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Abstract: Atmospheric turbulence-degraded images in typical practical application scenarios are
always disturbed by severe additive noise. Severe additive noise corrupts the prior assumptions
of most baseline deconvolution methods. Existing methods either ignore the additive noise term
during optimization or perform denoising and deblurring completely independently. However,
their performances are not high because they do not conform to the prior that multiple degradation
factors are tightly coupled. This paper proposes a Noise Suppression-based Restoration Network
(NSRN) for turbulence-degraded images, in which the noise suppression module is designed to
learn low-rank subspaces from turbulence-degraded images, the attention-based asymmetric U-NET
module is designed for blurred-image deconvolution, and the Fine Deep Back-Projection (FDBP)
module is used for multi-level feature fusion to reconstruct a sharp image. Furthermore, an improved
curriculum learning strategy is proposed, which trains the network gradually to achieve superior
performance through a local-to-global, easy-to-difficult learning method. Based on NSRN, we achieve
state-of-the-art performance with PSNR of 30.1 dB and SSIM of 0.9 on the simulated dataset and
better visual results on the real images.

Keywords: noise suppression deblurring; curriculum learning; image reconstruction; turbulence
degradation

1. Introduction

Under long-range imaging conditions such as ground-based space-target imaging
and long-range air-to-air and air-to-ground military reconnaissance imaging, the captured
images are always affected by atmospheric turbulence [1]. Restoration of these degraded
images into sharp images requires efficient post-processing. It is generally believed that due
to the long distance and the uncontrollable imaging environment, atmospheric turbulence
degradation is a coupled degradation process with multiple factors [2]. Imaging is not only
affected by turbulence blur caused by atmospheric turbulence [2–7], but also by motion
blur caused by the relative motion of the camera [8,9] and defocus blur caused by lens
aberration [10] during exposure. Moreover, the images are also disturbed by severe additive
noise [2]. Therefore, the core problem of the restoration of images degraded by atmospheric
turbulence is image deblurring in the case of noise interference.

Image deblurring, which is essentially the process of obtaining a potentially sharp
image, has been addressed in several ways. Deblurring methods can be classified into
blind deblurring [11,12] and non-blind deblurring [13,14] depending on whether the blur
kernel is known. Non-blind deblurring requires prior knowledge of the blur kernel (point
spread function) and blur parameters. However, in practical applications, the point spread
function (PSF) cannot be obtained, and a single blurred image is usually the only input data
obtainable. Therefore, in practical applications, blind deblurring is much more common
than non-blind deblurring.

Traditional blind deblurring methods usually represent the blurring of the entire image
as a single, unified model. The standard procedure for these methods is to estimate the blur
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kernel before non-blind deconvolution. Regularization priors [15,16] need to be introduced
in this process due to the ill-posed nature of the problem. A popular approach is to add
image priors such as sparse priors [17–20], Principal Component Analysis (PCA) [21], and
gradient priors [22–24] in a MAximum Posterior framework (MAP). This method usually
uses iterative alternating steps to complete the optimal solution of the equation. The first
step estimates blur kernels, and the second step estimates potentially sharp images. Since
the assumption based on traditional methods has deviated from the actual scene prior,
these methods can only be applied to the restoration of single-mechanism-degraded and
less degraded images (such as motion blur). In practical applications, images, especially
turbulence-degraded images, are often affected by various degradation factors. Therefore,
the above methods have difficulty achieving the expected effect.

It is difficult to design a regularization prior that is suitable for practical application
scenarios and that can be optimally solved. Therefore, the use of deep neural networks
to learn the intrinsic features of images from degraded images and to use these features
to reconstruct sharp images has become a research hotspot in recent years, with grati-
fying results in practical application scenarios [2,25,26]. Such methods usually require
designing an End-to-End (E2E) deep neural network model, which can be divided into
two parts. The first part is an encoder for learning features from degradation, while the
second part is a decoder for reconstructing sharp images [27,28]. Most existing neural
network-based methods can only deal with a single mode of degradation, such as image
de-moiré [29], denoising [30,31], JPEG artifact removal [32], deblurring [33–35], etc., or use
only one model to complete the restoration of multiple single-mode degraded images [26].
However, degraded images in atmospheric turbulence environments are often affected
by the coupling of various degradation factors, especially severe additive random noise,
which greatly increases the sample space dimension of the input data. As the intensity of
the noise increases, the performance of the above neural network-based methods decreases.
Therefore, the impact of noise on the model has received more and more attention in the
industry [36–38]. The denoiser prior [36,37] is an efficient solution to this problem and is
split into two independent subtasks: denoising and deblurring.

We consider turbulence degradation to be a coupled degradation of multiple factors
that are difficult to be decoupled individually [38]. Based on this idea, we propose a Noise
Suppression-based Restoration Network (NSRN) for turbulence-degraded images that
consists of a shallow feature extraction module, a noise reduction module, an asymmetric U-
NET network, and a sub-network for image reconstruction. The noise suppression module
is designed to learn low-rank subspaces from turbulence-degraded images. The attention-
based Asymmetric U-NET (AU-NET) module is designed for blurred image deconvolution,
and the FDBP is designed to fuse multi-level features for degraded-image reconstruction.
The NSRN is based on the prior that additive noise and blur are tightly coupled and that the
entire network is inseparable. To make the noise suppression module pay more attention
to the removal of additive noise and to overcome the problem that the model is difficult
to train in the case of heavy noise, a curriculum learning strategy (i.e., local-to-global
and easy-to-difficult) is introduced into the NSRN. Therefore, the proposed method has
the advantage of being robust to noise when used for blind deblurring of atmospheric
turbulence-degraded images. The main contributions of this paper are as follows:

(1) For the tightly coupled priors of additive noise and blur, a noise suppression-based
neural network model is designed for restoration of turbulence-degraded images.
It achieves image deconvolution while suppressing additive noise to benefit the
restoration of turbulence-degraded images.

