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ABSTRACT
We propose a new image and blur prior model, based on non-

stationary autoregressive (AR) models, and use these to blindly
deconvolve blurred photographic images, using the Gibbs sampler.
As far as we are aware, this is the first attempt to tackle a real-world
blind image deconvolution (BID) problem using Markov chain
Monte Carlo (MCMC) methods. We give examples with simulated
and real out-of-focus images, which show the state-of-the-art results
that the proposed approach provides.

Index Terms— Blind Deconvolution, Learned Image Prior,
Nonstationary Image Models, Bayesian methods, Gibbs Sampler

1. INTRODUCTION

Photographic images are commonly degraded by motion or out-of-
focus blurs. In practice, the point-spread functions (PSFs) that cause
these degradations are unknown, and the need to estimate them si-
multaneously with a restoration of the image results in the blind im-
age deconvolution (BID) problem [1]. This is an extremely ill-posed
problem, and as such, proper incorporation of as much prior knowl-
edge as possible regarding the types of image and blur that are likely
to be encountered is essential to properly constrain the solution.

In this paper, we develop nonstationary models incorporating
AR parameter estimation, which are able to adapt very locally to the
variety of smooth, textured, and edge regions encountered in typical
images and PSFs. The new model is an extension of the models used
in previous work [2, 3].

An overview and collection of the many recent methods pro-
posed for tackling BID is given in [1]. Many of these, e.g. [4, 5, 2],
have used the variational Bayesian (VB) approach as a means to mit-
igate the intractability of a direct solution of these models.

One major problem with deterministic alternating minimization
(AM) or expectation maximization (EM) type algorithms is that they
are too easily trapped in local optima, especially when the state
space is very large and the likelihood is non-linear in the parame-
ters, as is the case for BID problems. Fully stochastic methods allow
searching beyond the local optimum. Although MCMC methods
are often notoriously computationally intense, we also use simulated
annealing (SA) to improve convergence rates to a level that is now
becoming feasible on modern hardware. See [6] for an attempt to use
SA to find maximum likelihood (ML) estimates in the BID problem.

The main differences of the model in the proposed approach
from the model in [2] are as follows:
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Fig. 1. Graphical model showing relationships between variables

• AR parameter estimation is included, in order to model tex-
tures in the image and better represent edge details;

• Local region means are also estimated to enhance model fit.

• The grid used to define regions in the image is not fixed, but
chosen randomly at each iteration, avoiding block artefacts.

• PSF positivity is imposed via rectified Gaussian distributions.

2. PROBLEM FORMULATION

The BID problem consists of estimating an unobserved true image,
f(i, j), and blur or point-spread function (PSF), h(i, j) from an ob-
served degraded image g(i, j), which is modelled as a discrete con-
volution f(i, j)∗h(i, j) plus additive white Gaussian noise (WGN),
w(i, j). In matrix-vector form this may be written as

g = Hf + w = Fhh + w (1)

where the vectors g (of length L) and f (of length L+) are lexico-
graphically ordered, and H is a block Toeplitz with Toeplitz blocks
(BTTB) matrix, with defining sequence h of length Lh. An extended
observation model is used [2] to take into account the influence of
the parts of the original image outside the observation boundary that
blur into the field of view. This implies that H is non-square, of size
L × L+, and the support Sg of the observation g is smaller than the
support Sf of f , by the size of the blur support, Sh. Based on the
WGN assumption, w ∼ N (0, σ2

wI), the likelihood of the observa-
tions conditioned on the true image may then be written

p
`
g
˛̨
f , h, σ2

w

´
= N `

g
˛̨
Hf , σ2

wI
´
. (2)
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2.1. Nonstationary Image Model and Blur Model

The image and blur priors in the proposed model are based on a local
(nonstationary) modelling. The model is symmetric in the image
and blur, in that the structure of the hierarchical model for each is
the same (see Fig. 1). In previous work, a causal block-stationary
AR (BSAR) model was used to represent the image in [3]. We will
use a similar, non-causal version, but now including a local mean,
making the model more locally adaptive.

The image model will be described first in detail. Assume we
have a segmentation of the canvas Sf , with R blocks or regions.
The ordered vector of pixels inside each region Rr ⊂ Sf is de-
noted fr , and is of length Lr , for r ∈ {1 · · ·R}. The principle
of the BSAR model is to find a set of coefficients afr that model
the image in each local region Rr , such that each pixel is the sum
of an excitation signal vr(i, j) and the weighted combination of the
pixel’s neighbours within a support region of shape Saf , whose size

Laf = (2P + 1)2 − 1. If the model is a good fit, the excitation
signal, or modelling error, will be small and uncorrelated with the
image, and resemble WGN.

