
BLIND QUALITY ASSESSMENT OF JPEG2000 COMPRESSED IMAGES USING NATURAL
SCENE STATISTICS

Hamid R. Sheikh, Alan C. Bovik and Lawrence Cormack

Laboratory for Image and Video Engineering, Department of Electrical and Computer Engineering,
The University of Texas at Austin, Austin, TX 78712-1084, USA.

Email: hamid.sheikh@ieee.org, bovik@ece.utexas.edu, cormack@psy.utexas.edu

ABSTRACT

Measurement of image quality is crucial for many image-
processing algorithms, such as acquisition, compression, restora-
tion, enhancement and reproduction. Traditionally, researchers in
image quality assessment have focused on equating image quality
with similarity to a ‘reference’ or ‘perfect’ image. The field of
blind, or no-reference, quality assessment, in which image quality
is predicted without the reference image, has been largely unex-
plored. In this paper, we present a blind quality assessment al-
gorithm for images compressed by JPEG2000 using natural scene
statistics (NSS) modelling. We show how reasonably comprehen-
sive NSS models can help us in making blind, but accurate, predic-
tions of quality. Our algorithm performs close to the limit imposed
on useful prediction by the variability between human subjects.

1. INTRODUCTION

Digital images are now a part of our everyday lives, and the prob-
lem of automatically quantifying their quality has received tremen-
dous attention in the research community. Most image quality as-
sessment algorithms in the literature areimage fidelity metrics,
and assume that a ‘reference’ image is available against which
a distorted or processed image can be compared. However, hu-
man observers can readily judge the quality of images without ex-
plicit knowledge of the reference images. We were thus motivated
to considerblind quality assessment, also known as no-reference
quality assessment, in which an algorithm assigns quality scores
that are consistent with human perceptions of quality, but without
any explicit comparisons with the reference image.

Blind Quality Assessment is a very hard problem since many
unquantifiable factors play a role in human perceptions of qual-
ity, such as aesthetics, cognitive relevance, learning, context etc.
In our previous work, we presented the following philosophy for
circumventing these challenges of blind image quality assessment:
all images are perfect, regardless of content, until distorted by ac-
quisition, processing or reproduction[1]. Hence, the task of blind
quality measurement simplifies into blindly measuring the distor-
tion that has possibly been introduced into the image during the
stages of acquisition, processing or reproduction. The reference
for measuring this distortion would be the statistics of ‘perfect’
natural images.

Lossy image compression algorithms running at low bit rates
are common sources of image distortions. JPEG2000 is a recent
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image compression standard that is based on the Discrete Wavelet
Transform. Like all lossy compression algorithms, it too suffers
from artifacts at higher compression ratios, specifically blurring
and ringing distortions [2]. In [1], we presented an algorithm for
blindly measuring the quality of images compressed by JPEG2000
using NSS modelling. In this paper, we present enhancements to
our algorithm to improve its prediction accuracy.

In our research, we make use of NSS modelling in the wavelet
domain to quantify the loss in image quality due to the quanti-
zation of the wavelet coefficients. Specifically, we claim that the
quantization process disturbs the non-linear dependencies that are
present in natural images thereby making them ‘unnatural’, and
that this perturbation can be quantified using statistical models for
natural scenes, as well as by modelling the salient features of the
quantization process in JPEG2000 (or any other Wavelet based)
image codec. Using human subject data, this quantification can
then be related to human perceptions of quality.

2. SUBJECTIVE EXPERIMENTS

A comprehensive psychometric study was conducted in order to
train and test our algorithms. The study was conducted in collabo-
ration with the Psychology Department at the University of Texas
at Austin. A total of 198 images compressed by JPEG2000 to
different bit rates were evaluated by about two dozen human sub-
jects, who were asked to provide their perceptions of quality on
a continuous linear scale. The average standard deviation of the
processed subject scores over all images was found to be 7.04 (on
a scale of 1-100). This quantifies the variability between human
subjects, and can be used to gauge the performance of our blind
metric. The database is available free of charge to the research
community, along with details of the experiment [3].