(2) A local-to-global and easy-to-difficult curriculum learning strategy is proposed to
ensure that the proposed neural network first focuses on noise suppression and then
removes blur to achieve the reconstruction of turbulence-degraded images.

(3) A multi-scale fusion module and a non-local attention-based noise suppression mod-
ule are designed and used in the NSRN so that the proposed network denoises
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through multi-scale and multi-level non-local information fusion while preserving
the image’s intrinsic information.

(4) The back-projection idea [39] is introduced and combined with the U-NET for the
final refined reconstruction of the image.

The remainder of this paper is organized as follows. Research related to this paper
is introduced in Section 2. In Section 3, the motivation and rationality of this method are
analyzed from the physical meaning, and the detailed design process of NSRN is given.
In Section 4, the construction protocol of the experimental data and the training method of
the model are introduced, and a comparative experimental analysis of the model is carried
out. Finally, Section 5 summarizes the conclusions of this study.

2. Related Work

Atmospheric turbulence-degraded images have severe noise and random blurring.
The restoration of such degraded images is still a very difficult problem [40,41]. In this
section, we introduce previous work related to the solving of this problem.

2.1. Model-Based Image Restoration

A model-based method regards image restoration as the inverse problem of image
degradation and then designs the restoration and optimization objective function through
the degradation model of the image. To obtain the objective function, these methods guide
the maximum a posteriori probability through some assumed priors, such as incident light
and reflectance regularizer [15], sparsity and gradients [16–18,22–24], group sparsity, and
low-rank priors [42]. In particular, the method proposed in [43] simultaneously considers
both internal and external non-local self-similarity priors to offer mutually complementary
information. Plug-and-Play (PnP) regularization [44–46] has been a hot research topic in
recent years. In PnP regularization, proximal mapping of the Alternating Direction Method
of the Multiplier (ADMM) algorithm can be regarded as a single denoising step and used
as an off-the-shelf denoiser [47] for image reconstruction [44]. In [45], a tuning-free PnP
approximation algorithm is proposed that can automatically determine internal parameters
such as penalty parameters, denoising strength, and termination time. PnP has achieved
great empirical success; however, its theoretical convergence is not fully understood even
for the simple linear denoiser [46].

2.2. End-to-End CNN-Based Methods

The powerful representation learning ability of a Convolutional Neural Network
(CNN) can be exploited to learn intrinsic features in degraded images, and then the restored
images can be reconstructed by these intrinsic features [2,25–28,30,48–50]. Gao et al. [2]
developed a stacked encoder–decoder for single-frame image restoration and adopted a
curriculum learning strategy to ensure the convergence of the network. Chen et al. [28,38]
developed a noise suppression module to address the restoration of images disturbed by
severe noise. In [30], residual learning was used to remove multiple types of noise and to
obtain more detailed information. In [48], CNN was used for text-image deblurring for the
first time. An encoder–decoder network with symmetric skip connections proposed for
image restoration in [49]. Based on regional similarity, a region-based restoration algorithm
named path-restore was proposed in [27]. An Attention-guided Denoising convolutional
neural Network (ADNet) [31] is a model that can be used for the restoration of images
degraded by multiple factors. MemNet [50] is an extended memory model that effectively
utilizes multi-layer features for image restoration. Attention mechanisms have also been
successfully applied to image restoration [25,26].

2.3. Plug-and-Play with Deep CNN Denoiser

Recent work reports the state-of-the-art performance of PnP-based algorithms using
pre-trained deep neural networks as denoisers in many imaging applications. Zhang et al.
trained a set of fast and efficient CNN denoisers and integrated them into a model-based
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optimization method to solve other inverse problems [37]. They further trained a highly
flexible and efficient CNN denoiser and plugged it in as a module in an iterative algorithm
based on semi-quadratic splitting to solve various image restoration problems [36]. In the
Multiple Self-Similarity Network (MSSN) model [51], a recurrent neural network-based
PnP denoising prior is designed, and self-similar matching is performed using a multi-head
attention mechanism. A prior-based deep generative network was proposed in [52] for
nonlinear blind image deconvolution. The Denoising Prior-driven Deep Neural Network
(DPDNN) [53] is a denoising-based image restoration algorithm whose iterative process is
expanded into a deep neural network consisting of multiple denoising modules interleaved
with back-projection modules to ensure consistency of observations.

Traditional PnP-based algorithms have high computational and memory requirements
and are not suitable for large-scale environments. Thus, an incremental variant of the
widely used PnP-ADMM algorithm was proposed in [54]; it can be used in environments
involving a large number of measurements. To ensure the convergence of the resulting iter-
ative scheme obtained by PnP-based methods, an enhanced convergent PnP algorithm [55]
has been proposed. Moreover, the rank-one network [56] is an efficient image restoration
framework that combines traditional rank-one decomposition and neural networks. Al-
though PnP ADMM has proven effective in many applications, it requires manual tuning
of some parameters and a large number of iterations to converge [57]. Furthermore, PnP is
a non-convex framework for which current theoretical analysis is insufficient even for the
most basic problems such as convergence [58].