Block boundaries Because the signal at the boundary of Rr

depends on its neighbours outside of the region, according to the ex-
tent of Saf , we define the extended region Rr+ as a dilation of the
set Rr by Saf . The intersection of Rr+ and Rr is the set of bound-
ary pixels Rrb exterior to Rr (see [2]). Image pixels within Rrb

are vectorised as frb, of length Lrb, then we let fr+ = [fT
r fT

rb]
T ,

which is a vector of length Lr+ containing all the pixels in Rr+ .

2D AR model in each block For a zero-mean signal in Rr ,
f∗r (i, j), the 2D AR model of order P is defined according to:

f∗r (i, j) =
X

∀(k,l∈Saf
)

f∗r (i − k, j − l)afr (k, l) + vr(i, j) (3)

Since natural images are inherently locally non-zero-mean, a mean
μfr is introduced to the model, such that f∗r (i, j) = fr(i, j) − μfr .
It is critical, in order to avoid introducing artificial discontinuities in
the model, that pixel values f∗r (i−k, j− l) on the RHS of (3) have a
common mean subtracted, whether they are in Rr or Rrb. Observe
that another neighbouring region, Rr′ , will also contain some of
these pixels, but the mean will be different in this case.

In vector form, with suitable ordering, (3) is written as

fr − μfr = Afr+
(fr+ − μfr+

) + vr (4)

where μfr = μfr1Lr , μfr+
= μfr1Lr+

, and Afr+
is a Lr ×

Lr+ BTTB matrix with defining sequence afr .1 Defining Ir+ =
[ILr |0Lr×Lrb ], the excitation signal in Rr may then be written

vr = (Ir+ − Afr+
)(fr+ − μfr+

) = Cfr+
fr+ − ηfr (5)

where Cfr+
= (Ir+ −Afr+

) and ηfr = Cfr+
μfr+

. We will also

write Afr+
(fr+ − μfr+

) = (Far − μfr1Lr×La)afr = F ∗ar
afr .

Whole image model Now define v′ = [vT
1 , · · · , vT

R]T , the
concatenation of the excitation across all the regions, and re-order
this vector as v = P v′. P is a permutation matrix that converts the
block-wise scanning to lexicographic ordering across Sf . Then we
have

v = Cff − ηf (6)

1We use the notation 1M or 0M to represent a vector of M ones or zeros,

and 1M×N or 0M×N an M×N matrix of ones or zeros. IM is the M×M
identity matrix.

where ηf = P [ηT
f1 , · · · , ηT

fR
]T , and Cf is a non-stationary BTTB

matrix with entries taken from the matrices Cfr+
for r = 1 · · ·R,

relating pixels in v and f according to (5).

Now, using the probability density function (PDF) of the exci-
tation signal in each block vr ∼ N (0, σ2

vr
ILr ), and the fact that

these are independent, we may write

p (v |σv ) =
Y

r∈{1···R}
(2π)−

Lr
2 σ−Lr

vr
exp

ˆ−1

2
σ−2

vr
vT

r vr

˜
(7)

= (2π)−L+ det|Qv|−1 exp
ˆ−1

2
vT Q−1

v v
˜

(8)

where σv = [σ2
v1 , · · · , σ2

vR
]T , and the diagonal matrix Qv is

formed from the excitation variances in each block, σ2
vr

. Then by
applying a probability transformation to (8), using (6), the extended
image prior PDF may be written as

p (f |af , σv, μf ) = (2π)−L+ det|Σ−1
f |·

exp
ˆ−1

2
(Cff − ηf )T Q−1

v (Cff − ηf )
˜ (9)

= N `
f
˛̨
f̄ ,Σf

´
, (10)

where Σf = E

h
(f − f̄ )(f − f̄ )T

i
= C−1

f QvC−T
f (11)

and f̄ = C−1
f ηf . (12)

Here we denote μf = [μf1 , · · · , μfR ]T , i.e. the vector of coeffi-
cients parameterising the mean image, rather than the mean image
within R; also we define af = [aT

f1 , · · · , aT
fR

]T . Note that the
while the excitation signal v is independent in each region, the im-
age in each region depends on its neighbours.