3. STATISTICAL MODEL FOR IMAGES IN THE
WAVELET DOMAIN

In [1], we asserted that the NSS model presented in [4, 5] is useful
for blind quality assessment of JPEG2000 (or any other Wavelet
based) image codec. The model captures the statistics of wavelet
coefficients of natural images in a given subband and their non-
linear correlations with other wavelet coefficients across scales and
orientations. We observed from experiments that this model is suit-
able for blindly quantifying the perceptual effects of quantization
of the wavelet coefficients of natural images, since quantization
disturbs the non-linear dependencies between them.



3.1. Natural Images

The statistical model proposed in [4, 5] models the wavelet coef-
ficient’s magnitude,C, conditioned on the magnitude of the linear
prediction of the coefficient,P , and is given in (1), whereM and
N are assumed to be independent zero mean random variables:

C = M × P + N (1)

In [4, 5], an empirical distribution forM is used andN is as-
sumed to be Gaussian of unknown variance. The linear predic-
tion, P , comes from a set of neighboring coefficients ofC at the
same scale and orientation, different orientations at the same scale,
and coefficients at the parent scales. Figure 1 shows the joint his-
tograms of(log2(P ), log2(C)) of an image at different scales and
orientations, the strong non-linear dependence betweenP andC
is clearly visible on the logarithmic axes.

Fig. 1. Joint histograms of(log2 P, log2 C) for an uncompressed
natural image at different scales and orientations of its Wavelet de-
composition. Top left: Diagonal subband at the finest scale. Top
right: Horizontal subband at the finest scale. Bottom left: Ver-
tical subband at the second-finest scale. Bottom right: Diagonal
subband at the third-finest scale.

3.2. Compressed Natural Images

The model in (1) (Figure 1) is not very useful for compressed im-
ages, since quantization significantly affect the distributions. Fig-
ure 2 shows the joint histograms of a subband from the uncom-
pressed and compressed versions of an image at different bit rates.
The effects of the quantization process are clearly visible: quan-
tization pushes the coefficients towards zero, and disturbs the de-
pendencies betweenP andC.

The blind quality assessment algorithm presented in [1] was
based on a two-state statistical model forC only. In this paper,
we will extend the method by using the joint distribution ofP and
C. We propose to use a discrete two-state model forP and C
that can characterize uncompressed as well as compressed natu-
ral images. These two states correspond to the coefficient and its
predictor being significant or insignificant. The two-state model is
motivated by the fact that the quantization process in JPEG2000,

Fig. 2. Joint histograms of(log2 P, log2 C) for one subband of
an image when it is compressed at different bit rates using the
JPEG2000 compression algorithm. Top left: No compression. Top
right: 2.44 bits/pixel. Bottom left: 0.78 bits/pixel. Bottom right:
0.19 bits/pixel.

which occurs in all subbands, results in more ofP and C val-
ues being insignificant than expected for uncompressed natural im-
ages. Hence, a good indicator of the unnaturalness and the percep-
tual effect of quantization is the percentage of significantP and
C.

The details of the two-state model are as follows. Two image-
dependent thresholds, one forP and the other forC, are selected
for each subband for binarization. The details of threshold compu-
tation will be given in Section 3.3.1. A coefficient (or its predic-
tor) is considered to be significant if it is above threshold. Conse-
quently, we obtain a set of four probabilities,pii, pis, psi, pss, cor-
responding to the probabilities that the predictor/coefficient pair
lies in one of the four quadrants, as depicted in Figure 3. Obvi-
ously the sum of all these probabilities for a subband is unity. The
set of neighbors from whichP is calculated in our simulations is
also shown in Figure 3.