3. Proposed Method
3.1. Motivation

Most of the existing reconstruction algorithms for turbulence-degraded images are
based on an ideal image degradation model for which the image is degraded by blur and
additive noise, expressed as:

f (x, y) = g(x, y) ∗ h(x, y) + n(x, y), (1)

where g(x, y) is the original image before degradation, f (x, y) is the observed image, ∗
is the convolution, h(x, y) is the PSF of atmospheric turbulence, and n(x, y) is the noise
function and is usually set to be Gaussian white noise. However, real-space target images
are affected by various degradation factors such as turbulence blur, out-of-focus blur,
and atmospheric noise. This multi-factor coupling degradation can be expressed as [2]:

f (x, y) = O(g(x, y) ∗ h(x, y) ∗ k(x, y) + ζ(x, y)) + n(x, y), (2)

where ζ(x, y) is the noise during the transmission of a given target image in space, h(x, y)
is the PSF of atmospheric turbulence, k(x, y) is the PSF of the disturbance, n(x, y) is the
sensor system noise, and O(·) is adaptive optics correction. It can be seen that the space
target image is affected by atmospheric turbulence blur and various noises. These factors
are overlapping and coupled and cannot be simply expressed as a linear combination
relationship. Therefore, the degradation of the coupling of multiple factors is the most
important feature of the spatial target image, which makes restoration of the spatial target
image more difficult.

The PnP method considers that the degradation factors of the image include noise-free
degradation and additive noise [36]. The restored model is expressed as:

ĝ = arg min
g

1
2
‖ f − τ(g)‖2 + λR(z) +

µ

2
‖z− g‖2. (3)
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The solution of this equation can be decomposed into the following two alternate
iterative steps by half-quadratic splitting [59]:

gk = arg min
g
‖ f − τ(g)‖2 + µ‖g− zk−1‖2

zk = arg min
z

µ

2
‖z− gk‖2 + λR(z) ,

(4)

where τ(·) represents a two-dimensional convolution, z is the auxiliary variable, and µ
and λ are the penalty parameters, respectively. Thus, in Equation (4), the first term is
deblurring, and the second term is additive noise removal. Therefore, the preconditions
for this method to be effective are that the degradation process of the image conforms to
Equation (1), and the noise level in each iteration is known. Directly training an E2E deep
neural network is an easy solution to solve the image restoration problem of the degraded
model described by Equation (2). However, for this type of method, our studies [2,28,38,60]
and related studies [61] all show that E2E-based methods have great difficulty in model
training, and the restored images are visually unnatural and prone to artifacts.

Our motivation is to solve the multi-factor-coupled degraded image restoration prob-
lem by combining these two ideas and exploiting their advantages. We tried training deep
deblurring neural networks with multi-task regularization and achieved good restoration
results, as reported in [62]. In this paper, we design a deep neural network with two
modules of denoising and reconstruction to restore severely degraded images. Our method
incorporates the task decomposition idea of PnP and reduces the difficulty of the problem
by decomposing complex tasks into sub-tasks, which makes the proposed method both
have the advantages of E2E and avoid the assumption that multiple degeneracy factors
need to be linearly separable. Further, multi-factor weak decoupling is achieved through
regularization constraints to better restore complex degraded images.

3.2. Proposed Network Model

Instead of trying to express the reconstruction of blur-degraded images as an analytical
expression, we design a network model for turbulence-degraded image reconstruction
based on the fact that the degradation of multi-factor coupling is inseparable, as shown in
Figure 1. The main components of the proposed model include a Multi-Scale Denoising
Block (MSDB), a Self-Attention Dense connection Block (SADB) for suppressing noise and
preserving more detailed information, and an attention-based asymmetric U-NET module.
In this way, the intrinsic features of the image can be extracted from the coupled degraded
image by the model, and the image can be reconstructed using these intrinsic features.
Further, two FDBPs are used to fuse these intrinsic features and reconstruct sharp images.
The proposed restoration reconstruction model can be expressed as:

f̂ = F2(F1(R(SM( fp)⊕ SA( fp)⊕ fp) + fp) + fp) (5)

CAT CAT CAT

Input Image Output Image

3x3 CONVMSDB

SADB U-NET1x1 CONV

FDBP

Figure 1. The proposed deep neural network model for the reconstruction of turbulence-degraded images.

Here, f̂ is the reconstructed sharp image, fp represents the result of the front-end
preprocessing of the input-degraded image, SM(·) represents MSDB, SA(·) represents
SADB, R(·) is for AU-NET, and F(·) is for FDBP. The proposed model first performs shallow
feature extraction and denoising on the input image, and then the fused features are used as
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the input of U-Net. To ensure the reconstructed image has the same information distribution
as the original one, this paper uses long skip connections to pass shallow features to the
refined reconstruction layer. Thus, the entire model is still an E2E deep convolutional neural
network. To make MSDB and SADB in the model mainly focus on removing image noise
while the rest of the modules focus on image deblurring, a curriculum learning strategy
from local-to-global learning is introduced. For details, see Section 3.3.

3.2.1. MSDB

The main task of this module is to achieve noise suppression by extracting multi-
degree features from noisy images and reconstructing noise-free image features. As shown
in Figure 2, the encoder of MSDB consists of two multi-scale convolutional layers, each of
which consists of three-scale convolutions with kernels of 3× 3, 5× 5, and 7× 7, respectively.
The extracted multi-scale features are connected and then passed through a dimensionality
reduction fusion layer with a convolution kernel of 1× 1 to obtain the high-level features
of the degraded image. The decoder of MSDB consists of four dilated convolutional layers,
and each dilated convolution is followed by ReLU activation and batch normalization.
Dilated convolution has shown good performance in image denoising [62] because it is
more beneficial to use contextual information to reconstruct sharp images, and it can
increase the receptive field while avoiding the loss of downsampling information. The scale
factors of the four dilated convolutional layers of MSDB are 1, 2, 2, and 1, respectively.

