set of known
protein data as a training set and then apply machine learning
techniques to establish regression models which are used for
the blind prediction of B-factors of unknown protein structures.
In terms of machine learning procedures, we use a variety of
local and global protein features of a labeled training set to con-
struct regression models that can blindly predict the B-factors
of a test set, consisting of entirely new proteins. In this work,
we explore the random forest (RF), boosted gradient decision
trees, and deep learning methods for blind protein B-factor
predictions. Using a large and diverse set of proteins from
the protein data bank ensures technical robustness. In addition
to previously explored features such as MWCG kernels and
element types, we also include secondary structural informa-
tion and local packing density features to further improve our
results.

II. METHODS AND ALGORITHMS

The success of blind protein B-factor predictions depends
crucially on the representation of biomolecular structures.
We employ MWCGs as local features to describe protein
structures. A brief review of MWCGs is given below.

A. Multiscale weighted colored graphs

Graph theory concerns the relationship of a set of ver-
tices, denoted as V, in terms of pairwise connectivity, i.e.,
edges E. We use a graph to describe the non-covalent interac-
tions in proteins. To improve our graph theory representation,
we consider colored graphs in which different types of ele-
ments are labeled. We classify labeled protein atoms into
subgraphs where colored edges correspond to element spe-
cific interactions. Specifically, we label the ith atom by its
element type αj and position rj. As such, vertices are labeled
as

V = {(rj, αj)|rj ∈ IR3; αj ∈ C; j = 1, 2, . . . , N },

where C ={C, N, O, S } are the set of elements whose pairwise
interactions will be considered. Hydrogen is omitted from this
list due to its absence from most Protein Databank (PDB) data
and can be added without affecting the present description.
The set of edges in the colored protein graph are element spe-
cific pairs P ={CC, CN, CO, CS, NC, NN, NO, NS, OC,
ON, OO, OS, SC, SN, SO, SS}. For example, the subset
P3 ={CO} contains all directed CO pairs in the protein such
that the first atom is a carbon and the second one is a nitrogen.
The direction is maintained because the edge, E, is a set of
weighted and directed interaction kernels of various pairs of
atoms,

E =
{

Φ
k(| |ri − rj | |; ηij)|(αiαj) ∈ Pk ; k = 1, 2, . . . , 16;

i, j = 1, 2, . . . , N
}

,
(1)

where ||ri − rj || is the Euclidean distance between the ith and
jth atoms, ηij is a characteristic distance between the atoms,
and (αiαj) is a directed pair of element types. Here Φk is
a correlation function and is chosen to have the following
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properties:12

Φ
k(| |ri − rj | |; ηij) = 1, as | |ri − rj | | → 0, (αiαj) ∈ Pk ,

(2)

Φ
k(| |ri − rj | |; ηij) = 0 as | |ri − rj | | → ∞, (αiαj) ∈ Pk .

(3)

Our previous work12 has shown that generalized exponential
functions,

Φ
k(| |ri − rj | |; ηij) = e−( | |ri−rj | |/ηij)κ , (αiαj) ∈ Pk , κ > 0,

(4)

and generalized Lorentz functions,

Φ
k(| |ri − rj | |; ηij) =

1
1 + (| |ri − rj | |/ηij)ν

, (αiαj) ∈ Pk ,

ν > 0,
(5)

are good choices which satisfy the assumptions.
The centrality metric used in this work is an extension of

harmonic centrality to subgraphs with weighted edges defined
by the generalized correlation functions

µk
i =

N∑

j=1

wijΦ
k(| |ri − rj | |; ηij), (αiαj) ∈ Pk ,

∀i = 1, 2, . . . , N ,

(6)

where wij is a weight function related to the element type. The
WCG centrality in Eq. (6) describes the atomic specific rigidity
which measures the stiffness at the ith atom due to the kth set
of contact atoms.

To characterize protein multiscale interactions, we use the
atomic specific rigidity index from multiscale weighted col-
ored graphs (MWCGs) introduced in our previous work.15 The
atomic rigidity of the ith atom at nth scale due to the kth set of
interaction atoms is defined as

µ
k,n
i
=

N∑

j=1

wn
ijΦ

k(| |ri − rj | |; η
n
ij), (αiαj) ∈ Pk , (7)

where Φk(| |ri − rj | |; ηn
ij
) is a correlation kernel, ηn

ij
is a scale

parameter, and wn
ij

is an atomic type dependent parameter. We
set wn

ij
= 1 in the present work.

While sulfur atoms play an important role in proteins, they
are so sparse that their kernels have a negligible effect on the
current model. Therefore, it is convenient to consider a subset
of P in practical computations,

P̂ =
{

CC, CN, CO, NC, NN, NO, OC, ON, OO
}

. (8)

We chose only C, N, and O element types due to their high
occurrence frequency and important biological relevance.

B. Machine learning features

1. Global features

Protein Databank (PDB) .pdb files provide the spatial
atomic coordinates and the B-factor of each atom in a pro-
tein as well as a variety of other types of observed data that
can be used as features. In addition to the use of PDB spatial
coordinates, this work makes use of global features provided

FIG. 1. Frequency of the number of heavy elements within the proteins from
the 364-protein dataset.

in PDB files such as the R-value, resolution, and number
of heavy atoms. R-value and resolution are global measures
of the quality of the atomic model obtained from crystallo-
graphic data. Another global feature we consider is the overall
protein size. To allow the models to distinguish proteins of
different sizes, we use one hot encoding with the 10 size
ranges

[500, 750, 1000, 1500, 2000, 2500, 3000, 4000, 5000, 30000],

where a protein element feature size will take on 1 if the number
of heavy atoms (carbon, nitrogen, or oxygen) in that protein
is less than or equal to the corresponding size and zero for
the remaining sizes. For example, a protein with 1700 heavy
elements would have the feature size vector for all of its atoms
given by

[0, 0, 0, 0, 1, 0, 0, 0, 0, 0].

A frequency distribution of the size categories is provided
in Fig. 1. There are a total of 12 global protein features.

2. Local features

PDB files also contain amino acid information for each
element. Using one hot encoding, we include amino acid infor-
mation for each heavy element which results in 20 amino
acid features. Similarly we one hot code the 4 different heavy
element types carbon, nitrogen, oxygen, and sulfur for each
element resulting in 4 additional features.

We use the MWCG rigidity index described in Sec. II A
to create feature vectors for carbon, nitrogen, and oxy-
gen interactions with each element. Moreover, to capture
multiscale interactions, we use 3 different kernel choices
for each interaction type. This results in a total of 9
MWCG feature vectors. The parametrization of the kernels
is chosen based on our previous work and is provided in
Table I.15

TABLE I. Parameters used for correlation kernels in a parameter-free
MWCG based on previous results.15

Kernel type κ ηn ν

Lorentz (n = 1) . . . 16 3
Lorentz (n = 2) . . . 2 1
Exponential (n = 3) 1 31 . . .
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TABLE II. Packing density parameters in distance (d Å).