2.2. Hyperprior models

The image prior model depends upon three hyperparameters: af ,
σv , μf . Because in the hierarchical Bayesian approach it is con-
sidered that these parameters are also unknowns, the next stage is
specification of hyperpriors defining the distributions of their likely
values. Conjugate priors are used to ensure that the resulting condi-
tional distributions which will be sampled from will be of the same
known forms.

The AR parameters are assumed to be Gaussian distributed.
While an uninformative uniform distribution may be used reliably
for the means (there are a large number of observed data points avail-
able for their estimation), we choose to constrain them to be positive
by using a vague (large variance) rectified Gaussian, denoted by
N+. The distributions are then:

p
`
af

˛̨
δaf

´
=

Y
r∈{1···R}

N
“
afr

˛̨̨
0, δafr

ILaf

”
(13)

p
`
μf

˛̨
δμf

´
=

Y
r∈{1···R}

N+ `
μfr

˛̨
0, δμf

´
(14)

For the other parameters, which are variances of Gaussian distribu-
tions, the standard conjugate priors are inverse-Gamma (IG):

p (σv |αv, βv ) =
Y

r∈{1···R}
IG `

σ2
vr

|αvr , βvr

´
(15)

p
`
σ2

w |αw, βw

´
= IG `

σ2
w |αw, βw

´
(16)
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2.3. Nonstationary blur prior

The prior for h takes on the same structure as that for f , but pos-
itivity is imposed on the pixels in h itself by means of a rectified
Gaussian. The set of distributions describing the blur prior are then:

p (h |ah, σu, μh ) = N+ `
h
˛̨
h̄,Σh

´
, (17)

where Σh = E

h
(h − h̄)(h − h̄)T

i
= C−1

h QuC−T
h (18)

and h̄ = C−1
h ηh, (19)

p
`
ahr

˛̨
δahr

´
= N

“
ahr

˛̨̨
0, δahr

ILah

”
, (20)

p (μhr | δμh ) = N+ (μhr | 0, δμh ) , (21)

p
`
σ2

ur
|αur , βur

´
= IG `

σ2
ur

|αur , βur

´
, (22)

where all parameters are defined analogously to their counterparts
in §2.1 and §2.2, with Sh partitioned into Rh blocks, denoted Rhr .
Note that this is a very flexible definition of the blur model; it con-
tains as a particular case the model used in [4], as well as any global
autoregression.

3. BAYESIAN INFERENCE VIA MCMC

Inference in the Bayesian paradigm is based upon the posterior dis-
tribution of unknowns Θ = {f , af , σv, μf , h, ah, σu, μh, σ2

w},
conditional on the observed data: p (Θ | g ) ∝ p (g |Θ ) p (Θ).

With such a large parameter space, it is infeasible to perform di-
rect optimisation or calculation of this function. Marginalisation of
all nuisance variables is not tractable for this model. Methods of so-
lution available thus include approximation via variational methods,
or direct sampling of the parameter space using MCMC methods.
We choose the second option, and use the Gibbs sampler with SA to
explore the space. VB methods approximate the posterior by a sepa-
rable distribution, whereas Gibbs sampling allows for full simulation
of the posterior. Several issues that had to be overcome in practice
will be discussed in this section, including: bulk-sampling of the
image; positivity of the PSF, and improving convergence speed.

The Gibbs sampler [7, 9] draws samples θ(k) at iteration k from
the distribution of each θ ∈ Θ in turn, conditional on the previously
sampled values of all the other unknowns. These samples form a
Markov chain, whose stationary distribution is the desired posterior.

These conditional PDFs, p
`
θ
˛̨
Θ\θ

´
, only need be known up

to a constant of proportionality; hence they are calculated simply by
taking the product of the terms from p (g |Θ ) p (Θ) that contain
the variable θ of interest. This procedure results in the conditionals
shown in Algorithm 1, where we also define the sets of image and
blur parameters θfr = {Lr+ , αvr , βvr , δμf , δafr

, Laf } and θhr =
{Lhr+

, αur , βur , δμh , δahr
, Lah}.