CAT CAT

3x3 CONV

5x5 CONV 1x1 CONV

CAT

Dilat CONV

7x7 CONV BNReLU

Figure 2. The MSDB in the NSRN model.

3.2.2. SADB

The idea of non-local was used in image denoising in BM3D [47] with remarkable
success. To this day, the latest state-of-the-art methods still use non-local as a basic strat-
egy [37,51]. The randomness of noise makes it easier to achieve noise removal by collab-
orative filtering of correlated regions. In our designed SADB, the self-attention mecha-
nism [63,64] is introduced to realize non-locality. As shown in Figure 3, given an input
tensor X = (H, W, C), two 1 × 1 convolutions in parallel are used to change its shape to
(HW, C) and (C, HW). Then, multiply these two matrices to get the (HW, HW) matrix
and use the softmax activation to get the weighted (HW, HW) matrix. Then, multiply the
feature (C, HW) matrix with the weighted (HW, HW) matrix to get the (C, HW) matrix.
After changing its shape to (H, W, C), it is added to the initial feature map, and finally,
the feature map with weight redistribution is obtained. Non-local attention can be ex-
pressed as:

x̂i = wsoftmax(< wxi · wxj >)(wxi) + xi (6)

where x is the input feature, x̂ is the feature after non-local attention processing, and
<·> represents the inner product; wx represents a one-dimensional linear embedding,
implemented in this work by a convolution of 1× 1.
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reshape

C

H

C

W H*W

H*W

C

H*W

H*Wsoftmax

reshape

C
W

H

Figure 3. The SADB in the NSRN model (⊗ denotes matrix multiplication, and ⊕ denotes element-
wise addition).

Almost all denoising methods are based on the prior assumption that noise is high-
frequency and sparse. Therefore, these algorithms tend to blur the image while removing
noise. In the proposed SADB, the dense connection is adopted to solve this problem. SADB
takes the weighted feature map as an input and passes it to each subsequent convolutional
layer in turn, and dense transmission is also performed between the convolutional layers.
This allows the feature map information to flow efficiently, which not only avoids the
vanishing gradient but also reduces the depth of the network and allows the network to
converge faster. The proposed SADB can better utilize the context information of each layer
and retain more image details while removing noise.

3.2.3. AU-NET

Noise-suppressed feature maps are obtained after MSDB and SADB. To further extract
effective features from degraded images and reconstruct a sharp image, an attention-
based asymmetric U-Net is designed. It uses dilated convolution and batch normalization
techniques in the first two layers of encoders to further suppress high-frequency noise in
feature maps. Further, under the constraint of the loss function, the encoder has greater
modeling ability, which means that its encoding efficiency is higher, and the encoded
features are beneficial to the output of the decoder. Further, we use a channel attention
mechanism to assign weights to the outputs of the encoder and decoder so that the features
of the outputs are more beneficial to the subsequent reconstruction work.

To reduce the information loss caused by fixed downsampling and upsampling, a con-
volution with stride two is used for downsampling, and a transposed convolution is used
for upsampling. Compared with the widely used pooling and interpolation, convolution
not only achieves the same downsampling and upsampling effect but also makes the
whole process learnable, especially when using the backpropagation algorithm to learn
more accurate parameters. Furthermore, the corresponding encoders and decoders are
connected by skipping to make the information flow better from shallow layers to deep
layers, avoiding a vanishing gradient. Due to the use of noise-reduction processing in the
encoding stage and the channel attention mechanism used at the end of encoding and
decoding, the entire structure is no longer symmetric, so it is called an attention-based
asymmetric U-Net, as shown in Figure 4.

Skip Connection
3x3Conv

r=2 dilated Conv

strided Conv

trans Conv

channel Attention

Figure 4. The attention-based asymmetric U-Net in the proposed model.
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3.2.4. FDBP

The reconstruction of AU-Net is based on high-level features, and there is a potential
risk of insufficient reconstruction of detailed texture information. To enhance the presenta-
tion ability of the network and restore clearer images, an FDBP is designed. Back-projection
has been successfully applied in image super-resolution tasks [39], where it has been shown
to have good reconstruction capabilities for texture details. Inspired by it, we design FDBP,
which projects high-resolution features into low-resolution space through a downsampling
unit, then projects low-resolution features into high-resolution space through an upsam-
pling module, and finally guides network learning by the error between the old and new
high-resolution features. The main operations in our designed FDBP are defined as:

up sample : xl = (xl−1 ∗ kl)↑s, (7)

down sample : xl = (xl−1 ∗ kl)↓s, (8)

residual : el = x1 − xl−1, (9)

up residual sample : xl = (xl−1 ∗ kl)↑s, (10)

output : xl = x0 + xl , (11)

where x0 represents the feature after convolution of the input, and x ∗ k is the convolution
of 3× 3. To enhance the flow of information and keep the reconstructed features consistent,
we use two FDBP operations. The FDBP module we designed is shown in Figure 5 and can
capture multi-scale context information well and downsample the feature map to a small
space to save memory and speed up network training.

3x3Conv
Skip Connection

residual

down sample up sample up residual sample output

Figure 5. The FDBP for reconstruction in the model.

3.3. Curriculum Learning Strategy

Due to the randomness of various types of noise, the spatial dimension of the samples
of multi-factor-coupled degraded images is very large, and its representation learning
is very difficult. Therefore, a complex neural network needs to be designed to achieve
its restoration. In such cases, due to the complexity of the problem and the scale of
the parameters, the learning difficulty of the neural network is increased. Curriculum
learning [65–67] is considered an effective way to address this problem. Aiming at the
difficulty of multi-factor-coupled image restoration, a systematic curriculum learning
strategy from local-to-global network and from easy-to-difficult data learning is designed.