Short Medium Long

d < 3 3 ≤ d < 5 5 ≤ d

The MWCG rigidity kernels do not entirely capture the
density of nearby atoms. In this work, we define short, medium,
and long packing density features for each heavy atom. The
packing density of the ith atom is defined as

pd
i =

Nd

N
,

where d is the given cutoff in angstroms, Nd is the number
of atoms within the Euclidean distance of the cutoff to the ith
atom, and N is the total number of heavy atoms of the protein.
The packing density cutoffs used in this work are provided in
Table II.

We include secondary structural information generated
using the STRIDE software. The STRIDE software provides
secondary structural information about a protein given its
atomic coordinates as a PDB file. STRIDE designates each
atom as belonging to a helix (alpha helix, 3-10 helix, PI-
helix), extended conformation, isolated bridge, turn, or coil.
Additionally, STRIDE provides φ and ψ angles and residue

solvent accessible area.16 Taken together this provides 12
secondary features.

3. MWCG inputs

Using the MWCG method, we apply Lorentz and expo-
nential radial basis functions to construct multi-scale images
for each element of a protein. To capture a large variety of
scales, we construct multiscale kernels for each heavy atom of
a protein using various values of κ, ν, and η. In particular, we
use

η = {1, 2, 3, 4, 5, 10, 15, 20}

and

κ, ν = {2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 8, 9, 10, 11}.

This results in 2D MWCG images of dimension (8,
30). We create images for all carbon, nitrogen, and oxygen
interactions for each heavy atom giving each image three
channels.

The image matrix is given by Fk
i

in Eq. (9), where each
atom f k

i
(l, m, n) represents the flexibility index of the ith atom

and kth atom interaction (C, N, or O), l = η, m = {κ, ν}, and
n is the type of radial basis function. Values of n = 1 and
n = 2 correspond to the exponential and Lorentz radial basis
functions, respectively,

Fk
i =



f k
i

(1, 2, 1) f k
i

(1, 2.5, 1) . . . f k
i

(1, 11, 1) f k
i

(1, 2, 2) f k
i

(1, 2.5, 2) . . . f k
i

(1, 11, 2)

f k
i

(2, 2, 1) f k
i

(2, 2.5, 1) . . . f k
i

(2, 11, 1) f k
i

(2, 2, 2) f k
i

(2, 2.5, 2) . . . f k
i

(2, 11, 2)

...
...

f k
i

(15, 2, 1) f k
i

(15, 2.5, 1) . . . f k
i

(15, 11, 1) f k
i

(15, 2, 2) f k
i

(15, 2.5, 2) . . . f k
i

(15, 11, 2)

︸                                                ︷︷                                                ︸
κ

f k
i

(20, 2, 1) f k
i

(20, 2.5, 1) . . . f k
i

(20, 11, 1)
︸                                                ︷︷                                                ︸

ν

f k
i

(20, 2, 2) f k
i

(20, 2.5, 2) . . . f k
i

(20, 11, 2)





η. (9)

C. Machine learning algorithms

A grid search was implemented for each method to
determine the hyperparameters provided in Secs. II C 1–II C 3.

1. Random forest

Random forests are ensemble methods that can be used
for either classification or regression tasks. Since the pro-
tein B-factor is a continuous measurement, B-factor pre-
diction is a regression task. Random forests use a forest
of n decision trees, and in the regression task, the predic-
tion output is the mean prediction of all the trees. Random
forests have the added benefit of avoiding overfitting. Ran-
dom forests are also invariant to scaling and can rank the
importance of features used in the model. Random forests
are very robust to use for small- and medium-sized data
sets.

The number of n trees used generally improves the pre-
dictive power of a random forest model, but if n is too large,
the model is susceptible, overfitting the data set. In this work,

we tested a variety of values for n to find a balance between
performance and cost.

2. Gradient boosted trees

Gradient boosting is another ensemble method that assem-
bles a number of so-called weak “learners” into a predic-
tion model iteratively. A gradient boosting tree is a gradient
descent method that optimizes an arbitrary differentiable loss
function to minimize the residuals from each step. Gra-
dient boosted trees (GBTs) incorporate decision trees at
each step of gradient boosting to improve the predictive
power of gradient boosting. Gradient boosted trees are advan-
tageous because they can handle heterogeneous features,
have strong predictive power, and are generally robust to
outliers.

The gradient boosted tree method has several hyper
parameters that can be tuned. In this work, we optimize the
hyper-parameters using the standard practice of a grid search.
The parameters used for testing are provided in Table III. Any
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TABLE III. Boosted gradient tree parameters used for testing. Parameters
were determined using a grid search. Any hyper-parameters not listed below
were taken to be the default values provided by the python scikit-learn package.

Parameter Setting

Loss function Quantile
Alpha 0.95
Estimators 1000
Learning rate 0.001
Maximum depth 4
Minimum samples leaf 9
Minimum samples split 9

hyper-parameters not listed below were taken to be the default
values provided by the python scikit-learn package.

3. Deep learning

Neural networks are designed based on the way neurons
function in the brain. In a neural network, a batch of signals
or feature inputs is passed through activation functions called
perceptrons which are the functional units of the network. The
weights of the networks are then trained using a loss function
over several epochs. Each epoch passes the training data set
through the network updating the weights according to the
loss function. A neural network is considered deep when it
has several “hidden” layers of perceptrons.

Convolutional neural networks (CNNs) have recently suc-
ceeded in classifying images. CNNs can extract features from
images using convolutions with a pre-defined filter size. CNNs
are advantageous because they can provide similar results
without training the network on the full data set. In practice,
one can extract high-level features by using several convo-
lutions. In this work, we explore using a heat map of rigidity
indices generated by three channel MWCG image features. We
then merge the CNN output into a neural network that contains
additional global and local protein features. A diagram of the
CNN architecture is given in Fig. 2.

The input of the CNN is a three-channel MWCG image of
dimension (8, 30, 3). The model takes the input data and applies
two convolutional layers with 2x2 filters followed by a dropout
layer at 0.5. The data are then passed through a dense layer
which is flattened then joined with the other global and local
features into a dense layer of 59 neurons followed by a dropout
layer of 0.5, another dense layer of 100 neurons, a dropout layer
of 0.25, a dense layer of 10 neurons, and finishes with a dense
layer of 1 neuron. This results in a total of 21 584 trainable
parameters for our network. Figure 2 provides a diagram of
the deep CNN used in this work.

The convolutional neural network (CNN) has several
hyper-parameters that can be tuned. In this work, we opti-
mize the hyper-parameters using the standard practice of a
grid search. The parameters used for testing are provided
in Table IV. Any hyper-parameters not listed below were
taken to be the default values provided by the python Keras
package.