Sampling procedure The scalar Gaussian and IG distri-
butions are easily sampled from standard pseudo-random number
generators (the IG by the reciprocal of Gamma distributed samples).
For the multivariate Gaussians, normally a Cholesky decompo-
sition of the covariance matrix is found, but this is intractable
for such a large matrix as covk [f ]. Instead, a conjugate gradi-
ents least squares (CGLS) solver is used [8]. For example, f is
sampled avoiding calculation of covk [f ] and E

k [f ] by drawing
ν ← N `

ν
˛̨
0L+L+ , IL+L+

´
and iteratively solving

M T Mx = M T y (23)

Input: g, h(0), θfr , θhr

Output: f̂ = 1
K−k0

PK
k=k0

f (k), ĥ = 1
K−k0

PK
k=k0

h(k)

for k = 1 · · ·n do1
offset Rr, ∀r = 1 · · ·R, by (i, j) ← Uniform(mr) ;2

w(k) = g − Hf ;3 `
σ2

w

´(k) ← IG
“
σ2

w

˛̨̨
αw +

L+
2

, βw + 1
2
wT w

”
;4

for r = 1 · · ·R : do5

{`σ2
vr

´(k)
, μ

(k)
fr

, a
(k)
fr

}6

=ParamSampling(r, σ2
w, Cfr , fr+ , μfr , θfr) ;`

covk [f ]
´−1

= CT
f Q−1

v Cf + σ−2
w HT H ;7

E
k [f ] = covk [f ]

`
σ−2

w HT g + CT
f Q−1

v ηf

´
;8

f (k) ← N (f | E
k [f ] , covk [f ]) ;9

offset Rhr , ∀r = 1 · · ·Rh, by (i, j) ← Uniform(mrh) ;10
for r = 1 · · ·Rh : do11

{`σ2
ur

´(k)
, μ

(k)
hr

, a
(k)
hr

}12

=ParamSampling(r, σ2
w, Chr , hr+ , μhr , θhr) ;`

covk [h]
´−1

= CT
h Q−1

v Ch + σ−2
w F T

h Fh ;13

E
k [h] = covk [h]

`
σ−2

w F T
h g + CT

h Q−1
u ηh

´
;14

h(k) ← N+(h | E
k [h] , covk [h]) ;15

Algorithm 1: Gibbs sampling for Blind Image Deconvolution.

The symbol ← means draw a sample from the RHS distribu-

tion. The indices k or k−1 of the quantities in the RHS of the

equations have been dropped for clarity; it is implied that the

most recently sampled value is used in each case.

where Q−1
v = LT L, M =

"
σ−1

w H

LCf

#
, and y =

"
σ−1

w g

Lηf

#
+ν .

The same approach is used to sample afr and ahr , though we make
the approximation in p (f |af , σv, μf ) of ignoring the dependency
of the normalising term det|Σ−1

f | on af , resulting in an improper
prior. This does not seem to adversely affect results however.

To sample the rectified Gaussians, rejection sampling is used.
For h, in order to use rejection sampling, it must be sampled pixel-
wise, which means the more efficient CGLS solver is not possible.
This requires the PDF of one pixel in the PSF, h[i], conditional on
the rest, h\i:

p
`
h[i]

˛̨
h\i

´
∝ N+

“
h[i]

˛̨̨
E

k [h][i] − N−1
[i,i]N[i,\i](h\i − E

k [h]\i), N
−1
[i,i]

”

where N =
`
covk [h]

´−1
, and the square brackets extract a sub-

vector or entry of the matrix. A random update order is used to
update the pixels, for i = 1 · · ·Lh.

Simulated Annealing The pixel-wise sampling of h results
in slower convergence, or mixing of the Markov chain. SA [9, 7]
is a popular method to accelerate the search for high probability re-
gions of the parameter space. The posterior distribution is raised
to a power 1/τ , where τ(k) is a temperature parameter, such that

p(k) (Θ | g ) =
`
p (Θ | g )

´1/τ(k)
. High temperatures result in the

PDFs being less “peaky” and more uniform, avoiding the search get-
ting trapped in local optima. Samples are gathered after burn-in once
τ(k) ≈ 1. The distribution should be “cooled” sufficiently slowly,
in analogy to annealing in metallurgy. We use a quasi-geometric an-
nealing schedule: τ(k) = 1 + (τ(0) − 1) · κk. The modification
to the conditionals using the temperature parameter involves scal-
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Input: r, σ2
w, Cfr+

