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Abstract. Aerial images are often degraded by space-varying motion blur and simultaneous uneven illumination. To 

recover high-quality aerial image from its non-uniform version, we propose a novel patch-wise restoration approach 

based on a key observation that the degree of blurring is inevitably affected by the illuminated conditions. A non-

local Retinex model is developed to accurately estimate the reflectance component from the degraded aerial image. 

Thereafter the uneven illumination is corrected well. And then non-uniform coupled blurring in the enhanced 

reflectance image is alleviated and transformed towards uniform distribution, which will facilitate the subsequent 

deblurring. For constructing the multi-scale sparsified regularizer, the discrete shearlet transform is improved to 

better represent anisotropic image features in term of directional sensitivity and selectivity. In addition, a new 

adaptive variant of total generalized variation is proposed for the structure-preserving regularizer. These 

complementary regularizers are elegantly integrated into an objective function. The final deblurred image with 

uniform illumination can be extracted by applying the fast alternating direction scheme to solve the derived function. 

The experimental results demonstrate that our algorithm can not only remove both the space-varying illumination 

and motion blur in the aerial image effectively but also recover the abundant details of aerial scenes with top-level 

objective and subjective quality, and outperforms other state-of-the-art restoration methods.  
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1 Introduction 

In current airborne long-distance imaging systems, aerial images can be digitally captured from 

large terrestrial areas by using CMOS or CCD sensors. However, these observed images often 

suffer non-uniform illumination and motion blurring, simultaneously. In the scenario of aerial 

imaging, the degree of blurring depends on multiple unpredictable factors such as uneven 

illumination, relative motion and camera shaking
1
. Specifically, due to both the random change 

of light transmission path and the limited irradiance collection of image sensors, the captured 

scenes with a large dynamic range will exhibit low contrast, dark or saturated regions, where the 

image intensities would be strongly affected in terms of the uneven distribution
2
. More 

importantly, the non-uniform illumination can complicate motion blur in the exposure duration. 

In addition, the poorer environmental lighting can result in the more severely blurring. If there is 
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a relative motion between the camera and the scene during the exposure time, the space-varying 

blur will be generated in the resulting image. Similarly, the frequent vibrations of airborne 

platform cause the camera shaking, and would further blur the obtained images
3
. These non-

uniform degradations of the aerial image can be unifiedly described in a mathematical model. 

Assuming that the airborne optical imaging system is spatially incoherent and linear
4
, then the 

blurring process under varying lighting conditions is modeled as 

                                                                                                                                 (1) 0= ( )+ .g K f n=

where g  denotes the given blurry and noisy image involving the uneven illumination.  denotes 

the latent clear and intrinsic reflectance image. The image noise n  is modeled as the additive 

white Gaussian noise. The matrix  is a blur kernel or point spread function (PSF) of blur effect 

in an optical imaging system, where each sub-block matrix may correspond to a different low-

pass filter for spatially-variant blurring process. The operator function =  represents the 

illuminated modulation of other complex imaging factors. In practice, the blind restoration 

techniques are required to deblur input aerial image and enhance image quality to some extent. 

These techniques have wide applications in unmanned aerial vehicle (UAV) photography, 

ground surveillance, target detection and environmental exploration. The objective of blind 

restoration is to seek the best estimations of  and K  from known degraded version g . To solve 

this ill-posed inverse problem, certain prior information of the original image and PSF is used to 

regularize the recovery process by exploiting the intrinsic properties such as the smoothness, 

continuity, sparsity and probabilistic distributions for image structures. 

0f

K

0f

The existing image restoration algorithms can be roughly categorized into three groups 

according to prior information about the blur kernel. With respect to the first group, the 

underlying blur kernel has already been known or accurately estimated through the response 
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characteristics of an optical imaging system. Then this restoration problem can be reformulated 

as a non-blind image deconvolution (NBID) process. To produce a unique and stable restoration 

solution, a number of NBID algorithms have been proposed. Based on certain optimal estimation 

criterion, this problem can be solved by the classical Richardson-Lucy algorithm
5,6

, Wiener 

filter
7
 and the ordinary constrained least squares techniques

8
 with low computation complexity. 

However, these methods often generate the low-quality restoration results containing the ringing 

artifacts at high noise levels. More advanced regularization strategies for the restoration tasks 

include the sparsity constraints
9
, total variation (TV) and its variants

10-12
, the wavelet and tight 

frame transforms
13,14

, and the probabilistic models on image features
15

. The great efforts have 

been made to take full advantage of the sparsity in image spaces. Shao et al.
9
 proposed to use the 

combination of the  norm and the  norm as sparsity measure which penalizes high-

frequency components of natural scenes. The TV-based deconvolution method is able to find the 

approximate solutions to differential equations in bounded variation spaces. To overcome the 

undesired staircase artifacts caused by standard TV model, Hu et al.
11

 derived two partial image 

derivatives as isotropic and anisotropic higher-order TV (HDTV) penalties to enhance line-like 

image features and preserve the singularities in the image. Based on structure tensor, Chierchia et 

al.
12

 constructed the nonlocal total variation regularization to penalize nonlocal variations, which 

have the capability to capture first-order information and provide more robust measurement of 

image variations. Many multi-scale transforms for image representation and analysis are popular 

for image restoration based on analytical and synthesized operators. Cai et al.
14

 established a 

framelet system to solve the deconvolution problem by extending the wavelet frame. The natural 

image containing random textures can be taken as a realization of the estimated probability 

distribution. Niknejad et al.
15

 recovered the degraded images using a multivariate Gaussian 
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mixture model (GMM) as a prior which is built upon the accumulation of similar patches in 

neighborhood. Currently, the sparse representation schemes by learning dictionaries from the 

example images have become popular in recovering the blurred image. Zhang et al.
16

 established 

a group-based sparse representation framework and deblurred the image by enforcing the local 

sparsity and non-local self-similarity on the image patches. Papyan et al.
17

 proposed a multi-scale 

restoration method which imposed the same patch-based Gaussian model on different scale 

patches extracted from the image and improved the deblurring performance. 