3.3. Features for Blind Quality Assessment

We observed from experiments that the feature vector consisting
of probabilitiespss from a number of subbands (specifically, the
horizontal, vertical and diagonal orientations at the two finest res-
olutions) gives the best indication of the loss of quality, in terms
of minimizing the quality prediction error over the database. We
also observed that the featurepss from each subband is related to
image quality by a saturating exponential fit as follows:

qi = Ki

(
1− exp

(
− (pss,i − ui)

Ti

))
(2)

where qi is the quality prediction for the image using thei-th
subband,pss,i is the pss probability for thei-th subband, and
Ki, Ti andui are curve fitting parameters for thei-th subband.
In our simulations,i = 1 . . . 6 denote the following six sub-
bands: horizontal, vertical and diagonal orientations at the second-
finest resolution; horizontal, vertical and diagonal orientations at
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Fig. 3. Partition of the(P, C) space into quadrants. Also, the set
of coefficients from which we calculatedP .

the finest resolution. The six-dimensional subband quality vector,
q = {qi|i ∈ 1 . . . 6}, is modified into a four-dimensional vectorq′
by averaging the quality predictions from horizontal and vertical
subbands at a given scale, and the final quality prediction is taken
to be a weighted average ofq′:




q′1
q′2
q′3
q′4


 =




(q1 + q2)/2
q3

(q4 + q5)/2
q6




Q = q′T w (3)

Since the computation of coefficient predictionsP is expensive,
we also tried to improve the performance of our blind quality as-
sessment algorithm presented in [1] by incorporating image depen-
dent thresholds in it. The parametersKi, Ti, ui andw are learned
from the training data.

3.3.1. Image-dependent threshold calculations

It is an interesting observation that when the means of (log2 of)
subband coefficient amplitudes are plotted against anenumeration
of the subbands, the plot is approximately linear. This is shown
in Figure 4 for a number of uncompressed natural images. The
graphs have approximately the same slope, while the intercept on
the y-axis vary from image to image. This approximately linear
fall-off is expected for natural images since it is well known that
natural image amplitude spectra fall off approximately as1

f
, which

is a straight line on log-log axes. Another aspect of NSS is that hor-
izontal and vertical subbands have approximately the same energy,
whereas diagonal subbands have lower energy at the same scale.
The interesting observation is that a diagonal subband sits between
the horizontal/vertical subband at its scale and the one finer to it.

Quantized images are not natural however, and hence the cor-
responding plots for them will not have approximately linear fall-
off (Figure 5, solid lines). However, we know that the quantiza-
tion process in JPEG2000 is designed in such a way that the sub-
band means for coarser subbands are less affected by it, whereas
the means for finer subbands are affected more. Hence, from the
coarser subbands, one could predict the line that describes the en-
ergy fall-off for the image by estimating its intercept (assuming
that all natural images have the same slope). This line yields the
estimated means for the finer subbands in the unquantized image
from which the compressed image whose quality is being eval-
uated is derived. This is shown in Figure 5 as well, where the

means of (log2 of) subband coefficients are plotted for an image
compressed at different bit rates (as well as the uncompressed im-
age). Notice that predicted subband means (shown by dotted lines)
are quite close to the actual means of the uncompressed image (top
solid line).

We use the above observation to calculate the image dependent
thresholds as follows:

Threshold = Estimated Mean + Offset (4)

The slope of the line can be learned from uncompressed natural
images in the training set, while the offsets (one forP and one for
C for each subband) can be learned by a minimization process that
attempts to minimize the error in the quality predictions over the
training set (using MATLAB’s commandfminsearch). In this way,
our algorithm utilizes NSS models in concert with modelling the
salient features of the distortion process to make accurate predic-
tions about quality.
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(a) Subband enumeration.
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(b) Mean(log2(C)) versus subband enumeration
index for uncompressed images.

Fig. 4. Mean(log2(C)) versus subband enumeration index for
uncompressed natural images. The means of horizontal and verti-
cal subbands at a given scale are averaged.

4. RESULTS

For training and testing, the database is divided into two parts.
The training database consists of fifteen randomly selected images
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Fig. 5. Mean(log2(C)) versus subband enumeration index for an
image at different bit rates. Prediction for the means of subbands
n = 5 . . . 8 are made by estimating the line that describes the fall-
off (dotted). This line is estimated by assuming a constant slope
for all images, and using subbandsn = 1 . . . 4 for estimating the
intercept. Note that the predicted lines for the image at different
bit rates (dotted) is quite close to the actual graph for the uncom-
pressed image (top solid line).