, fr+ , μfr , θfr

Output: {`σ2
vr

´(k)
, μ

(k)
fr

, a
(k)
fr

}
v

(k)
r = Cfr+

(fr+ − μfr+
) ;1 `

σ2
vr

´(k) ← IG `
σ2

vr

˛̨
αvr + Lr

2
, βvr + 1

2
vT

r vr

´
;2

covk [μfr ] =
“
‖Cfr+

1Lr+
‖2/σ2

vr
+ δ−1

μf

”−1

;3

E
k [μfr ] =

1T
Lr+

CT
fr+

Cfr+
fr+/σ2

vr

‖Cfr+
1Lr+

‖2/σ2
vr

+δ−1
μf

;
4

μ
(k)
fr

← N+(μfr | E
k [μfr ] , covk [μfr ]) ;5

covk [afr ] =
`
F ∗ar

T F ∗ar
/σ2

vr
+ δ−1

afr
ILaf

´−1
;6

E
k [afr ] = covk [afr ] σ−2

vr
F ∗ar

T (fr − μfr ) ;7

a
(k)
fr

← N (afr | E
k [afr ] , covk [afr ]) ;8

Function ParamSampling

ing the variance of the Gaussian distributions at iteration k by τ(k),
whereas for the IG PDFs, we make the substitution αθ → αθ+1

τ(k)
− 1

and βθ → βθ/τ(k). We constrain the maximum temperature for
these distributions such that αθ > 1, otherwise the samples will be-
come unbounded.

Once the samples have been obtained, expectations may then
be found to provide the desired parameter estimates, for example
the minimum mean-squared error (MMSE) estimate, E [f |g] ≈

1
K−k0

PK
k=k0

f (k), where k0 is chosen to allow for convergence
during the burn-in period (see e.g. [9]). Other possibilities for infer-
ence with the samples include computing a maximum a posteriori
(MAP) estimate, by cooling the temperature to zero, or to learn more
about the posterior by looking at other statistics of the samples.

(a) g, simulated (b) f̂ , ISNR=6.31dB (c) f (region Sg shown)

(d) g, photographed (e) f̂ , ISNR=6.77dB (f) f (region Sg shown)

Fig. 2. Experimental results: (a) – (c) Exp. 1; (d) – (e) Exp. 2

4. RESULTS

We present two experiments using the Lena image, firstly syntheti-
cally blurred with a simulated out-of-focus blur of radius 12 (Exp.
1), and secondly with the image degraded by a real camera (Exp. 2).
The blurred image in each case is shown in fig. 2. In Exp. 1, WGN
was added to give a blurred-image SNR (BSNR) of 40dB. The ob-
served image support Sg was 183 × 183; the PSF support Sh was

37×37, giving Sf = 219×219; the image and blur block sizes were
mr = 8 and mrh = 3 pixels, and the AR orders P = 5 and Ph = 3.
The annealing used τ(0) = 2 and κ = 0.998, over K = 4000 itera-
tions, with k0 = 3000. Due to the hierarchical model, the algorithm
is fairly robust to different choices of the hyperparameters, although
reasonable values will aid more rapid convergence. Due to the new
segmentations at each iteration, lines 6 and 12 of Algorithm 1 were
also repeated twice per main iteration to update the parameters more
effectively. h(0) was chosen as a circular PSF of radius 10 (experi-
ments with a Gaussian initialisation also converged successfully).

In Exp. 2, the image was displayed on a computer screen and
photographed with the camera lens out-of-focus to produce a similar
blurred image to that in Exp. 1 (in fact it is slightly more blurred).
The green channel of the image only was used; this was bilinearly
interpolated and downsampled, in order to avoid demosaicing. It
is also important to work in a linear colour space, and convert to a
gamma 2.2 space for final display. Despite the care taken to ensure a
linear image, there is undoubtedly some residual non-linearity in the
process, as can be seen from the results in fig. 2. The same param-
eters were used as in Exp. 1, although the annealing was modified
to τ(0) = 3, κ = 0.999, K = 10000, k0 = 9000 to ensure better
convergence. It is also possible that the PSF is spatially varying in
this case, as more artefacts are visible away from the centre.

In order to calculate an improvement in signal-to-noise ratio
(ISNR) value, another image shot under the same conditions but with
the lens in focus was used as a reference (fig. 2(f)). This was aligned
with the restored image and the images histogram matched.

5. CONCLUSIONS

Very flexible and locally adaptive image and blur models have been
proposed. We have shown that MCMC methods can be used in BID
to tackle the very challenging optimisation problems set by these
models, as well as to gain insight into the quality of the obtained so-
lutions. Future work will include better modelling of the AR param-
eter distributions, imposing positivity on the image, and achieving
more rapid convergence of the Markov chain.
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