In many practical situations, the PSF of an optical imaging system can not exactly be known 

due to the insufficient information of measurement. Therefore, the restoration methods in the 

second group have been developed to estimate both the blur kernel and the latent image from an 

input blurred image. In general, the filtering property of blur kernel is assumed to be space-

invariant in this blind image deconvolution (BID) problem. The successes of the BID methods 

arise from imposing the reasonable prior knowledge on the PSF including positiveness, known 

shape, smoothness, symmetry, or known finite support. Under the predictable lighting conditions, 

the PSF of an imaging platform can be easily obtained by measuring the response of knife-edge 

regions in the degraded image with low to middle precision
18

. To achieve wider applications and 

higher accuracy, most blind restoration methods focus on the mathematically construction of the 

optimization functional. Fergus et al.
19

 integrated a mixture Gaussian model on the gradient 

magnitudes into a variational Bayesian framework and then the uniform motion-blur was 

removed by minimizing the cost function. Xu et al.
20

 adopted shock filter to adaptively predict 

the salient edge map for kernel initialization and then restored motion blurred images via 

iterative refinement scheme. The frequency spectrum of the PSF can be utilized to recover the 

final kernel. Goldstein et al.
21

 developed a power-law model together with an accurate spectral 
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whitening formula to estimate the power spectrum of the blur and then recovered the PSF based 

on the modified phase retrieval algorithm. Liu et al.
22

 proposed a convex kernel regularizer by 

exploring the spectrum change as a convolution operator and then estimated the desired kernel 

by minimizing this regularizer. Recently, the Radon transform of the spectrum of the blurred 

image has been proposed for motion blur estimation. This idea is that the angle and length of 

linear uniform motion are estimated from the image cepstral features in the Radon space
23

. To 

improve the final deblurring result, multiple images have been jointly applied for providing the 

additional information. Yuan et al.
24

 obtained the accurate kernel by combining information 

extracted from a pair of images with the complementary exposure time. Zhang et al.
25

 presented 

a coupled penalty function to adapt the quality of multiple observed images, and estimated the 

latent sharp image and blur kernel by optimizing this function. 

Unfortunately, the assumption on spatially-invariant PSF would not be satisfied in many 

imaging systems, and this can cause large restoration errors in BID method. Hence, the 

restoration methods in the third group have been further developed when the blur kernel varies 

across the image plane. Due to the 3D rotation of the camera, the motion blur is significantly 

non-uniform across the image. The typical analysis
26

 for the spatially-varying motion blur is to 

segment a blurred image into several uniform regions, and the restored results are obtained with 

the combination of uniform blur kernels. Whyte et al.
27

 presented a parameterized geometric 

model of the blurring process in term of the motion orientation, and substituted this model into 

the existing deblurring algorithms. Zhang et al.
28

 modeled the blur kernel as a series of 

parameterized projective transform matrices and estimated the latent clear image by 

incorporating the projection models. To achieve an efficient non-uniform deblurring algorithm, 

Yu et al.
29

 identified the erroneous PSFs by measuring the similarity between the neighboring 
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kernels, and employed the total variation regularization to recover the latent sharp image after 

replacing the erroneous kernel. Recently, some learning-based works have been proposed for 

blur removal. Sun et al.
30

 predicted the Markov random field model of motion blur by learning a 

convolutional neural network and removed the non-uniform motion blur with this patch-level 

model. If the variations on scene irradiance have the wide dynamic range, the need for longer 

exposure time increases the possibility of motion-blur degradation. Vijay et al.
31

 used the 

transformation spread function to model the motion blur and handled non-uniform blur by 

minimizing the cost functional derived from the blur kernel. As another important case, the 

fluctuations of incident light can strongly affect long-distance imaging systems, and further 

cause the space-varying blurs. This problem is generally reduced to a shift invariant one. To 

mitigate the varying effect, one restoration route
32

 first employs an image registration technique 

to align images and then a deblurring process is applied to the combined image. The other route
2
 

detects lucky regions to suppress the geometric deformations by a local sharpness metric and 

then fuses them to produce a large high-quality deblurring image.  

It is notable that none of the non-uniform deblurring algorithms have fully considerations on 

both the influence of uneven illumination and image characteristics mainly originating from real 

aerial scenes
33,34

. Actually, the restoration issue for non-uniform aerial images still remains 

unsolved. As for the deeper understanding, when the incident light comes from the ground 

surface, the uneven illumination often occurs in the aerial image because the different light 

sources with varying intensities arrive at the imaging sensors. Moreover, the non-uniform 

refraction index in the air layers can cause light beams through unexpected paths, and so the 

images taken through turbulence atmosphere would generate the distortions and blurring visually. 

Eventually, these complex factors result in the spatially non-uniform changes of image 
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intensities which are greatly distinct from those of usual images. The captured landscape images 

are composed of diverse natural and man-made structures which exhibit wide range of image 

features including low-level edges, midlevel edge junctions, high-level object parts, and 

complete shapes. Although the compensation mechanisms of the aerial imaging system can 

mitigate the vibrations to some extent, the images captured by cameras attached to airplanes are 

still possible to be blurred by both the forward motion and vibrations. Therefore, the restoration 

for these features requires the more suitable representation and reconstruction schemes. At 

present, the Retinex theory has received particular attention and thus been widely developed to 

remove the uneven illumination and enhance the contrast. Most Retinex-based algorithms
35-39

 

extract the reflectance component as the enhanced result by isolating the illumination, and 

therefore they can enhance the details obviously. However, the uneven nature of the land surface 

often adversely affects the stability of the results. Since the various Retinex assumptions depend 

on the applications, we explore its non-local variant to correct the non-uniform illumination of 

the aerial image based on the knowledge about lighting variations. The traditional wavelet 

transform is not effective at dealing with singularities in the image. To overcome the limitations 

of wavelet, a new geometric analysis tool called shearlet transform
40-43

 has been evolved and it 

can capture multi-scale and multi-directional line singularities of the image. In addition, it can 

preserve more edges and textures compared with other transforms. All of these properties make 

the shearlet transform an attractive candidate for image representation. To further improve the 

analysis for the complex geometric features in the aerial image, we extend the original discrete 

shearlet transform while retaining shift invariance and anisotropy. Higher-order regularization 

has become increasingly popular for tackling image restoration problem in recent years. Total 

Generalized Variation (TGV)
45-48

, especially its second-order variant, has shown promising 
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results as a robust regularization term. However, TGV suffers from the major drawback that it 

only penalizes the pixel values at the fixed directions. Moreover, purely TGV-based models are 

not able to accurately locate structural discontinuities. Hence, the new developments for TGV 

are mainly accounted for preserving various image structures. Based on above aspects, 

additionally because previous restoration methods for the aerial image may fail to remove both 

the space-varying illumination and motion blur under coupled degradations, our research would 

bridge the gap between the restored quality and limited prior information. 

In this paper, we present a powerful blind restoration method to recover the non-uniformly 

motion blurred aerial image under uneven illumination. As shown in Fig. 1, the whole restoration 

procedure mainly includes three cascading stages. A new non-local Retinex model is developed 

to dramatically decrease the non-uniform illumination by the advantage of non-local similarity of 

image patches. At first stage, the estimated reflectance image will tend to have uniform 

illumination and exhibit higher contrast by iteratively solving the constructed variational 

function. Moreover, because uneven lighting conditions are related with the spatially-varying 

blurring formation, the non-uniform distribution of the coupled motion blur can be partly 

mitigated in the resulting reflectance image. We improve the directional selectivity and 

sensitivity of original discrete nonseparable shearlet transform (DNST) by using the fan filters 

with arbitrary frequency partitioning, which are more effective in analyzing the piecewise 

smooth images with rich geometric information. Moreover, a structure-adaptive total generalized 

variation (SA-TGV) is designed in order to describe the intensity variations of the smooth region 

more precisely. Due to the fact that each blur kernel corresponding to the patch image can be 

reasonably taken as the spatially invariance on aerial imaging conditions, the blurry reflectance 

image is further performed the patch-wise recovery. At second stage, by integrating the 
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improved DNST and two-order SA-TGV as the regularizers of a devised optimization functional, 

the desired solutions for clear patch image and blur kernel can be found by using a fast iterative 

numerical procedure. Finally, the deblurred aerial image with corrected illumination is obtained 

by stitching all the restored patch images. In our framework, the informative sharp edges and 

fine texture details can be recovered well in challenging aerial scenarios. 