4. Training set and test set

The RF, GBT, and CNN were all trained and tested in
the same manner. For each protein, a machine learning model

FIG. 2. The deep learning architecture using a convolutional neural net-
work combined with a deep neural network. The plus symbol represents the
concatenation of data sets.

is built using the entire dataset but excluding data from the
protein whose B-factors are to be predicted. Overall, there are
more than 620 000 atoms in our dataset. For each protein,
this provides a training set of roughly 600 000 data points
(i.e., atoms). For each heavy atom, there is a set of features as
described in Sec. II B and a B-factor value (label). The features
and the labels in the training set are used to train each machine
learning model. Since we perform leave-one-out predictions,
data from each protein are taken as a test set when its B-factors
are to be blindly predicted.

We implement random forest and boosted gradient models
using the scikit-learn python package. For the CNN model,
we also use the python package Keras with tensorflow as a
backend.

D. Datasets

Our study uses two datasets, one from Park, Jernigan, and
Wu17 and the other from Refs. 12 and 13. The first contains 3
subsets of small, medium, and large proteins17 and the latter
contains 364 proteins.12,13 The latter dataset is an extended

TABLE IV. Convolutional Neural Network (CNN) parameters used for test-
ing. Parameters were determined using a grid search. Any hyper-parameters
not listed below were taken to be the default values provided by python with
the Keras package.

Parameter Setting

Learning rate 0.001
Epoch 100
Batch size 100
Loss Mean absolute error
Optimizer Adam
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version of the first. In these proteins, all sequences have a res-
olution of 3 Å or higher and an average resolution of 1.3 Å and
the sets include proteins that range from 4 to 3912 residues.17

For the CNN, the feature datasets were standardized with
a mean of 0 and a variance of 1. Proteins 1OB4, 1OB7,
2OLX, and 3MD5 are excluded from the data set because the
STRIDE software is unable to provide features for these pro-
teins. We exclude protein 1AGN due to the known problems
with these protein data. Proteins 1NKO, 2OCT, and 3FVA
are also excluded because these proteins have residues with
B-factors reported as zero, which is unphysical.

III. RESULTS AND DISCUSSIONS

A. Evaluation metric

We successfully executed a leave-one-(protein)-out
method to blindly predict the B-factors of all carbon, nitrogen,
and oxygen atoms present in a given protein. For a com-
parison with other existing method, we also list results for
predicted Cα B-factors, which are predicted in the same way
as other heavy atoms. Machine learning was used to train a

TABLE V. CPU execution times, in seconds, from efficiency comparison
between GNM,12 RF, GBT, and CNN.

PDB N GNM12 RF GBT CNN

3P6J 125 0.141 0.000 455 0.000 358 0.130
3R87 132 0.156 0.000 464 0.000 339 0.138
3KBE 140 0.187 0.000 505 0.000 384 0.149
1TZV 141 0.203 0.000 473 0.000 365 0.163
2VY8 149 0.219 0.000 486 0.000 359 0.156
3ZIT 152 0.234 0.000 519 0.000 365 0.148
2FG1 157 0.265 0.000 518 0.000 403 0.174
2X3M 166 0.312 0.000 526 0.000 382 0.182
3LAA 169 0.327 0.000 514 0.000 405 0.155
3M8J 178 0.375 0.000 548 0.000 412 0.178
2GZQ 191 0.468 0.000 647 0.000 454 0.195
4G7X 194 0.499 0.000 631 0.000 445 0.209
2J9W 200 0.546 0.000 554 0.000 424 0.208
3TUA 210 0.655 0.000 602 0.000 472 0.217
1U9C 221 0.733 0.000 592 0.000 486 0.198
3ZRX 221 0.718 0.000 654 0.000 515 0.216
3K6Y 227 0.765 0.000 619 0.000 490 0.189
3OQY 234 0.873 0.000 619 0.000 502 0.211
2J32 244 0.967 0.000 625 0.000 556 0.225
3M3P 249 1.029 0.000 621 0.000 525 0.220
1U7I 267 1.263 0.000 647 0.000 551 0.237
4B9G 292 1.669 0.000 693 0.000 574 0.256
4ERY 318 2.122 0.000 775 0.000 619 0.289
3MGN 348 2.902 0.000 655 0.000 552 0.267
2ZU1 360 3.136 0.000 816 0.000 675 0.337
2Q52 412 4.696 0.000 900 0.000 750 0.369
4F01 448 6.178 0.001 016 0.000 878 0.401
3DRF 547 11.154 0.001 131 0.001 033 0.512
3UR8 637 17.409 0.001 307 0.001 136 0.583
2AH1 939 61.012 0.001 716 0.001 605 0.800
1GCO 1044 75.801 0.001 936 0.001 814 0.905
1F8R 1932 654.127 0.003 343 0.003 163 1.745
1H6V 2927 2085.842 0.005 205 0.004 739 2.543
1QKI 3912 6365.668 0.006 261 0.006 198 3.560

B-factor prediction model using the structural and B-factor
data from a training data set, as described in Secs. II C 4
and II D. The model was then used to predict the B-factors
of all heavy atoms in a given protein using only its structural
data.

To quantitatively assess our method for B-factor pre-
diction, we used the Pearson correlation coefficient, given
by

PCC =

N∑

i=1

(Be
i − B̄e)(Bt

i − B̄t)

[ N∑

i=1

(Be
i − B̄e)2

N∑

i=1

(Bt
i − B̄t)2

]1/2
, (10)

where Bt
i
, i = 1, 2, . . . , N are the predicted B-factors using the

proposed method and Be
i
, i = 1, 2, . . . , N are the experimental

B-factors from the PDB file. The terms Bt
i
and Be

i
represent the

ith theoretical and experimental B-factors, respectively. Here
B̄e and B̄t are the averaged B-factors.

B. Efficiency comparison

Computational efficiency in B-factor predictions is an
important consideration for large proteins. Table V lists the
running times of GNM, RF, GBT, and CNN in our python
implementations. These results are depicted in Fig. 3. The
proteins used to evaluate the computational complexity were
the same as those used by Opron et al.12 For this compari-
son, we only predict B-factors for Cα atoms. Several proteins
were excluded as GNM takes significantly too much central
processing unit (CPU) time to run. Tests excluded the time it
took to load PDB files and feature data. The machine learn-
ing algorithm times exclude the training of the model, which,
once trained, can be used for the prediction of all proteins.
The results show that GNM has computational complexity of
roughly O(N3) due to the matrix decomposition while the ML
algorithms are close to O(N), with N being the number of
atoms. The lines of best fit for CPU time (t) are t ≈ (4 × 10−8)

FIG. 3. CPU efficiency comparison between GNM,12 RF, GBT, and CNN
algorithms. Execution times in seconds (s) versus number of residues. A set
of 34 proteins, listed in Table V were used to evaluate the computational
complexity.
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∗ N3.09 for GNM, t ≈ (9 × 10−6) ∗ N0.78 for RF, t ≈ (4 × 10−6)
∗ N0.87 for GBT, and t ≈ (1.1 × 10−3) ∗ N0.97 for CNN.