3.3.1. Local-to-Global Network Learning

Multi-task decomposition is helpful to reduce the difficulty of the restoration of multi-
factor-coupled images. Although the restoration of turbulence-degraded images is difficult
to simply decompose into multiple independent tasks [60], we design the NSTR neural
network based on the weak assumption that images are mainly affected by additive noise
and turbulence blur. Since MSDB and SADB are primarily good at noise suppression, these
two modules are trained separately. First, a new training set is constructed by adding
Gaussian noise and Poisson noise to the blurred images, and the blurred images without
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noise are used as labels. Then, the output components are plugged into MSDB and SADB,
respectively. Finally, MSDB and SADB are pre-trained to obtain weight parameters.

After completing the training of MSDB and SADB, their weights are transferred to
the overall network model. This transfer learning strategy enables NSRN to have a certain
ability to suppress noise from the beginning. To preserve the noise suppression ability
of MSDB and SADB in the overall training of NSRN, the learning rate should be set to
a small value. In our experiments, the overall learning rate is set to 0.1. By fine-tuning
the learning rate, the proposed network not only maintains noise suppression effectively
but also focuses a lot of attention on image deconvolution reconstruction. This kind of
curriculum learning strategy of first local and then global features not only reduces the
learning difficulty of the whole model but also avoids strict task decomposition.

3.3.2. Easy-to-Difficult Data Curriculum Learning

The main reason for the difficulty in restoring turbulence-blurred images is the high
dynamics of turbulent flow, which results in a large spatial distribution of samples. We
find it extremely difficult to train the network directly with severely turbulence-degraded
images. Therefore, the easy-to-difficult learning strategy is used to train the NSRN network.
By setting the value of the atmospheric coherence length r, data with different degrees
of blur can be obtained. In this paper, three r values are used to obtain data with mild,
moderate, and severe blur, respectively. First, initial network training is performed via the
weight initialization method provided by He [68], and then the network is sequentially
trained using datasets with varying degrees of blur from mild to severe. After the mild
set converges, its weights are saved and used for weight initialization for training on the
blurrier datasets. Through this easy-to-difficult training strategy, the proposed network
can eventually learn more complex mappings and achieve better results.

NSRN uses the L1 loss function for training. The inputs to train the local modules
MSDB and SADB are noisy blurred images, and the labels are blurred images without noise.
The input to train the entire model is degraded images, and the labels are sharp images.
The loss function in the network can be formulated as:

L(Θ) =
1
N

N

∑
i=1
‖ŷ− y‖1, (12)

where ‖·‖1 can restore better texture information. PyTorch was used to implement the
proposed network model, and the whole network was trained using GTX 1080Ti under
Ubuntu 16. The image block size used for training is 32× 32, and the default setting for the
batch size is 64. Since the input and output images of the network have the same resolution,
any image resolution can be used in testing. To make the network converge faster, a learning-
rate decay strategy is used; that is, the initial learning rate is set to 0.001 and decays to 0.5 times
the previous learning rate every 50 epochs. Overall training used 250 epochs. A Mean
Squared Error loss function (MSE) is used, and the Adam optimizer is used to constrain
gradient descent. The learning algorithm of the proposed NSRN is shown in Algorithm 1.
The experimental convergence curve of Algorithm 1 is shown in Figure 6. The restoration of
mildly degraded images is less difficult, and the model converges well. As shown in Figure 6a,
both training accuracy and validation accuracy converge to better positions. Both moderate
degradation and severe degradation converge to low error levels due to the curriculum
learning strategy (see Figure 6b,c). In moderate degradation, the validation curve indicates
slight overfitting. In severe degradation, the validation curve indicates oscillation at the
beginning and convergence after 125 epochs. The training time is 8.5 min/per epoch. When
the test image size is 384 × 384 pixels, the inference time is 0.24 s/frame.
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Figure 6. Convergence curves: (a) mildly degraded; (b) moderately degraded; and (c) severely degraded.

Algorithm 1 Systematic curriculum learning algorithm for NSRN
Require:

B: number of MSDB and SADB training;
D = {D1, D2, Dn}: NSRN training set;
w0:weight initialization.

Ensure:
NSRN(w): parameters of NSRN.

1: Begin:
/* local-to-global learning */

2: MSDB learning: sm(ws) = Sm( fp(B)), where ws is the parameter of MSDB
3: SADB learning: sA(wA) = SA( fp(B)), where wA is the parameter of SADB

/* easy-to-difficult learning */
4: Initialize MSDB in NSRN with ws
5: Initialize SADB in NSRN with wA
6: for each Di do
7: NSRN learning: NSRN (wi) = F2(F1(R(SM( fp)⊕ SA( fp)⊕ fp) + fp) + fp)
8: end for
9: Initialize NSRN with wn

10: Train NSRN with all training data D
11: Output: NSRN

4. Experiments and Discussions
4.1. Dataset

There are few public real-space target images, and ground-truth labels of degraded
images are also difficult to obtain. Therefore, degraded image simulation is used to
obtain training data to verify the effectiveness of the proposed method. The 3D models
used to obtain images of simulated space objects are from STK (Satellite Tool Kit) [69],
which provides various satellite models and turbulence degradation models. The reflected
sunlight of space objects is refracted by atmospheric turbulence, which makes the images
observed by ground-based telescopes blurred. This turbulence blur can be represented by
the following model [28].

h(u, v) = e{−3.44( λ f U
r )

5/3
} (13)

where U =
√

u2 + v2 is the frequency, (u, v) is the unit pulse, λ is the wavelength, f is the
optical focal length, and r is the atmosphere coherence length. It can be seen that the larger
the r, the stronger the atmospheric motion and the blurrier the image. Therefore, different
degrees of turbulence blurred images can be generated by changing the size of r.