The main contributions of this paper can be summarized as follows: 

1. Based on the sparsity and fidelity priors, a non-local Retinex model is proposed to correct 

both uneven illumination and spatially-varying distribution of motion blur in the aerial image. 

Moreover, numerical optimization implementation for this model is given. 

2. Through the selection of a particular image-driven basis and the nonseparable digitized 

realization of compactly supported framework, an improved DNST is constructed to provide 

accurate localization and sparsely encode anisotropic singularities of the aerial image. 

3. In order to better preserve the geometric structures and differentiate with the noise, the 

SA-TGA regularization is developed and efficiently incorporated into an object function. Then a 

fast alternating direction scheme is adopted to solve this optimization function. 

The paper is organized as follows: Section 2 describes the non-local Retinex model and the 

corresponding numerical implementation. In Section 3, the improved DNST is introduced and 

the novel SA-TGV is given in detail. The proposed restoration framework is presented in Section 

4. The experimental results are illustrated in Section 5, and finally we conclude this work and 

discuss future research in Section 6. 

 

Fig. 1 Block diagram of the proposed blind restoration method. 
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2 Non-uniform Illumination Correction 

2.1 Non-local Retinex Model 

In complex natural environment, the elevation of sun, the anisotropic irradiance of land surface and the 

random fluctuations of atmospheric turbulence could mutually affect the light conditions across the 

location. Eventually, because of the varying light attenuated and refraction from the solar spray, the 

acquired aerial images will incur the unavoidable non-uniform illumination in many cases. According to 

previous experimental results
32,33

, the illumination power received by the camera conforms to the 

exponential decay of light power distant from the object. Different from smooth spatial variations in usual 

photography scenes, the environmental illumination distributions of a natural scene might contain abrupt 

spatial variations of local illumination as the result of their complex spatial structures, which produce 

shading, mutual reflection and occlusion
1
. Essentially, the physical model of aerial imaging formation can 

be seen as the process modulated by the environmental illumination. Based on this fact, the received 

aerial image at the sensors could be corrected by estimating reflectance component and removing the 

illumination effect. Currently, this process is elegant to be dealt with Retinex theory. The primary goal is 

to decompose the given image g  into the product of the reflectance image  and the illumination image 

, which is given by 

r

l

.=                                                                                   ⋅g r l

r

                                                                             (2) 

where  depends on the physical characteristics of the material and is invariant to the illuminated and 

imaging conditions. l  is typically related with natural illumination distributions. Since these components 

represent different physical elements, this decomposition can isolate the desired image. In order to 

simplify the computation, the product form in Eq. (2) is converted to the logarithmic domain. Here, we 

define that �g ,  and  are equal to lo ,  and lo , respectively. Then taking the logarithm at  �r �l g g log r g l
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both sides of this equation, it yields  

                                                                                    i i .= +g �lr                                                                           (3) 

According to this decomposition model, removing the uneven illumination from �g  is known to be a 

mathematically ill-posed problem. To guarantee the existence and uniqueness of the solution, prior 

assumptions are required to regularize both �r  and  simultaneously. The outdoor illumination �l  in the 

large area can be considered as spatially smoothness. Furthermore, the reflectance image  is exploited at 

known limited range, and should hold on sharp edges and textural details, which are perceptually pleasing. 

In addition, the average intensity of homogeneous area can be perceived as gray world assumption. Based 

on the observation that a reflectance image can be described by a number of local texture structures, non-

adjacent pixels within same texture are assumed to have similar reflectance intensities. The non-local 

constraint on surface reflectance is introduced by measuring the similarity of two pixels. Furthermore, this 

constraint throughout the image relates the reflectance values of distant pixels, which favors the global 

consistency to the intrinsic decomposition. Then we utilize the coherence of the neighboring pixels to 

enforce the same behavior which can strengthen the regularization within the same regions and reduce its 

influence across the edges. In order to obtain solutions of higher accuracy, non-local formulation of total 

variation is employed to preserve abundant textures and sharp edges while preventing oversmoothness 

and blocky effect. Finally, we incorporate all these deduced constraints directly into an object function to 

formulate our non-local Retinex model as follows: 

�l

�r

                           � � � � � �2 2

0 1

x

2

2
( )( ) 0.5 ( , ) ( ) ( ) .ln

G

U wη η
∈Ω ∈Ω ∈

⎡ ⎤ ⎡− ⎤⎣ ⎦ ⎣= ∇ −∇ + + −∑ ∑ ∑
x x y

x x y x ygr r r r ⎦r                   (4) 

where  is defined as the image domain. ( ,  denotes different pixel locations in the image 

domain. 

2⊂Ω \

0

)x y

η  and 1η  are the positive real parameters for balancing the contribution of different constraint 

terms. The symbol ∇  denotes the gradient operator. G  is a selected neighboring region at pixel x  of x
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size L L× . In practice, the relatively sharp region is selected for adapting the strength of uneven 

illumination through local sharpness metrics. The image intensity variance �v  is used for selecting the 

region  as follows: Gx

                                                                    �
2

2

1

1
( ) .

GL
v ⎡ ⎤−⎣ ⎦−
= ∑

X

xr r                                                                 (5) 

rwhere  represents the mean value of image intensities in region G . The sharp region is selected by 

maximizing the metric 

x

�v  within the certain size range. The function ( , )xw y  denotes the weight which is 

used to measure the mutual information between two image patches. 

The weight ( , )w x y  is computed not only based on the relative distance of the two pixels but also 

based on the non-local similarity of their intensity values between two image patches in the reflectance . 

Then this weight function is given by:  

�r

                                                                     
2

2

( , )
( , )

2
exp .

h

d
w

⎛−⎜
⎝ ⎠

= x y
x y

⎞
⎟                                                           (6) 

where ( ,d x )y  is the Euclidean distance between pixels x  and y . The standard deviation h  acts as a 

filtering parameter and its magnitude controls the influence of intensity similarity and spatial proximity. 

The final image  is combined with isoplanatic regions containing space-invariant illumination.  r

2.2 Numerical Implementation for Correction 

In this section, we have presented the numerical implementation algorithm for solving the minimization 

of objective function in Eq. (4), which can generate the corrected result for uneven illumination. 