C. Machine learning performance

The results in Table VI show that for the blind predic-
tion of all heavy atoms, the convolutional neural network
method performs best with an overall average Pearson cor-
relation coefficient of 0.69. The gradient boosted and random
forest ensemble methods performed similarly with Pearson
correlation coefficients of 0.63 and 0.59, respectively. For com-
parison, Table VI lists only the average Pearson correlation
coefficients for Cα B-factor predictions, which are obtained in
the same manner as other heavy atoms. These results can be
compared with those of the parameter-free flexibility-rigidity
index (pfFRI), Gaussian network model (GNM), and normal
mode analysis (NMA) which, however, were obtained via the
least squares fitting of each protein.

Results for all heavy atom B-factor predictions for small-,
medium-, and large-sized protein data subsets17 are given in
Tables VII–IX. Table X shows the results for all heavy atom B-
factor predictions of each protein in the superset. The average
Pearson correlation coefficient for the data subsets is provided
in Table VI. All methods perform similarly for the different
protein data subsets with the convolutional neural network
method performing the best on the superset for both all heavy
atom and Cα only B-factor predictions.

Our blind prediction result using the convolutional neural
network is notable because it improves upon the best result
in the previous work for a single protein parameter-free FRI
(pfFRI) linear fitting of 0.63.12 It is noted that blind predictions
are much more difficult than linear fittings. The result for sin-
gle protein GNM linear fittings of the same data set is 0.57.12

As reported in Table X, for each protein, no method outper-
forms any other method over the entire data set. In terms of

TABLE VI. Average Pearson correlation coefficients (PCC) of both all heavy
atom and Cα only B-factor predictions for small-, medium-, and large-sized
protein sets along with the entire superset of the 364-protein dataset. Predic-
tions of the random forest (RF), gradient boosted tree (GBT), and convolu-
tional neural network (CNN) are obtained by leave-one-protein-out (blind),
while predictions of the parameter-free flexibility-rigidity index (pfFRI),
Gaussian network model (GNM), and normal mode analysis (NMA) were
obtained via the least squares fitting of individual proteins. All machine
learning models use all heavy atom information for training.

Prediction of only Cα

Protein set RF GBT CNN pfFRI12 GNM12 NMA12

Small 0.25 0.39 0.53 0.60 0.54 0.48
Medium 0.47 0.59 0.55 0.61 0.55 0.48
Large 0.50 0.57 0.62 0.59 0.53 0.49
Superset 0.49 0.57 0.66 0.63 0.57 NA

Prediction of all heavy atom

Protein set RF GBT CNN pfFRI12 GNM12 NMA12

Small 0.44 0.49 0.56 NA NA NA
Medium 0.59 0.64 0.62 NA NA NA
Large 0.62 0.65 0.68 NA NA NA
Superset 0.59 0.63 0.69 NA NA NA

TABLE VII. Pearson correlation coefficients for cross protein heavy atom
blind B-factor prediction obtained by the random forest (RF), boosted gradient
(GBT), and convolutional neural network (CNN) for the small-sized protein
set. Results reported use heavy atoms in both training and prediction.

PDB ID N RF GBT CNN

1AIE 235 0.62 0.53 0.60
1AKG 108 0.41 0.51 0.70
1BX7 345 0.55 0.67 0.63
1ETL 76 0.27 0.03 0.48
1ETM 80 0.46 0.13 0.48
1ETN 77 0.33 0.25 0.20
1FF4 477 0.55 0.59 0.76
1GK7 321 0.53 0.73 0.72
1GVD 401 0.66 0.69 0.71
1HJE 73 ☞0.07 0.46 0.37
1KYC 138 0.43 0.30 0.32
1NOT 96 ☞0.18 0.81 0.63
1O06 142 0.51 0.64 0.65
1P9I 203 0.73 0.77 0.77
1PEF 153 0.60 0.64 0.76
1PEN 109 0.34 0.24 0.21
1Q9B 303 0.41 0.67 0.75
1RJU 257 0.71 0.75 0.73
1U06 432 0.55 0.68 0.61
1UOY 452 0.55 0.56 0.55
1USE 290 0.25 0.50 0.68
1VRZ 66 0.38 ☞0.17 0.09
1XY2 62 0.16 0.27 0.55
1YJO 55 0.36 0.12 0.02
1YZM 361 0.51 0.60 0.56
2DSX 386 0.36 0.44 0.56
2JKU 229 0.57 0.63 0.35
2NLS 269 0.45 0.49 0.70
2OL9 51 0.65 0.51 0.84
6RXN 345 0.56 0.71 0.82

the average Pearson correlation coefficient for all heavy atom
B-factor prediction, the convolutional neural network method
outperforms the boosted gradient and random forest by 10%
and 17%, respectively.

Some low Pearson correlation coefficient results show
a poor model prediction. However, in almost every protein
where one model performs poorly, another model performs
satisfactorily. When the maximum correlation coefficient for
each protein is considered among the three methods, the aver-
age all heavy atom correlation coefficient is increased to 0.73
and the average Cα only correlation coefficient is increased to
0.72. This result is similar to that of the parameter-optimized
FRI (opFRI) reported in our earlier work.12

D. Relative feature importance

Both random forest and boosted gradient methods have the
ability to rank relative feature importance helping us to under-
stand significant features in the model. Figure 4 shows the
individual feature importance for the random forest averaged
over the dataset.

We also include the aggregated feature importance in
Fig. 5. In this figure, we sum the importance of the individual
angle, secondary, MWCG, atom type, protein size, amino acid,
and packing density features.



134107-8 D. Bramer and G.-W. Wei J. Chem. Phys. 149, 134107 (2018)

TABLE VIII. Pearson correlation coefficients for cross protein heavy atom
blind B-factor prediction obtained by the random forest (RF), boosted gradient
(GBT), and convolutional neural network (CNN) for the medium-sized protein
set. Results reported use heavy atoms in both training and prediction.