To obtain more diverse training data, clear satellite images with different attitude an-
gles are obtained by rotating the 3D satellite model from STK. The acquired images are data-
enhanced, including rotating 90, 180, and 270 degrees and flipping horizontally and verti-
cally. Images are then blurred using the atmospheric turbulence long-exposure degradation
function shown in Equation (13). By setting different r values in [0, 0.02], blurred image
datasets with three levels contained in three subsets—mildly degraded (r ∈ [0.005, 0.01)),
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moderately degraded (r ∈ [0.005, 0.015)), and severely degraded (r ∈ [0.005, 0.02])—can be
obtained. During atmospheric turbulence imaging, the turbulence blurring is also mixed
with photon noise, dark noise, reset noise, and readout noise. These noises mainly obey
Gaussian and Poisson distributions, so we add Gaussian noise and Poisson noise to the
blurred image. The value range of the parameter of Gaussian noise is [35, 42], and the
value range of the parameter of Poisson noise is [4, 7]. The real degradation model is
expressed as:

f (x, y) = g(x, y) ∗ h(x, y) + n(x, y) + p(x, y), (14)

where f is the observed image, g is the original image, h is the PSF atmospheric turbulence,
n represents Gaussian noise, and p represents Poisson noise. To ensure the generalization
ability of the model and encourage the restoration model to learn the blur degradation
mode and the corresponding restoration mode, we adopt the strategy of training on small
images and verifying and testing on large images.

We cut the image at 20-pixel intervals to generate 32× 32 image patches and then
discarded samples in which more than 90% of the patches were black background area,
resulting in 117,300 image patches for training the model. Some of the generated training
samples are shown in Figure 7. A total of 56 large images that are not used to for the
training set are used as the test set, and some test samples are shown in Figure 8. We
also collected 17 real-world turbulence-degraded images from public sources as a test set,
as shown in Figure 9. Detailed information about the dataset is show in Table 1. The spatial
resolutions of the large images in the table are not uniform, and their ranges is [256 × 256,
1024 × 1024].

Figure 7. Some training data. From left to right: clear; mildly degraded; moderately degraded; and
severely degraded.

Table 1. Composition details of dataset.

Number of Large Images Number of Image Patches

Training set
mild 1358 117,300

moderate 1358 117,300
severe 1358 117,300

Validation set
mild 100 /

moderate 100 /
severe 100 /

Simulated test set
mild 56 /

moderate 56 /
severe 56 /

Real test set / 17 /
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Figure 8. Some simulated data for testing. From left to right: clear; mildly degraded; moderately
degraded; and severely degraded.

Figure 9. Some real-world turbulence-degraded data for testing.

4.2. Metrics for Evaluation and Methods for Comparison

The simulated images have labels, so the performance evaluation of the algorithm can
be carried out by combining subjective methods and objective metrics. For objective metrics,
peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) are used to evaluate
the restoration performance of each algorithm. For subjective metrics, the quality of the
restored image is evaluated by human vision and the reference images. Moreover, for real
images, due to the lack of reference images, only subjective evaluation and no-reference
metrics can be used. In this paper, the no-reference evaluation metrics used are Brenner,
Laplacian, SMD, Variance, Energy, Vollath, and Entropy. The calculation methods of these
no-reference metrics can be found in [70].

Gao [2] conducted extensive analysis on traditional restoration methods for spatial
images. The experimental results show that the traditional methods are not ideal for remov-
ing turbulence blur, so the proposed method is not compared using traditional methods.
To better analyze and evaluate the performance of this method, some representative deep
learning methods are selected for comparative experiments, namely Gao [2], Chen [38],
Mao-30 [49], MemNet [50], CBDNet [48], ADNet [31], DPDNN [53], and DPIR [36]. For ab-
solute fairness, for all comparison methods, we use the parameters given in the original
text and train them with the training set of this paper.
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4.3. Ablation Experiment

Our proposed model (Figure 1) uses an asymmetric U-NET as the backbone. To verify
the effectiveness of the proposed model, an ablation experiment is performed. In this
experiment, the backbone U-NET is named Model1, and Model1 to Model6 are formed
by plugging MSDB, SADB, FDBP, and curriculum learning strategy (TNRS) into Model1,
as shown in Table 2. When training models Model1–Model5, three training subsets with
different blur degrees are directly merged as the final training set. Model6 is trained using
the steps shown in Algorithm 1. The trained model is tested on three different degraded
images; the results of the objective evaluation metric are shown in Table 2, and the partially
restored images are shown in Figure 10.

Table 2. Performance of models with different components (The best results are shown in bold fonts).

Model1 Model2 Model3 Model4 Model5 Model6

U-Net
√ √ √ √ √ √

MSDB
√ √ √ √

SADB
√ √ √ √

FDBP
√ √

TNRS
√

PSNR
mild 29.2092 29.8803 29.8666 30.0160 30.0587 30.1817

moderate 27.9264 28.2895 28.0992 28.2989 28.3944 28.6400
severe 25.9631 27.2224 27.1046 27.6352 27.8129 28.0169

SSIM
mild 0.8889 0.8923 0.8869 0.9001 0.8911 0.9035

moderate 0.8430 0.8649 0.8757 0.8685 0.8701 0.8732
severe 0.7052 0.8363 0.8218 0.8325 0.8341 0.8545

Model1
（PSNR:23.50,SSIM:0.55）

Model3
(PSNR:23.76,SSIM:0.74)

Model2
(PSNR:23.43;SSIM:0.57)

Model4
(PSNR:24.49,SSIM:0.77)

Model5
(PSNR:24.84,ssim:0.79)

Model6
(PSNR:25.01,SSIM:0.81))

Figure 10. Restoration of severe turbulence blur using different modules (The red boxes represent
the focus region).