Considering physical characteristics of reflectance in the spatial domain, each value in the image r  is 

normalized to 0 . Thus, as equivalent constraint, the inequality 1< ≤r 0≤�r  is also added. Then the 

proposed Retinex model is reformulated as the following constrained optimization problem: 

                                                                     
i

�min ( ), . . 0.U s t ≤�
r

r r                                                                   (7) 
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The closed-form solution for  can be found with the standard optimization method. The desired 

solution is to guarantee the whole sequence convergence to the minimizer of the original problem. In 

addition, the constraints should hold automatically in the iteration process, and meanwhile, the 

illumination is reconstructed efficiently. For notational simplicity, we occasionally represent , 

�r

�( )xr �( )yr  

and � ( )xg  as ,  and �
xr �

yr �
xg , respectively. Here, the classic steepest decent method is adopted to get the 

Euler-Lagrange equation as follows:  

                                                 

�
� � �

i

� i i

0 1

2

2 0

( ) .

( ) 2 ln0.5

( , )( )

( )

G

U

V

V

w

η η

∈

∂⎧ = +⎪∂⎪
⎨
⎪ =
⎪⎩

∂Δ − + − +
∂

−∑
x

x xx

x x

x x y
y

g

x y

r
r r

r

r r r

,=

�

                                       (8) 

where  is the Laplacian operator, which can be performed by a linear convolution with the kernel 

. This operator is a Gaussian smoothing operation with increasing variance of the 

initial condition. Based on the Eq. (8), with respect to the constant iteration step, the gradient descent flow 

equation involving k-th iteration can be obtained and further discretized as 

Δ

;1 −[0 1 0 4 1;0 1 0]

                               

i i � � � �

i i

i i
i i i

k+1 k k k k k
k

0 1

k k

k k k 2k

k k

2 ( ) 2 ( ) ( , )( )ln0.5 ,

, ( , )( ) .
w

w
G

w

w

w

τ η η ω

ω

∈Ω

∈

⎧ ⎡ ⎤Δ − + + − + −⎪ ⎢ ⎥⎣ ⎦⎪
⎪
⎨
⎪
⎪
⎪⎩

= +

∇ + ∇
= ∇ = −

∇ ∇

∑

∑
x

x x x x y xx x
x

x y

x y xx
yx y

x yg

x y

r r r r r r

r r

r r r

r r

                      (9) 

where τ  is the iteration step length between iteration  and . When doing the implementation, the 

initialization value of Eq. (9) is set as the input image and the weight 

� k+1
xr � k

xr

( , )w x y  is estimated from the 

resulting image at the previous iteration. The iteration will not stop until the terminal condition is satisfied. 

Through analyzing the iteration number, this process can quickly converge to a stable solution within the 

maximum iteration number . In iterative process, the uniform illumination is reconstructed and the 

structural details are preserved efficiently. 

maxiter
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3 Regularization Strategy 

3.1 Improvement for DNST 

Compared with capability of the wavelet transform in describing the geometric structures and the 

distributed discontinuities of a multi-dimensional signal, the shearlet transform is a multi-scale and multi-

directional representation system that can provide more geometrical information and optimally sparse 

approximation
42

. The 2-D continuous transform of a signal 2 2( )f L∈ \  is defined as 

                                    
1

x2 1
, , , , ( )( )( , , ) , det M (M ).; as asa s t a s t xSH f a s t f tψ ψ ψ ψ −= = − −

+ 2 2, , ( , ) }x x xa s t∈ ∈ ∈ = ∈

                           (10) 

where the shearlet system { ,  is generated by the operations of dilation, 

shear transformation, and translation of function. Let B

1 2\ \ \ \

s  be a shear operator and A  be an anisotropic 

dilation matrix. Here each matrix  is a product of 

a

asM Bs  and . Then its formulation is given by Aa

                                                          
0

: B A
a⎡ ⎤

2 2( )L

1
M

0 1 00
.as s a

a as s

aa

⎡ ⎤⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥⎢ ⎥

⎣ ⎦⎢ ⎥ ⎣ ⎦⎣ ⎦
                                          (11) 

The generating function ψ ∈

s

t

a s

\  can be appropriately chosen from compactly supported wavelets 

when satisfying the sufficient admissibility conditions to generate a frame
42

. So the shearlet systems form 

a tight frame of well-localized waveforms at various scales, directions and locations controlled by a ,  

and , respectively. Due to their good analytic and geometrical properties, the continuous shearlet with 

invariant directionality can accurately capture the anisotropic features in the image. In fact, the shearlet 

coefficients with large magnitudes are associated with spatially singularities such as edges, and the decay 

parameters across scales can be used to distinguish different image structures. 

Through sampling the continuous shearlet transform (10) on appropriate discretizations of the scaling  

, shear  and translation t , the corresponding parameters j ,  and  can be obtained for the discrete 

shearlet associated to a Parseval frame. To do this, we parameterize the matrices A  by dyadic numbers 

k m

a
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and Bs  by integers and replace the continuous translation variable by a point in the discrete lattice . 

Choosing 

2]

2 ja −=  and s k= −  from Eq. (10), we obtain the discrete shearlet system 

                                     

    ( )/ 2 2
0 0, , 0det A B A : , ,{ }.

j jk
j k m m j k mψ ψ −= ∈ ∈i ] ]                                  (12) 

 for more specific matrices in Eq. (11). Then  and 0

4 0
A

0 2

⎡
= ⎢
⎣ ⎦

1 1

0 1

⎡ ⎤⎤
⎥ 0Bwhere we let  and 4a = 1s = = ⎢ ⎥

⎣ ⎦
 

provide directional windows in the space and frequency domain, which can be elongated along arbitrary 

directions. In particular, the appropriate choices of shearlet generators , ,j k mψ  will guarantee stable 

reconstruction from the shearlet coefficients. In frequency domain, this regular discrete shearlet system 

can provide a nonuniform angular covering of the frequency plane by applying scaling and shear matrices 

when restricted to the finite discrete setting for implementation.  

One can construct compactly supported shearlet frames by separable generating function in Eq. (12). 

Compared with the utilization of separable functions, the shearlets generated from nonseparable functions 

can more effectively cover the frequency plane and provide the better frame bounds. To improve the 

discrete shearlet transform in term of the selectivity and sensitivity, the nonsubsampled directional filter 

bank (NDFB) is designed to allow arbitrary directional frequency partitioning for the wedge-shaped 

subbands according to the intrinsic geometric characteristics of images. The frequency domain is divided 

into the basically vertical (BV) and basically horizontal (BH) subsets. When applying the 2D discrete 

pseudopolar Fourier transform (PPFT)
44

 in accordance with the distribution of NDFB, the frequency parts 

are partitioned into several nonuniform rectangle subbands. Then we design two separable filters 

( , )
BV x y

P m m  and ( , )
BH x y

P m m  computed from a pyramid filter . The results are expressed as 1 2( , )Q k k

                                        

1 2

1 2

1 1

1 2 1 22
0 0

1 1

1 2 1 2 2
0 0

2
( , ) ( , ) exp ( )

2
( , ) ( , ) exp ( )

N N
x y y

BV

BH

P m

P m

⎧
x y

k k

N N
y x y

x y

k k

m m m
m Q k k i k k

N N

m m m
m Q k k i k k

N N

π π

π π
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where two subsets BV and BH are defined on { }, 2 2,
x y

N m N N m N N +− ≤ ≤ − ≤ ≤ ∈] .  is half-

band filter with diamond support. The fan-shaped response can be obtained from a diamond-shaped 

response by simple modulation in the frequency domain.  