PDB ID N RF GBT CNN

1ABA 728 0.74 0.77 0.73
1CYO 697 0.66 0.68 0.76
1FK5 626 0.62 0.71 0.63
1GXU 694 0.65 0.67 0.66
1I71 683 0.57 0.62 0.66
1LR7 522 0.53 0.70 0.71
1N7E 700 0.62 0.65 0.71
1NNX 674 0.69 0.73 0.53
1NOA 778 0.52 0.57 0.57
1OPD 642 0.55 0.60 0.62
1QAU 812 0.57 0.58 0.57
1R7J 729 0.71 0.70 0.65
1UHA 623 0.74 0.80 0.75
1ULR 677 0.69 0.71 0.68
1USM 631 0.59 0.78 0.67
1V05 17 ☞0.20 0.02 0.60
1W2L 746 0.62 0.68 0.69
1X3O 622 0.53 0.52 0.63
1Z21 771 0.63 0.66 0.63
1ZVA 551 0.59 0.56 0.58
2BF9 287 0.39 0.52 0.70
2BRF 735 0.76 0.78 0.86
2CE0 714 0.62 0.65 0.90
2E3H 589 0.70 0.73 0.38
2EAQ 705 0.63 0.61 0.58
2EHS 590 0.55 0.71 0.38
2FQ3 721 0.67 0.75 0.76
2IP6 702 0.62 0.67 0.64
2MCM 735 0.71 0.73 0.60
2NUH 806 0.64 0.72 0.19
2PKT 666 0.06 0.17 0.76
2PLT 719 0.62 0.67 0.70
2QJL 734 0.61 0.60 0.42
2RB8 723 0.61 0.64 0.42
3BZQ 742 0.60 0.61 0.43
5CYT 800 0.68 0.70 0.74

Figure 4 shows the most important MWCG feature is the
carbon-carbon interaction. This MWCG feature uses a Lorentz
radial basis function as with η = 16 and ν = 3, as detailed
in Sec. II B. The remaining eight MWCG features all rank
similarly with the carbon-oxygen interaction ranked as the
second most significant MWCG feature. This result validates
that the model benefits from the multi-scale property of the
MWCG feature, which uses three different kernels to capture
interactions at various length scales. Since all MWCG have
significance in the feature ranking, it follows that the element
specific property of the MWCG method is also a meaningful
model feature.

Figure 4 shows that the individual MWCG, amino acid
type, and packing density feature have low relative impor-
tance; however, considering their aggregate importance as seen
in Fig. 5, we see that they contribute to the model. Figure 5
shows that the medium density protein packing density feature

TABLE IX. Pearson correlation coefficients for cross protein heavy atom
blind B-factor prediction obtained by the random forest (RF), boosted gradient
(GBT), and convolutional neural network (CNN) for the large-sized protein
set. Results reported use heavy atoms in both training and prediction.

PDB ID N RF GBT CNN

1AHO 482 0.62 0.71 0.76
1ATG 1689 0.61 0.66 0.63
1BYI 1540 0.59 0.63 0.59
1CCR 837 0.70 0.67 0.66
1E5K 1423 0.70 0.73 0.74
1EW4 863 0.70 0.71 0.61
1IFR 878 0.72 0.74 0.73
1NLS 1746 0.61 0.64 0.56
1O08 1722 0.51 0.58 0.55
1PMY 937 0.64 0.65 0.67
1PZ4 874 0.73 0.73 0.74
1QTO 934 0.61 0.55 0.63
1RRO 846 0.56 0.52 0.54
1UKU 873 0.74 0.75 0.70
1V70 784 0.70 0.67 0.62
1WBE 1542 0.59 0.61 0.63
1WHI 937 0.74 0.77 0.71
1WPA 906 0.64 0.66 0.74
2AGK 1867 0.61 0.68 0.44
2C71 1446 0.59 0.61 0.83
2CG7 536 0.47 0.54 0.79
2CWS 1624 0.63 0.60 0.78
2HQK 1582 0.76 0.76 0.90
2HYK 1832 0.60 0.65 0.85
2I24 872 0.52 0.52 0.91
2IMF 1564 0.62 0.62 0.47
2PPN 701 0.50 0.68 0.83
2R16 1262 0.52 0.53 0.50
2V9V 986 0.64 0.61 0.63
2VIM 781 0.62 0.61 0.75
2VPA 1524 0.63 0.68 0.61
2VYO 1589 0.53 0.65 0.61
3SEB 1948 0.61 0.71 0.57
3VUB 787 0.64 0.70 0.78

was twice as important to the model as the short and long den-
sity features. The medium packing density may be capturing
semi-local side chain interactions which are important in pro-
tein flexibility. The short packing density likely captures only
adjacent backbone information, while the long packing den-
sity is only adding weak atomic interaction information to the
model. Protein resolution is the most significant relative fea-
ture followed by MWCG features and the STRIDE generated
residue solvent accessible area feature. This also highlights
the importance of the quality of X-ray crystal structures and
difficulty in cross-protein B-factor prediction. Protein angles,
secondary structures, and size play a less significant role in the
model compared to the other features. The atom type has the
lowest significance relative to the other features implemented
in the model. Not surprisingly, we see that global features
such as resolution and R-value are important components in
the ensemble model. The global feature of protein size has a
small role in the model.
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TABLE X. Pearson correlation coefficients for cross protein heavy atom blind B-factor prediction obtained by the
random forest (RF), boosted gradient (GBT), and convolutional neural network (CNN) for the superset. Results
reported use heavy atoms in both training and prediction.