It can be seen from Table 2 that: (1) Model1, which only contains the backbone U-NET,
lacked sufficient representation power to learn intrinsic features from degraded images and
reconstruct images well. (2) The PSNR of Model2 obtained by plugging MSDB into Model1
was significantly improved because MSDB enables U-NET to have better global and local
information presentation capabilities. However, the PSNR of Model3 obtained by plugging
SADB into Model1 decreased, but the image details are richer. (3) Model4 was obtained by
plugging MSDB and SADB into Model1. Compared with Model1, Model2, and Model3,
both the PSNR and the SSIM significantly improved in Model4. This is because Model4
has stronger noise suppression performance. (4) Model5, obtained by plugging FBPR
into Model4, obtained more consistent results. (5) Model6 (NSRN) added the curriculum
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learning algorithm to Model5 to train the network. The performance of Model6 was further
improved compared to Model5, which proves that the proposed model does have better
generalization ability, and it is easier to capture the mapping relationship between sharp
images and low-resolution images. Moreover, from the restored images of each model in
Figure 10, the results of Model 6 have the best visual effect, and the edges and textures
are clearer.

4.4. Experiments and Comparative Analysis of Simulated Images

(1) Model for mild degradation
We use the trained model for restoration experiments on test data with mild degra-

dation, and the resulting averages of objective evaluation metrics are shown in Table 3.
It can be seen that for PSNR, Mao, CBDNet, ADNet, DPDNN, DPIR, and the proposed
method all achieve very good results. These methods all have more complex network
models, so they have better presentation ability. For SSIM, DPDNN, DPIR, and our method
have significantly better performance than the remaining methods, which shows that the
method based on noise suppression has a better ability to restore textual details. Compared
to the second-ranked method, our method improves PSNR by 0.16 and improves SSIM
by 0.036. An example set of restored results is shown in Figure 11. It can be seen that for
mildly degraded images, almost all methods achieve better visual effects.

Table 3. Average PSNR and SSIM of different state-of-the-art methods on mild degradation (The best
results are shown in bold fonts).

Methods PSNR SSIM

Gao 27.5423 0.8337
Chen 28.0156 0.8431
Mao 29.3903 0.8387

MemNet 27.8413 0.8295
CBDNet 29.4395 0.8596
ADNet 29.7430 0.8828

DPDNN 30.0122 0.8999
DPIR 29.7316 0.8932
Ours 30.1817 0.9035

Gao
（PSNR:24.27,SSIM:0.80）

Chen
(PSNR:25.49,SSIM:0.87)

Mao
(PSNR:27.75,SSIM:0.86)

MemNet
(PSNR:25.51,SSIM:0.72)

CBDNet
(PSNR:27.48,SSIM:0.89)

ADNet
(PSNR:28.89,SSIM:0.91)

DPDNN
(PSNR:28.89,SSIM:0.91)

DPIR
(PSNR:28.68,SSIM:0.90)

OUR
(28.78,SSIM:0.91)

Figure 11. Restoration using different state-of-the-art methods on mild turbulence blur (The red
boxes represent the focus region).
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(2) Model for moderate degradation
The test results of all models on the moderately degraded dataset are shown in

Table 4. It can be seen that for PSNR, DPIR, DPDNN, and Mao achieve competitive results.
However, our method has the best performance and is nearly 0.3 higher than the second-
ranked method, indicating that the proposed method does have a strong representation
of learning ability by introducing modules such as FBPR. On SSIM, the best method is
DPDNN, and our method is close to DPDNN. The restoration results of different methods
on a typical moderately degraded image are shown in Figure 12. It can be seen that the
visual effects of images restored by DPDNN, DPIR, Mao, and our method are similar.
However, in contrast, DPDNN has sharper edges in some regions, and our method is
more consistent.

Gao
(PSNR:23.19,SSMI:0.64)

Chen
(PSNR:24.41,SSIM:0.77)

Mao
(PSNR:26.59,SSIM:0.84)

MemNet
(PSNR:25.25,SSIM:0.65)

CBDNet
(PSNR:25.79,SSIM:0.70)

ADNet
(PSNR:26.46,SSIM:0.85)

DPDNN
(PSNR:26.29.SSIM:0.86)

DPIR
(PSNR:26.60,SSIM:0.83)

OUR
(PSNR:26.86,SSIM:0.86)

Figure 12. Restoration using different state-of-the-art methods on moderate turbulence blur (The red
boxes represent the focus region).

Table 4. Average PSNR and SSIM of different state-of-the-art methods on moderate degradation (The
best results are shown in bold fonts).

Methods PSNR SSIM

Gao 25.8558 0.7643
Chen 26.9923 0.8297
Mao 28.3321 0.8446

MemNet 26.4702 0.7480
CBDNet 27.7382 0.7817
ADNet 28.1007 0.8472

DPDNN 28.3600 0.8766
DPIR 28.3519 0.8284
Ours 28.6400 0.8732
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(3) Model for severe degradation
The results of objective evaluation metrics of all restoration models on the severely

degraded image test set are shown in Table 5. It can be seen that our method has obvious
advantages in this dataset: the PSNR is higher than the second-ranked method by nearly
0.2, and the SSIM is higher than the second-ranked method by 0.007. Further, for PSNR,
our method is the only one that exceeds 28. Our method is also the only method that shows
the best performance in both metrics, which shows that for severely degraded images with
severe noise and severe blur, the method that can specifically deal with the noise is more
competitive. The restoration results of different methods on a typical severely degraded
image are shown in Figure 13. From the visual effect, our method restores more texture
details and has obvious advantages.