(from the total 29) and all of their distorted versions. The testing
database consists of the other fourteen images and their distorted
versions. This way there is no overlap between the training and the
testing databases. The algorithm is run several times, each time
with a different (and random) subset of the original 29 images for
training and testing, with 15 and 14 images (and their distorted
versions) in the training and the testing sets respectively.

The algorithm is run on the luminance component of the images
only, which is normalized to have a Root-Mean-Squared (RMS)
value of 1.0 per pixel. The biorthogonal9/7 Wavelet with four
levels of decomposition is used for the transform. The slope of the
line for estimating the subband coefficient means in (4) is learned
from the uncompressed images in the training set. The weightsw
in (3) are learned using non-negatively constrained least-squares
fit over the training data (MATLAB commandlsqnonneg). The
minimization over the threshold offsets in (4), as well as for the
fitting parameters is done by unconstrained non-linear minimiza-
tion (MATLAB commandfminsearch).

Figure 6(a) shows the normalized histogram of the Root Mean
Squared Error (RMSE) (which we use as a measure of the per-
formance of our algorithm) between the quality prediction and the
subjective Mean Opinion Score (MOS), for a number of runs of
the algorithm. The mean RMSE is 8.24, with a standard devia-
tion of 0.83. Figure 6(b) shows the normalized histogram of the
linear correlation coefficient, with a mean linear correlation coef-
ficient of 0.92. The RMSE should be compared against a mean
standard deviation of 7.04 for human assignments, and against an
RMSE of 26.9 for uniform random predictions over the range of
MOS scores. Figure 7(a) shows the RMSE histogram obtained us-
ing the binarized marginal model forC. The mean RMSE is 9.00
and the standard deviation is 0.84, with a mean linear correlation
coefficient of 0.91.
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(b) CC histogram for Joint Model

Fig. 6. Results: Normalized histograms of the RMSE and linear
correlation coefficient for several runs of the algorithm using the
joint statistics ofP andC. The mean performance is shown as
well (dotted). The standard deviation among human judgements is
shown on the RMSE histogram (dashed).

5. DISCUSSION

It is apparent from the above figures that our algorithm is able
to make predictions of the quality of images compressed with
JPEG2000 that are consistent with human evaluations. The aver-
age ‘error’ in quality assignment for a human subject is 7.04, while
for our algorithm it is 8.24 (in [1], we reported a mean RMSE per-
formance of 9.9). We are therefore performing close to the limit
imposed on useful prediction by the variability between human
subjects. The average gap between an average human and the al-
gorithm is 1.2 on the a scale of 1 - 100. Another interesting figure
is the standard deviation of the RMSE of 0.83 on a scale of 1 -
100 (in [1] we reported a standard deviation of 1.4), which indi-
cates that our algorithm’s performance is stable to changes in the
training database.

6. CONCLUSIONS

In this paper we have presented an algorithm for blindly determin-
ing the quality of images that have been compressed by JPEG2000.
The algorithm utilizes NSS modelling in concert with modelling
the salient features of the distortion process to blindly measure the
distortion present in an image. The algorithm is trained and tested
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(a) RMSE histogram for Marginal Model
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(b) CC histogram for Marginal Model

Fig. 7. Results: Normalized histograms of the RMSE and linear
correlation coefficient for several runs of the algorithm using the
marginal statistics ofC only. The mean performance is shown as
well (dotted). The standard deviation among human judgements is
shown on the RMSE histogram (dashed).

on data obtained from human observers. On a scale of 1-100, an
average RMSE of approximately 8.24 between the quality predic-
tions and human evaluations is reported, which is close to the av-
erage standard deviation of 7.04 for the quality scores assigned by
human observers. We are continuing research into using higher-
order models of natural image statistics in the wavelet domain to
achieve better performance.
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