PDB N RF GBT CNN PDB N RF GBT CNN

1ABA 728 0.74 0.77 0.73 2X5Y 1352 0.75 0.79 0.72
1AHO 482 0.62 0.71 0.76 2X9Z 1956 0.71 0.72 0.76
1AIE 235 0.62 0.53 0.60 2XHF 2432 0.65 0.71 0.70
1AKG 108 0.41 0.51 0.70 2Y0T 757 0.59 0.75 0.73
1ATG 1689 0.61 0.66 0.63 2Y72 1171 0.73 0.80 0.75
1BGF 1018 0.58 0.63 0.63 2Y7L 2398 0.81 0.82 0.62
1BX7 345 0.55 0.67 0.63 2Y9F 1212 0.72 0.77 0.64
1BYI 1540 0.59 0.63 0.59 2YLB 3065 0.60 0.69 0.63
1CCR 837 0.70 0.67 0.66 2YNY 2364 0.67 0.71 0.68
1CYO 697 0.66 0.68 0.76 2ZCM 2959 0.41 0.45 0.44
1DF4 463 0.79 0.75 0.64 2ZU1 2794 0.59 0.73 0.17
1E5K 1423 0.70 0.73 0.74 3A0M 823 0.65 0.47 0.74
1ES5 1912 0.63 0.68 0.66 3A7L 963 0.66 0.75 0.81
1ETL 76 0.27 0.03 0.48 3AMC 5174 0.72 0.75 0.62
1ETM 80 0.46 0.13 0.48 3AUB 782 0.63 0.62 0.74
1ETN 77 0.33 0.25 0.20 3B5O 1510 0.53 0.55 0.65
1EW4 863 0.70 0.71 0.61 3BA1 2391 0.65 0.64 0.44
1F8R 15 291 0.64 0.64 0.83 3BED 1570 0.73 0.73 0.70
1FF4 477 0.55 0.59 0.76 3BQX 1028 0.52 0.59 0.85
1FK5 626 0.62 0.71 0.63 3BZQ 742 0.60 0.61 0.43
1GCO 7888 0.64 0.61 0.71 3BZZ 773 0.45 0.45 0.77
1GK7 321 0.53 0.73 0.72 3DRF 4101 0.67 0.66 0.81
1GVD 401 0.66 0.69 0.71 3DWV 2363 0.60 0.67 0.87
1GXU 694 0.65 0.67 0.66 3E5T 1543 0.71 0.72 0.75
1H6V 22 514 0.39 0.40 0.58 3E7R 295 0.60 0.60 0.81
1HJE 73 ☞0.07 0.46 0.37 3EUR 1059 0.47 0.50 0.82
1I71 683 0.57 0.62 0.66 3F2Z 1160 0.78 0.78 0.88
1IDP 3661 0.69 0.74 0.83 3F7E 1912 0.61 0.67 0.69
1IFR 878 0.72 0.74 0.73 3FCN 1039 0.68 0.71 0.73
1K8U 686 0.65 0.68 0.74 3FE7 710 0.62 0.71 0.83
1KMM 11 632 0.65 0.70 0.87 3FKE 1938 0.57 0.56 0.76
1KNG 1016 0.61 0.56 0.55 3FMY 470 0.73 0.75 0.84
1KR4 906 0.73 0.76 0.72 3FOD 328 0.30 0.45 0.78
1KYC 138 0.43 0.30 0.32 3FSO 197 0.71 0.73 0.85
1LR7 522 0.53 0.70 0.71 3FTD 1795 0.75 0.75 0.69
1MF7 1551 0.68 0.68 0.70 3G1S 3196 0.74 0.76 0.72
1N7E 700 0.62 0.65 0.71 3GBW 1275 0.75 0.76 0.68
1NKD 426 0.56 0.59 0.63 3GHJ 808 0.66 0.71 0.44
1NLS 1746 0.61 0.64 0.56 3HFO 1432 0.65 0.72 0.70
1NNX 674 0.69 0.73 0.53 3HHP 8495 0.71 0.74 0.62
1NOA 778 0.52 0.57 0.57 3HNY 1351 0.73 0.73 0.58
1NOT 96 ☞0.18 0.81 0.63 3HP4 1322 0.61 0.63 0.65
1O06 142 0.51 0.64 0.65 3HWU 934 0.51 0.69 0.51
1O08 1722 0.51 0.58 0.55 3HYD 52 ☞0.05 0.28 0.60
1OPD 642 0.55 0.60 0.62 3HZ8 1459 0.51 0.54 0.76
1P9I 203 0.73 0.77 0.77 3I2V 929 0.50 0.54 0.81
1PEF 153 0.60 0.64 0.76 3I2Z 1039 0.63 0.64 0.75
1PEN 109 0.34 0.24 0.21 3I4O 969 0.66 0.64 0.87
1PMY 937 0.64 0.65 0.67 3I7M 928 0.56 0.60 0.87
1PZ4 874 0.73 0.73 0.74 3IHS 1120 0.66 0.65 0.81
1Q9B 303 0.41 0.67 0.75 3IVV 1097 0.72 0.81 0.85
1QAU 812 0.57 0.58 0.57 3K6Y 1617 0.62 0.65 0.90
1QKI 31 154 0.44 0.27 0.84 3KBE 829 0.75 0.76 0.86
1QTO 934 0.61 0.55 0.63 3KGK 1492 0.75 0.78 0.87
1R29 971 0.61 0.73 0.72 3KZD 605 0.64 0.70 0.74
1R7J 729 0.71 0.70 0.65 3L41 1735 0.73 0.76 0.88
1RJU 257 0.71 0.75 0.73 3LAA 1112 0.54 0.46 0.89
1RRO 846 0.56 0.52 0.54 3LAX 753 0.69 0.71 0.89
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TABLE X. (Continued.)

PDB N RF GBT CNN PDB N RF GBT CNN

1SAU 830 0.62 0.68 0.60 3LG3 6061 0.57 0.59 0.91
1TGR 749 0.61 0.65 0.67 3LJI 1946 0.46 0.54 0.50
1TZV 1051 0.75 0.77 0.75 3M3P 1858 0.57 0.62 0.68
1U06 432 0.55 0.68 0.61 3M8J 1396 0.78 0.77 0.68
1U7I 1988 0.73 0.75 0.77 3M9J 1329 0.66 0.74 0.50
1U9C 1712 0.61 0.64 0.58 3M9Q 1359 0.52 0.53 0.48
1UHA 623 0.74 0.80 0.75 3MAB 1311 0.63 0.65 0.59
1UKU 873 0.74 0.75 0.70 3MD4 81 0.36 0.61 0.79
1ULR 677 0.69 0.71 0.68 3MEA 1236 0.58 0.64 0.93
1UOY 452 0.55 0.56 0.55 3MGN 2236 0.15 0.03 0.82
1USE 290 0.25 0.50 0.68 3MRE 2598 0.57 0.56 0.84
1USM 631 0.59 0.78 0.67 3N11 2501 0.52 0.57 0.85
1UTG 548 0.58 0.55 0.62 3NE0 1551 0.68 0.69 0.85
1V05 17 ☞0.20 0.02 0.60 3NGG 702 0.63 0.75 0.83
1V70 784 0.70 0.67 0.62 3NPV 3655 0.70 0.75 0.84
1VRZ 66 0.38 ☞0.17 0.09 3NVG 50 ☞0.08 0.08 0.88
1W2L 746 0.62 0.68 0.69 3NZL 567 0.59 0.65 0.63
1WBE 1542 0.59 0.61 0.63 3O0P 1452 0.55 0.65 0.63
1WHI 937 0.74 0.77 0.71 3O5P 819 0.53 0.63 0.70
1WLY 2430 0.65 0.71 0.68 3OBQ 1195 0.61 0.61 0.84
1WPA 906 0.64 0.66 0.74 3OQY 1772 0.57 0.62 0.76
1X3O 622 0.53 0.52 0.63 3P6J 857 0.57 0.70 0.88
1XY1 124 0.58 0.19 0.47 3PD7 1354 0.70 0.72 0.85
1XY2 62 0.16 0.27 0.55 3PES 1240 0.72 0.73 0.84
1Y6X 669 0.44 0.53 0.46 3PID 3078 0.49 0.56 0.86
1YJO 55 0.36 0.12 0.02 3PIW 1223 0.72 0.75 0.87
1YZM 361 0.51 0.60 0.56 3PKV 1688 0.66 0.68 0.81
1Z21 771 0.63 0.66 0.63 3PSM 729 0.62 0.68 0.80
1ZCE 1100 0.77 0.81 0.73 3PTL 2101 0.61 0.62 0.72
1ZVA 551 0.59 0.56 0.58 3PVE 2656 0.56 0.61 0.46
2A50 3493 0.64 0.48 0.68 3PZ9 2913 0.63 0.76 0.60
2AGK 1867 0.61 0.68 0.44 3PZZ 76 0.47 0.25 0.85
2AH1 7215 0.65 0.57 0.67 3Q2X 43 0.29 0.59 0.76
2B0A 1454 0.66 0.68 0.72 3Q6L 1022 0.71 0.67 0.75
2BCM 3002 0.51 0.62 0.85 3QDS 2234 0.71 0.72 0.71
2BF9 287 0.39 0.52 0.70 3QPA 1348 0.43 0.44 0.71
2BRF 735 0.76 0.78 0.86 3R6D 1550 0.31 0.69 0.59
2C71 1446 0.59 0.61 0.83 3R87 1007 0.39 0.51 0.53
2CE0 714 0.62 0.65 0.90 3RQ9 1174 0.32 0.47 0.66
2CG7 536 0.47 0.54 0.79 3RY0 964 0.66 0.65 0.53
2COV 4366 0.76 0.83 0.78 3RZY 985 0.69 0.69 0.64
2CWS 1624 0.63 0.60 0.78 3S0A 884 0.55 0.61 0.61
2D5W 9772 0.71 0.75 0.75 3SD2 527 0.38 0.52 0.71
2DKO 1933 0.71 0.72 0.72 3SEB 1948 0.61 0.71 0.57
2DPL 4454 0.49 0.53 0.73 3SED 933 0.70 0.71 0.72
2DSX 386 0.36 0.44 0.56 3SO6 1119 0.69 0.75 0.01
2E10 3416 0.50 0.64 0.61 3SR3 4891 0.69 0.69 0.45
2E3H 589 0.70 0.73 0.38 3SUK 1761 0.62 0.65 0.59
2EAQ 705 0.63 0.61 0.58 3SZH 5074 0.74 0.80 0.44
2EHP 1875 0.75 0.74 0.74 3T0H 1627 0.78 0.81 0.65
2EHS 590 0.55 0.71 0.38 3T3K 922 0.56 0.68 0.62
2ERW 385 0.47 0.50 0.32 3T47 1116 0.54 0.62 0.74
2ETX 3018 0.56 0.61 0.58 3TDN 2703 0.55 0.55 0.58
2FB6 766 0.63 0.65 0.52 3TOW 1193 0.53 0.66 0.66
2FG1 1021 0.55 0.65 0.68 3TUA 1510 0.63 0.66 0.70
2FN9 4362 0.37 0.60 0.61 3TYS 556 0.67 0.68 0.71
2FQ3 721 0.67 0.75 0.76 3U6G 1658 0.52 0.51 0.60
2G69 744 0.60 0.61 0.87 3U97 524 0.57 0.66 0.27
2G7O 537 0.52 0.63 0.89 3UCI 536 0.44 0.51 0.56
2G7S 1258 0.60 0.60 0.81 3UR8 5033 0.63 0.66 0.83
2GKG 706 0.63 0.60 0.70 3US6 1156 0.62 0.64 0.01
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TABLE X. (Continued.)