Gao
(PSNR:23.76,SSIM:0.74)

Chen
(PSNR:24.49,SSIM:0.79)

Mao
(PSNR:25.00,SSIM:0.77)

MemNet
(PSNR:23.50,SSIM:0.55)

CBDNet
(PSNR:0.24.63,SSIM:0.77）)

ADNet
(PSNR:24.39,SSIM:0.63)

DPDNN
(PSNR:24.98,SSIM:0.79)

DPIR
(PSNR:24.52,SSIM:0.79)

OUR
(PSNR:25.01,SSIM:0.81)

Gao Chen Mao

MemNet CBDNet ADNet

DPDNN DPIR OUR

Figure 13. Restoration using different methods on severe turbulence blur (The red boxes represent
the focus region).

Table 5. Average PSNR and SSIM of different state-of-the-art methods on severe degradation (The
best results are shown in bold fonts).

Methods PSNR SSIM

Gao 26.7512 0.7934
Chen 27.1416 0.8250
Mao 27.1224 0.8190

MemNet 26.1868 0.7288
CBDNet 27.4253 0.8471
ADNet 27.1676 0.8346

DPDNN 27.8129 0.8431
DPIR 27.6249 0.8376
Ours 28.0169 0.8545
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In general, the proposed method, DPDNN, and DPIR are the most competitive meth-
ods, while the Gao, Mao, and Chen models are too small to represent the huge sample space
spanned by severely degraded images. This shows that a network that can restore heavily
noisy and blurred severely degraded images not only needs sufficient representation ability
but also some mechanism for learning features, such as attention. Moreover, as the model
becomes more complex, the generalization ability and restoration ability of the network
model can be improved by separately processing blur and noise.

To better compare the performance of each algorithm under different noise levels,
an image is randomly selected from the test set and then mixed with different levels of
noise for restoration experiments. As seen in Figure 14, DPIR and our method have similar
performance on SSIM. DPDNN also has good performance when the noise intensity is
greater than 35. Moreover, our method has the best PSNR at almost all noise levels.

a
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Figure 14. Results of different noise levels: (a) Test image; (b) SSIM; (c): PSNR.

4.5. Experiments and Comparative Analysis of Real Images

The results of the non-reference evaluation metrics of the restoration results obtained
by all the compared methods on real data are shown in Table 6, and the restoration
results on real data are shown in Figure 15. There was still a big difference between the
simulated training data and the real image distribution, and all methods encountered
cross-domain problems. However, under the same conditions, our method is the best in
these numerical experiments and these evaluation metrics. Of course, the reliability of the
no-reference evaluation and the consistency with human vision require further research [24].
The proposed method has a certain enhancement of texture and edges, so metrics such
as upper edge and gradient have weak advantages over other methods. As shown in
Figure 15, due to the weak network representation ability of the methods of Gao [2] and
Mao [49], the restored image is still blurred. The rest of the methods can provide visually
pleasing restoration. The visual effect restored by the method of Chen [38] is close to
our method, indicating that our method has excellent performance for the restoration of
severely degraded images. This is because it treated additive noise and blur degradation
separately and designed special modules to denoise and perform blur deconvolution.

Table 6. Results of non-reference evaluation metrics on real test data (The best results are shown in
bold fonts).

Method Brenner (xe6) Laplacian SMD (xe4) Variance (xe7) Energy (xe6) Vollath (xe7) Entropy

ADNet 27.36 346.52 53.9847 17.477 19.42 17.05 2.58
CBDNet 23.07 310.00 49.80 17.42 16.85 17.06 2.51

Chen 27.62 419.92 56.31 17.57 19.92 17.13 2.68
Gao 24.45 231.94 52.34 17.41 16.53 17.05 2.61
Mao 16.71 220.832 43.61 16.83 12.48 16.58 2.32

MemNet 21.23 314.55 48.71 16.41 15.96 16.08 2.52
Zhang 19.26 242.84 46.14 17.85 13.90 17.55 2.49

DPDNN 15.65 183.75 42.31 16.31 11.29 16.07 2.57
Ours 32.54 493.77 58.98 18.13 23.47 17.61 2.41
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Gao Chen Mao

MemNet CBDNet ADNet

DPDNN DPIR OUR

Figure 15. Restoration using different methods on real turbulence blur (The red boxes represent the
focus region).

5. Conclusions

Atmospheric turbulence-blurred images are usually observed at long distances and
contain severe noise. Therefore, the restoration of atmospheric turbulence-degraded images
includes two tasks: deblurring and denoising. Although deblurring and denoising belong
to the same underlying visual tasks, their internal principles are different. Denoising
removes high-frequency noise in images, while deblurring using deconvolution to obtain
high-frequency information from blurred images. Based on this knowledge, we design
a deep neural network model for the restoration of atmospheric turbulence-degraded
images based on curriculum learning. Noise suppression of degraded images is achieved
by designing a dedicated denoiser without enforcing fully decoupled denoising and de-
blurring. The experimental results demonstrate the effectiveness of our method. However,
the restoration of real turbulence-degraded images is still an open problem. The design of
a GAN [71] model based on the ideas proposed in this paper to improve the restoration of
real images will be the direction and focus of future research.
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