1 2( , )Q k k

After decomposing the filters ( , )
BV x y

P m m  and ( , )
BH x y

P m m  into several subbands with rectangle 

supports, each support corresponds to a wedge-shaped region in the Cartesian frequency system. To 

further extract the directional information, the filters in Eq. (13) should be combined and filtered together. 

The combination 1 2( , )P ξ ξ  of two filter banks can be achieved in the following form: 

                                          

1 2 1 2

1 2

1 2 1 2

3
( , ), 2 ,

2
( , )

( , ), 0,
2

BV

BH

N
P N N N

P
N

P N N

ξ ξ ξ ξ
ξ ξ

ξ ξ ξ ξ

⎧
N

N

+ − ≤ ≤ − − ≤ ≤⎪⎪= ⎨
⎪ − − − ≤ ≤ − ≤ ≤
⎪⎩

                                (14) 

where the designed fan filters ( , )
BV x y

P m m  and ( , )
BH x y

P m m

1 2 )

 should be further transformed into the 

Cartesian Fourier formulation in coordinate ( ,ξ ξ  and hold the period of 2π  along the horizontal 

coordinate in order to divide the combination along the slope direction. This transformation results have 

arbitrary frequency partitioning and can extract the directional frequency distributions of images. 

The basic shearlet generator is not a good choice for enhancing the directional sensitivity in the image 

because the fixed wedge-shaped subbands can not match the contours and textures in arbitrary directions. 

The proposed nonseparable fan filter in Eq. (14) can ensure highly directional sensitivity and good spatial 

localization, and its wedge shaped support is well adapted for covering the frequency domain. To 

improve the directional selectivity, the nonseparable shearlet generator , ,
non
j k m

ψ
 
is adopted to provide better 

frame bounds as well as better directional selectivity. Finally, the discrete 1 2( , )P ξ ξ  can be applied to 

construct the nonseparable shearlet filter , ,
non
j k m

ψ  by satisfying the generating condition for DNST
43

.  

                                              { }1 2 , , 1 2, ,
( ) ( , ) ( ) ( , ) .j k mj k m

non Pξ ξ ξ ξ ξ ξ ξψ ψ == ：                                             (15) 
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 The improved DNST is constructed by from a separable compactly supported shearlet generator and 

the 2D nonseparable fan filter. In order to tailor to specific task for optimally representing features in 

nonuniform aerial images, the formulation of DNST at j-th subband is given as follows 

                                          

/2
, , 1 1 2 2( )( ) , 2( )(2j

d d non J j J j
j k m

j jDNST f n f c n c nψ − −∗ ).=                                    (16) 

where 
 
is the sampled discrete data from the signal 2 2( )df ∈A ] f  in the continuum domain. { }1 2, cc +∈\    

are sampling constants for translation. { }2
1 2( , )n n n= ∈]  is an integer lattice point. Eq. (16) can map the 

signals or images df  to the sequence of shearlet coefficients for 0, ... , 1j J= − . Based on the fast Fourier 

transform without the additional computational cost, j-th subband of the DNST can be efficiently 

computed in frequency domain by component-wise multiplication
43

.  

3.2 Second-Order SA-TGV 

By incorporating smoothness from the partial derivatives of various orders, the TGV regularization 

generalizes TV and leads to piecewise polynomial intensities. It is capable of preserving sharp edges 

without the staircase-like effects of the bounded variation functional
45

. Moreover, the gradual intensity 

transitions in smooth regions are well preserved, and the piecewise affine function can be reconstructed in 

high-order derivative space. Because the numerical experiments show that the third or higher order TGV 

does not improve image quality enough to be worth the extra computing cost
46

, the second-order TGV
2
 

regularizer is used to provide a good tradeoff between computational complexity and reconstruction 

accuracy without loss of good properties. For a vectorized form of image N∈f \ , the discretized 

formulation of TGV
2
 can be written as 

                                        2
1 01BV

=1 1

TGV ( ) min ( ) ( ) ( ) ( ) ( )( ) .
N N

p
pα α

Ω =∈
= ∇ − +∑ ∑

x x

f x f x x x
（ ） 1

pε x                                  (17) 
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where 0 ( )α x  and 1( )α x  are positive weights varying in every pixel x . p  is the vector representation of 

symmetric tensor fields in bounded variation space BV( )Ω . To efficiently solve the Eq. (17), the 

directional operators ∇  and f ( )pε  can be further approximated by 

                                           T
1 2

1 1 2 1 1 2

2 1 1 2 2 2

1

21

2

[ , ] ,
( )

( )
( ) .

D D D

D D D
D D

p p

p p p
pε =

p⎡ ⎤
⎢ ⎥∇ = ⎢ ⎥
⎢ ⎥⎣ ⎦

+

+
                                 (18) 

where 1D  and 2D  are the circulant matrices corresponding to the forward finite difference operators with 

periodic boundary conditions along the vertical and horizontal directions, respectively. And T
1 2[ , ]p p p=  

is an approximation of first-order gradient ∇f  in the image f . This reformulation of TGV makes its 

convexity property computationally feasible. For all pixels {1,2, ... , }N∈x , 0 ( )α x  and 1( )α x  can be set 

according to the different derivative characteristics in the image. 

Although the effectiveness of TGV model has been demonstrated by favoring the piecewise affine 

solutions, its performance suffers from the major drawback that it is still sensitive to the weighting setting 

of parameters. In the original TGV, the identical weight is often used to penalize second-order derivatives 

of all the pixels in the image. However, aerial images are composed of inhomogeneous components and 

these components possess different derivative characteristics from each other. Therefore, the identical 

setting for weights of all pixels will lead to edge blurring and structural loss in the restored results. The 

second-order SA-TGV as a non-trivial extension is designed to remedy these problems by adapting the 

weighting parameters which locally depend on the locations and directions of image structures. We 

employ the structure tensor to extract information about the local geometry of image in a neighborhood of 

each pixel. The smoothed structure tensor 
s

T  is given  by 

                                         

22

1 1 2

22

2 1 2

G G 1
( ) , G ( ) exp( ).

2G G 2
sT σ σ

σ
σ σ σσ π

⎡ ⎤∗ ∗
= =⎢ ⎥∗ ∗⎣ ⎦

xf f f
f x

f f f
−                                     (19) 
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where  is obtained from image f  by convolution with a Gaussian kernel G  with variance ( )sT f ( )σ x 2σ . 

 and  are the directional derivative in the directions, respectively. Let the eigenvalues of  be 1f 2f

), (

(sT f )

( ( ))λ λx+ − x , with the corresponding eigenvectors . The eigenvalues are ordered with the 

maximum and minimum 

( ( ), ( ))v v+ −x x

( ( ) ( ) )λ λ+ −≥x x  respectively, which indicate the presence of image structures 

and average contrast within a neighborhood along the eigen-directions. Moreover, the eigenvectors 

 can provide local directions which maximize the intensity fluctuations. ( ( ))v+ x), (v−x

Based on structure tensor computed from Eq. (19), an indicator function E(  is considered to 

represent the anisotropic features of geometry and characterize different image structures. In particular, 

the magnitude relationship of two eigenvalues is adopted to indicate the fine structures such as edges, flat 

and corner regions. This function could measure and response to spatially varying structures in the image 

which contains high spatial frequencies. And then the salient structures will be present when the values of 

 are close to the decision threshold. By automatically self-tune the weighting strengths reflecting 

local image structures, we formulate the following indicator function, 

)x

E( )x

                                                                     

( , ) ( , )
E( ) .