PDB N RF GBT CNN PDB N RF GBT CNN

2GOM 987 0.61 0.70 0.92 3V1A 319 0.36 0.36 0.76
2GXG 1132 0.67 0.75 0.86 3V75 1974 0.63 0.65 0.83
2GZQ 1402 0.59 0.60 0.90 3VN0 1469 0.69 0.76 0.76
2HQK 1582 0.76 0.76 0.90 3VOR 1077 0.41 0.50 0.81
2HYK 1832 0.60 0.65 0.85 3VUB 787 0.64 0.70 0.78
2I24 872 0.52 0.52 0.91 3VVV 869 0.62 0.69 0.84
2I49 3109 0.78 0.77 0.90 3VZ9 1366 0.70 0.72 0.66
2IBL 815 0.46 0.53 0.88 3W4Q 5406 0.66 0.73 0.65
2IGD 431 0.58 0.68 0.82 3ZBD 1718 0.54 0.54 0.78
2IMF 1564 0.62 0.62 0.47 3ZIT 1192 0.51 0.54 0.71
2IP6 702 0.62 0.67 0.64 3ZRX 1654 0.38 0.67 0.60
2IVY 727 0.47 0.59 0.62 3ZSL 925 0.61 0.64 0.69
2J32 1935 0.79 0.78 0.70 3ZZP 585 0.40 0.46 0.56
2J9W 1626 0.66 0.68 0.73 3ZZY 1741 0.64 0.69 0.69
2JKU 229 0.57 0.63 0.35 4A02 1281 0.62 0.65 0.75
2JLI 708 0.58 0.54 0.73 4ACJ 1210 0.64 0.67 0.75
2JLJ 889 0.66 0.70 0.68 4AE7 1458 0.64 0.74 0.61
2MCM 735 0.71 0.73 0.60 4AM1 2605 0.64 0.67 0.56
2NLS 269 0.45 0.49 0.70 4ANN 1180 0.53 0.60 0.72
2NR7 1556 0.71 0.70 0.66 4AVR 1437 0.62 0.61 0.64
2NUH 806 0.64 0.72 0.19 4AXY 317 0.45 0.64 0.75
2O6X 2415 0.76 0.82 0.63 4B6G 4504 0.78 0.76 0.84
2OA2 970 0.54 0.53 0.92 4B9G 2226 0.79 0.81 0.83
2OHW 2074 0.55 0.62 0.81 4DD5 2618 0.63 0.66 0.87
2OKT 2587 0.56 0.59 0.89 4DKN 3356 0.76 0.77 0.88
2OL9 51 0.65 0.51 0.84 4DND 755 0.66 0.73 0.85
2PKT 666 0.06 0.17 0.76 4DPZ 865 0.65 0.66 0.83
2PLT 719 0.62 0.67 0.70 4DQ7 2526 0.58 0.69 0.78
2PMR 590 0.63 0.66 0.63 4DT4 1163 0.71 0.73 0.73
2POF 3418 0.58 0.66 0.85 4EK3 2147 0.70 0.72 0.73
2PPN 701 0.50 0.68 0.83 4ERY 2357 0.70 0.74 0.83
2PSF 4983 0.54 0.55 0.79 4ES1 737 0.63 0.64 0.81
2PTH 1437 0.68 0.72 0.79 4EUG 1789 0.59 0.66 0.79
2Q4N 9496 0.45 0.39 0.85 4F01 3374 0.55 0.54 0.77
2Q52 26 784 0.63 0.62 0.77 4F3J 1116 0.58 0.62 0.53
2QJL 734 0.61 0.60 0.42 4FR9 956 0.61 0.64 0.62
2R16 1262 0.52 0.53 0.50 4G14 39 0.28 0.50 0.55
2R6Q 903 0.59 0.53 0.57 4G2E 1178 0.73 0.73 0.76
2RB8 723 0.61 0.64 0.42 4G5X 4002 0.74 0.75 0.65
2RE2 1559 0.66 0.66 0.54 4G6C 4814 0.47 0.60 0.61
2RFR 1019 0.54 0.58 0.66 4G7X 1315 0.49 0.56 0.80
2V9V 986 0.64 0.61 0.63 4GA2 873 0.51 0.55 0.55
2VE8 3967 0.65 0.59 0.66 4GMQ 678 0.56 0.72 0.54
2VH7 749 0.74 0.70 0.82 4GS3 737 0.56 0.60 0.56
2VIM 781 0.62 0.61 0.75 4H4J 1470 0.69 0.80 0.70
2VPA 1524 0.63 0.68 0.61 4H89 1127 0.55 0.61 0.62
2VQ4 800 0.72 0.76 0.78 4HDE 1288 0.73 0.79 0.70
2VY8 1058 0.71 0.74 0.63 4HJP 2112 0.65 0.70 0.76
2VYO 1589 0.53 0.65 0.61 4HWM 799 0.50 0.57 0.81
2W1V 4223 0.68 0.72 0.72 4IL7 527 0.35 0.43 0.74
2W2A 2918 0.56 0.62 0.63 4J11 2658 0.47 0.58 0.94
2W6A 826 0.66 0.76 0.69 4J5O 1406 0.64 0.63 0.91
2WJ5 630 0.49 0.53 0.77 4J5Q 1062 0.73 0.75 0.87
2WUJ 828 0.55 0.55 0.55 4J78 2443 0.71 0.75 0.86
2WW7 915 0.35 0.43 0.61 4JG2 1294 0.70 0.73 0.88
2WWE 54 0.23 0.22 0.12 4JVU 1615 0.69 0.68 0.89
2X1Q 1852 0.58 0.53 0.77 4JYP 4063 0.70 0.78 0.93
2X25 1289 0.65 0.68 0.80 4KEF 1002 0.65 0.62 0.68
2X3M 1267 0.66 0.70 0.75 5CYT 800 0.68 0.70 0.74

6RXN 345 0.56 0.71 0.82
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FIG. 4. Individual feature importance for the random forest model averaged over the data set. Reported feature selection includes the use of heavy atoms in the
model.

Care must be taken to use feature ranking to under-
stand feature importance. The feature ranking provided by
these models is a relative ordering of features that the mod-
els find most important. So features with high correlation may
be redundant giving one of them a lower rank even though
they may have significant prediction power. For example, the
R-value highly correlates with resolution, so it is likely a
meaningful feature. However, the use of resolution reduces
the relative importance ranking of the R-value in the model.

E. Machine learning methods

Among the three methods considered in this work, the
convolutional neural network method outperforms the boosted
gradient tree and random forest by 10% and 17%, respectively.

FIG. 5. Average feature importance for the random forest model with the
angle, secondary, MWCG, atom type, protein size, amino acid, and packing
density features aggregated. Reported feature selection includes the use heavy
atoms in the model.

As reported in Table X, no machine learning method outper-
forms any other method for each of all proteins. Results for all
machine learning methods could undoubtedly be improved by
refining features, exploring new features, and further tuning
hyperparameters.

In general, ensemble methods do not require as much
parameter tuning as the CNN does. The random forest is
the simplest and most robust method. To balance cost, time,
and quality, only 500 trees were used for the random forest
and 1000 trees were used for the boosted gradient method in
this work. This may account for the increased performance
of the boosted gradient tree method compared to the ran-
dom forest. Ensemble methods are quite robust against over-
fitting, so adding more features would likely improve their
results.18 The boosted gradient trees use several hyperparam-
eters, so these methods could benefit by further tuning these
hyperparameters.

The additional data in the form of MWCG images used in
the convolutional neural network likely explain the improved
performance, as compared to the ensemble methods. More
refined images and other novel image types could further
improve results.

Using the dropout strategy, CNNs are also robust against
overfitting. Since there are a few hyperparameters in the CNN
method, it would likely benefit from more detailed parameter
tuning. Additionally, a large dataset and more features would
also improve the CNN performance. For example, includ-
ing persistent homology19 and differential geometry features
might lead to a better CNN prediction.

IV. CONCLUSION

Protein flexibility is known to strongly correlate with
the protein function and its prediction is important for our
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understanding of protein dynamics and transport. Our quan-
titative understanding of protein flexibility and function is
greatly impeded by their complexity and a large number of
degrees of freedom. Many time-independent methods, such
as NMA,4,20,5,3 ENM,6 GNM,8,9,21 and FRI,11–13,22 exist that
dramatically simplify the protein structural complexity and
are able to analyze protein B-factors, which reflect protein
flexibility among other things. Based on the hypothesis that
intrinsic physics lies in a low-dimensional space embedded
in a high-dimensional data space, we introduced multiscale
weighted colored graphs (MWCGs) to effectively reduce pro-
tein structural complexity and efficiently describe protein flex-
ibility. However, none of the aforementioned methods is able
to blindly predict the protein B-factors of an unknown protein.
This work integrates advanced machine learning algorithms
and two sets of features, i.e., global and local ones, to blindly
predict protein flexibility and B-factors.

A few standard datasets involving more than 300 pro-
teins (or more than 600 000 of B-factors) have been utilized
to test the proposed method. We use the leave-one-protein-out
scheme to blindly predict protein B-factors of both all heavy
atoms and only Cα atoms. Extensive numerical experiments
demonstrate that the present blind prediction is more accurate
than the least squares fitting using GNM or NMA in terms
of Pearson’s correlation coefficients for the prediction of Cα

B-factors. Furthermore, we demonstrate the ability to effec-
tively blindly predict B-factors of any heavy atoms in a given
protein.

Three standard machine learning algorithms, namely, the
random forest, gradient boosted trees, and convolutional neu-
ral networks, are employed in the present study. Among
them, convolutional neural networks do a better job in B-
factor predictions. A variety of different features were con-
sidered for these models including local, semi-local, and
global features. Local features, such as MWCGs, are designed
to capture structural properties associated with the intrin-
sic flexibility, while global features, such as X-ray crystal
resolution, are used to enable the cross-protein compari-
son and analysis. The proposed method is very efficient.
However, there is still much room for novel and interest-
ing features that can be implemented in future work. For
example, many algebraic topology tools have been found
very useful for protein analysis23,18,19 and will likely pair
well with machine learning approaches for protein flexibility
predictions.

This work is a first step using the recent advances
in machine learning techniques to blindly predict pro-
tein B-factors. To the authors’ knowledge, this is the first
work demonstrating this as a feasible and robust prediction
method. This work provides a clear piece of evidence that
machine algorithms are useful in protein flexibility analy-
sis. Results for all methods could undoubtedly be improved
by a better mathematical description of intrinsic flexibil-
ity, larger datasets, and more advanced machine learning
algorithms.

The proposed methods could be implemented in a variety
of interesting applications related to the protein flexibility and
function. These include topics such as hinge detection, hot spot

identification, allosteric site detection, pose prediction, protein
folding, and computer-aided drug design.
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