( , ) ( , )

λ σ λ σ
χ λ σ λ σ

+ −

+ −

−
=

+ +
x x

x
x x

                                                    (20) 

where 0χ >

005, 0.0

 is a small free parameter for solution stability and its value is set in the range 

[0. 5]χ ∈ . The parameter 0σ >  associated with the structural scales and noise levels has the effect 

of the pre-smoothing, which is important for getting the desired responses from computing derivatives. 

The eigenvalues λ+  and λ−

E(

 are computed at a specific scale for retaining and enhancing multiscale image 

structures. For computing  from Eq. (20), we first normalize the eigenvalues to the range .  )x [0, 1]

If both eigenvalues 0 λ λ− ≤� +  are large, it indicates the presence of the corner structures. In addition, 

an edge structure exists when the eigenvalues accord with 0 λ λ− +≈ ≤ . In the homogeneous or noisy 

regions, two eigenvalues satisfy the condition , 0λ λ− + ≈ . Therefore, based on the indicating function  E( )x
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responding to various local structures, we can accurately describe the adaptivity of the weighting 

parameters. By measuring the influence for informative structures, the weights are given by 

                                                                    

000

111

( )=E( ) (1 E( ))

( )=E( ) (1 E( ))

α α α

α α α

⎧ + −⎪
⎨

+ −⎪⎩

x x x

x x x
                                                         (21) 

where the function E(  is limited to the range [0 . The small parameters )x , 1] 0α , 1 0α >  are used to 

control the relative ratio of two regularizations, which can determine the reconstruction quality to a great 

extent. Usually their values are chosen independent from the image content or noise level. The values of 

0α  and 1 0α > depends mainly on the noise level of the image. Based on the adaptive weights derived 

from Eq. (21), the proposed SA-TGA can be achieved and represented by Eq. (17). 

4 Proposed Restoration Method 

In our restoration framework, the observed image g  is first partitioned into fully overlapping 

patches . Then each patch  is corrected using the non-local Retinex model in Eq. (4), 

and the resulting image  will tend to be the uniform distribution of illumination and space-

invariant blur. At the same time, the image contrast has indeed been enhanced to facilitate the 

subsequent deblurring. After obtaining each uniform patch separately, the core step is to restore 

them by optimizing the derived reconstruction model. This model is constructed by incorporating 

SA-TGV regularizers in Eq. (17) and the improved DNST in Eq.(16). The numerical solutions 

can be obtained by using the alternating direction method of multipliers (ADMM)
49

. Finally, the 

clear and uniform patches are merged as the final aerial image by a plain averaging
2
. 

1{ }ib n
i=g bg

br

4.1 Restoration Formulation 

The structured adaptive regularizers are used to jointly estimate the sharp image  and the blur 

kernel K . In terms of the illumination and blur correction, the -norm regularization is imposed 

0f

1A
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on both the latent image  and the kernel K  as the efficient sparsified constraints. In addition, 

the PSF of an aerial imaging system is always positive, upper bounded by the peak value of the 

diffraction-limited PSF, and normalized. For the reliable reconstruction of the latent image , 

the regularization scheme integrates both the SA-TGV regularizer and the DNST for multi-scale 

sparsity by full advantage of preserving directional features and high-order smoothness. Due to 

the sparsity-promoting features and adaption to different local structures, the coefficients of 

DNST are adopted as analysis-based prior terms. As a result, we propose the following 

reconstruction functional for solving ill-posed restoration problem in Eq. (1) 

0f

0f

            
0

0 1 0 0 11
1

0

2

12 1,
=1 1

1
n ( ) ( ) ( ) ( ) ( ) ( )( )

2
( ) .

J N N

j

j

DNST p pγ λ α α ε
= =

− + + + ∇ − +∑ ∑ ∑
K

x x
f

K g K f x f x x x xf=mi         (22) 

where γ , λ , 0α  and 1α  are the positive parameters. γ  can control smoothness of the PSF. λ  is a 

balancing factor relying on the gradients and the sparsity of the latent image.  is j-th 

subband of the DNST by using fast numerical computation method
43

.  denotes the total 

number of image pixels.  is the total number of decomposed subbands.  

( )
j

DNST i

N

J

To reduce the computation complexity, all the patches can be restored using the same model 

in parallel. The size of each patch  is selected according to the non-uniform illumination level 

of input aerial image. The corresponding kernel  is further transformed into the block-

circulant matrix for performing the convolution operator. Moreover, the directional derivatives 

for original patch image  are approximated by 

bg

bK

0
b∇f 0

bDf , where D  is the circulant matrix 

corresponding to the forward finite difference operators. The convolution operator for the 

improved DNST is simplified as the generating operator Ψ . At the deblurring stage, we consider 

that the corrected image  is directly taken as the input to deduce the Eq. (22). Then the 

restoration model specified for image patch is rewritten as 

br
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            0

0 0 1 0 0 11,
1

2

2 1 1
=1 1

1
min ( ) ( ) ( ) ( ) ( )( )

2
.

b b b

b b

b b b b b b
j

j

J N N

D p pγ λ α α ε
= =

− + + Ψ + − +∑ ∑ ∑
K f

x x

K f K f x f x x x xr            (23) 

where bJ  is the decomposition number of all subbands, and  is the total number of pixels in 

patch image. The adaptive weights  and  for each patch are set identical values. 

bN

0 ( )α x 1( )α x

4.2 Optimization Solutions Using ADMM 

To solve the minimization optimization model in Eq. (23), we use the augmented Lagrangian and 

apply the ADMM. This method performs an iterative procedure that splits the constrained 

optimization into a series of convex functions, and then the sub-problems are solved by the fast 

iterative shrinkage-thresholding algorithm and a faster alternating minimization algorithm
49

. The 

corresponding constrained optimization problem of Eq. (23) is converted by adding the auxiliary 

variables and the quadratic penalty functions for each -term. Then the equivalently constrained 

formulation of  Eq. (23) is given as 

1A
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Note that the auxiliary variables jW ,  and V  are introduced without crossed other variables. 

Attaching the Lagrangian terms to the constraints, the simplified augmented Lagrangian function 

for Eq. (24) can be derived by the following form 
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where 0β , 1β ,  are the penalty parameters. Theoretically any positive values of these 

parameters ensure the convergence of ADMM, and the specific choice is used in the experiments. 

2 0β >

i
jW , iY  and  are the scaled Lagrangian multipliers. iV
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For fixed value of one variable, the updates of other variables are independent of one another. 

The ADMM minimizes Eq. (25) separately leading to subproblems which have closed-form 

solutions. The main subproblems can be grouped into three blocks. Using the shrinkage operator, 

three subproblems are similar and perform the following updates: 
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The minimization with respect to  and 0
bf p  is performed, thus 0( , )b pf -subproblem can be solved 

separately and sequentially. It leads to the following iteration: 
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Based on the fact that the matrix  can be diagonalized under the Fourier transform, the 

optimal solution is obtained. The corresponding subproblem is of the form 

bK

                                                   

1 1
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2
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b

n n
b b b b γ+ +

= − +
K

K K f r b+ K                                   (28) 

To solve three subproblems for the Lagrangian multipliers, the updates can be done by using the 

Newton iterative operator. Thus the updates of these multipliers are expressed by 
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The convergence of numerical solutions for our restoration model depends on the classic 

ADMM because this problem is convex. The iteration conditions for linear convergence are 

guaranteed when (0 5 1)β< < + / 2  is satisfied. The stopping criterion holds for the primal 
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residual 
2

2 rres T≤  and the tolerance 
2 2

1

0 0 0
2 2

n n n
b b b

tT
+
− ≤f f f . The overall procedure of proposed 

restoration algorithm is summarized in Algorithm 1.  

Algorithm 1 The proposed blind restoration algorithm. 

1: Input: The aerial image g  with non-uniform illumination and 

motion blur, the noise variance 2σ . 

2: Initialization: adaptively select the patch size and the 

parameters 0 10
, , ,(

1
)α α α α , set all other parameters. 

3: Transform the image g into the patches 1
{ }i n

i
b

=g . 

4: While a maximum iteration number is not satisfied do maxiter

5:     Estimate the reflectance image by solving Eq. (7) 

6: End While 

7: Output: the corrected image . ibr

8: Repeat: 

9:     Estimate the latent patch by Eq. (27). 0
ib

f

10:   Estimate the blur kernel  by Eq. (28). ibK

11: Until meets the stopping criterion 

12: Merge all the patches 0 1
{ }ib n

i=f . 

13: Return the restored image . 0f

5 Experimental Results 

5.1 Settings and Implementation Details 

In this section, a series of testing experiments have been arranged and implemented to illustrate 

the effectiveness and efficiency of the proposed blind restoration framework, which is applied to 

handle the aerial image with both the non-uniform illumination and the motion blur. The whole 

image restoration tasks include the illumination correction, deblurring and denoising at the same 

time. To fulfill the more complete evaluation quantitatively, the test images in our experiments 

are selected from the synthetic data and real aerial image sets, in which the image sources 

involve the benchmark images commonly used as ground truth and aerial images captured by 

various airborne platforms. All the blurred images are assumed to be contaminated by additive 

Gaussian white noise with the zero mean. The objective quality of the restored image is 

evaluated using two assessment standards, namely the peak signal-to-noise ratio (PSNR) and the 
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structural similarity index (SSIM). All algorithms are carried out using MATLAB 2010 with the 

Intel Core i7 CPU @ 2.4 GHz and 8 GB  memory. 

In the proposed framework, all important parameters need be set and initialized. In our 

practice, these involved parameters are determined by using two strategies. One is to tune 

manually some possible values and then set it to the optimal values with satisfactory restoration 

performance; the other is to apply the adaptive adjustment rules with an arbitrary initial guess. 

The parameters 0η  and 1η  are set as 0.01 and 0.02, respectively, where overall good results are 

found. The parameter h  is fixed to 2, which gives a good trade-off between accuracy and 

computational complexity. The initial size L L×  of image patch is set as 40×40. The iteration 

length τ  is selected at 0.08, which can achieve the good performance on the most test images. In 

the iteration process for non-uniform correction,  is fixed to 100 according to the 

convergence performance. For implementation of the DNST, we use the 17  maximally fan 

filters with eight directional subbands in every level to compute digital shearlet filters, which 

have four level decompositions across scales. It has been experimentally found that the value 

maxiter

17×

0.025χ =  is a reasonable choice. For each input image, the approximate optimal parameters 

0 10 1( , , , )α α α α  are determined by maximizing the PSNR value from the range of 10
-3

 to 10
-2

. The 

parameter γ  controls the sparsity of the kernel and is fixed to 0.25. The parameter λ  is related to 

the noise level, and is set to be 0.1 for the noisy data and 0.01 for all the noise-free data. Through 

the convergence analysis in section 4.2, we set 0
300β = , 3

1
10β −= , 510

2
β −= , 1β =  for all the 

numerical results. The initial size of the discrete PSF is set to 3 3×  and the final size is chosen no 

more than . The initial estimate for  is set as the unit pulse. The initial solution for  is 

chosen as the pre-processed image . Two thresholds are used to terminate the reconstruction 

iteration. The residual threshold  is set as 

21 21× b

410

K 0
bf

br

rT − . The tolerance threshold  is set as . tT 5−10
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5.2 Effectiveness Evaluation for Non-uniform Correction 

The non-uniform correction results are fully evaluated through three groups of experiments. The 

first group is to only testify the non-uniform correction capability for the varying illumination 

existing in the image. The second group is designed to clarify the relationship between the 

varying illumination and motion blur, and indicate the effectiveness for alleviating the blur. The 

third group is further to disclose the fact that uneven lighting conditions can couple and cause the 

more complex blur. Moreover, the correction performance for the non-uniform blur is measured. 

The experiment on synthetic data was firstly carried out. To make convincing assessments to 

the correction results, three competitive methods are used to compare. An aerial image acquired 

from Washington DC is chosen as the original image shown in Fig. 2(a). It is 

   

                             (a)                                                     (b)                                                     (c)               

   

                                    (d)                                                     (e)                                                    (f) 

Fig. 2 Varying illumination correction results on the synthetic data: (a) original aerial image, (b) degraded image, (c) 

mask filtering, (d) variational Retinex, (e) TV-Retinex, and (f) our result. 
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UAV, which can be manually controlled to achieve the complex motion. By analyzing the 

observation sequence, the noise in the obtained image can be modeled using the Gaussian 

distribution. It is reasonable to assume that motion blur will occur beyond the exposure setting. 

The image can be deteriorated by space-varying illumination. This coupled imaging process and 

non-uniform blur have been included into the real image Fig. 4(a). Note that Fig. 4(d) has been 

corrected for uniformly illumination throughout the scene. After employing the same deblurring 

approach in the second experiment, it can be seen from that the geometric structures in Fig. 4(e) 

are sharper than those of Fig. 4(b) while the deblurring result of  Fig. 4(e) has less halo artifacts 

than that of Fig. 4(b). Because the corrected image can be recovered sharper edges, the PSFs are 

estimated more accurate from them. As shown in Fig. 4, the estimated kernels with different 

formulations in Fig. 4(c) have reflected the non-uniform blur. Because the kernels in Fig. 4(f) 

have almost same distributions, it is asserted that our correction model is valid for transforming 

to the nearly space-invariant blurs with a certain degree. 

To obtain the quantitative assessment of corrected results, the Washington DC image has 

been degraded by horizontal, vertical and Gaussian distributions, respectively. From the results 

in Table 1, the proposed method has obtained the highest values of both PSNR and SSIM. This 

evaluation has fully demonstrated that our non-local Retinex model can control the global 

intensity dispersion, preserve the details and efficiently adjust the uneven intensity distribution. 

In addition, the visual effect in Fig. 2 is consistent with the results of correction evaluation in 

Table 1. Hence it can be affirmed that our correction method outperforms other comparative 

methods. The effect of non-uniform correction on the deblurring quality has been evaluated 

quantitatively by measuring image quality. Table 2 presents the average values of PSNR and 

SSIM, which are both improved in the corrected and deblurred (CD) images. Because uneven 
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lighting conditions cause the blurred image to contain more complex and low contrast makes the 

details more difficult to be recovered, the uncorrected and deblurred (UCD) images are relatively 

low-quality. In addition, the computed indices in Table 2 reflect that the blur distributions have 

the tendency to be uniform. 

Table 1 Correction evaluation for the Washington DC image. 

Image 
 PSNR(dB) SSIM

Horizontal Vertical Gaussian Horizontal Vertical Gaussian 

Mask 32.85 33.13 33.78 0.955 0.962 0.966 

VR 33.02 33.48 33.27 0.962 0.975 0.973 

TVR 33.19 33.54 33.26 0.964 0.976 0.974 

Proposed 33.56 33.72 33.94 0.975 0.981 0.986 

Table 2 Quantitative evaluation for non-uniform correction effectiveness. 

Image 
PSNR(dB) SSIM

UCD CD UCD CD 

Washington 31.80 33.01 0.926 0.958 

College 32.62 33.97 0.942 0.981 

Building 30.12 31.10 0.864 0.901 

5.3 Performance Validation and Comparison with Other Methods 

The performance of the proposed regularization scheme has been evaluated by conducting the 

comprehensive experiments on both synthetic and real motion blurred images. Meanwhile, our 

restoration method based on the Eq. (23) is qualitatively and quantitatively compared with three 

closely related methods: BiNorm
9
, ST-NLTV

12
 and SWATV

40
. Without loss of generality, we 

use the image set with uniform blurs to reflect the validation of the improved DNST and SA-

TGV in the testing experiments. The results of all methods are obtained by the specified 

parameters described in the corresponding literatures. By aligning the deblurred image with the 

ground-truth image to compute the errors, the quality of a recovered kernel is measured by using 

the error ratio index. 

A lake image shown in Fig. 5(a) is chosen as the groundtruth. The degraded image 

containing the large motion blur is obtained by using the kernel in Fig. 5(b). The white Gaussian 
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noise with standard deviation of 0.01 is added to the blurred image. The estimated images and 

kernels are presented in Fig. 5 for visual comparison. It can be observed that our approach has 

provided the best restored result with higher sharpen degree and faithfully recovered more details 

in Fig. 5(f). In addition, our kernel is clean and visually accurate. Thanks to the superior 

structure-preserving and scale-adaptivity characteristics of the SA-TGV, the image restored by 

the proposed method is of high quality. On the contrary, the results of other three approaches in 

Fig. 5(c)-(e) have lost most useful structure information.  

   

                             (a)                                                         (b)                                                          (c)        

   

                            (d)                                                         (e)                                                          (f) 

Fig. 5 Restoration results on the synthetic image with low noise level: (a) groundtruth, (b) input degraded image, (c) 

BiNorm, (d) ST-NLTV, (e) SWATV, (f) our result. 

The clear Aque image in Fig. 6(a) is convolved with the blur kernel given in Fig. 6(b). Then 

the white Gaussian noise with standard deviation of 0.05 is added to obtain the Fig. 6(b) in a 

controlled fashion. This experiment was conducted to explore the accuracies of restoration 

methods when the noise level increases and the different motions make the blur more complex. 
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images and preserve diverse texture patterns different from the noise. In addition, our method 

can deduce the reliable kernel from a wide illumination range. 

   

                               (a)                                                        (b)                                                     (c)        

   

                              (d)                                                        (e)                                                      (f) 

Fig. 7 Restoration results on the real image: (a) blurry and noisy image, (b) cropped region, (c) BiNorm, (d) ST-

NLTV, (e) SWATV, (f) our result. 

To quantitatively measure the improvement in restored image quality, the PSNR, SSIM and 

error ratio are computed by using a set of images which are degraded by eight motion-blur 

kernels
51

 for simulating the blur in aerial imaging. Also, the white Gaussian noise with the 

variances 1% to 10% is added to the image sequence. Table 3 shows the overall performance of 

the four compared methods. Our method is robust to restore the corrupted images quite well. 

Also it has the highest PSNR and SSIM values which are consistent to the visual improvement. 

The error ratios demonstrate that our kernels are more clean and accurate and the Gaussian noise 

could be handled well. This conclusion also can be confirmed by the results shown in Fig. 8. As 

can be seen, our method is more robust than other methods, and it rarely fails to recover the 

kernel at reasonable error ratios. In addition, the numerical computation results in the 
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experiments show that the propose method has the fast convergence rate. And usually the exact 

closed-form solutions will be found within 200 iterations.  

Table 3 Quantitative evaluation for the restoration performance. 

 Average PSNR (dB) Average SSIM Error ratio 

Image Lake Aque Market Lake Aque Market Lake Aque 

BiNorm 29.03 25.95 27.79 0.833 0.758 0.811 2.427 2.891 

ST-NLTV 29.75 26.63 28.22 0.858 0.786 0.822 1.993 2.265 

SWATV 30.81 28.58 29.31 0.887 0.827 0.851 1.516 1.868 

Proposed 31.85 30.47 31.03 0.917 0.875 0.901 1.245 1.407 

 

 

Fig. 8 Cumulative error ratio histogram on the synthetic dataset. 

6 Conclusion 

In this paper, we propose a new blind restoration approach for aerial images via incorporating the 

non-local Retinex model for the non-uniform illumination correction, and the adaptive multi-

scale regularization for the powerful constraints. The non-local Retinex model can correct space-

variant illumination and transform non-uniform motion blur into nearly uniform kernels on 

certain conditions. Thus the estimated kernels achieve the smooth and sparse properties. The A -

norms of the improved DNST coefficients and SA-TGV are jointly used as structure-dependent 

regularizers. This regularization strategy can render the sharpness and sparsity constraints for 

original image to deal with severe motion blur in varying illumination. Both the theoretical and 

experimental results have verified the validity and highly effectiveness of the proposed 

1
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framework. Our blind restoration method can not only achieve high-quality clear aerial images 

but also remove the unpredictable noise and ringing artifacts, and leads to the state-of-the-art 

results. In the future research, our restoration method would be further extended for handling 

with other degraded types of aerial images. 
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