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ABSTRACT

Blind RRT: A Probabilistically Complete, Distributed RRT. (May 2013)

Cesar Adolfo Rodriguez Villanueva
Department of Computer Science

Texas A&M University

Research Advisor: Dr. Nancy Amato
Department of Computer Science

Rapidly-Exploring Random Trees (RRTs) have been successful at finding feasible solutions

for high-dimensional problems. With motion planning becoming more computationally de-

manding, we turn to parallel motion planning for efficient solutions. Existing work on dis-

tributed RRTs has been limited by the overhead that global communication requires. A

recent approach, Radial RRT, demonstrated a scalable algorithm that subdivides the space

into regions to increase the locality of the computations. However, if an obstacle completely

blocks RRT growth in a region, the planning space is not covered and thus planning problems

cannot always be solved. We present a new algorithm, Blind RRT, which ignores obstacles

during initial growth to efficiently explore the entire space. Because obstacles are ignored,

free components of the tree become disconnected and fragmented. Thus, Blind RRT merges

parts of the tree that have become disconnected from the root. We show how this algorithm

can be applied to the Radial RRT framework allowing both scalability and usefulness in mo-

tion planning. We show this method to be a probabilistically complete approach to parallel

RRTs. We show that our method not only scales, but also overcomes the motion planning

limitations that Radial RRT has in a series of difficult motion planning tasks. The results

show Blind RRT as a scalable strategy capable of effectively covering the space.
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CHAPTER I

INTRODUCTION

Motion planning has been an active research area in the field of robotics. It also has many

other applications including computer graphics [1], virtual reality [2], computational biology

[3], and computer-aided design [4]. Problems in motion planning range from simple 2-D

scenarios to high complexity robots with many degrees of freedom (DOF ). Given that exact

solutions are intractable for DOF ≥ 5 [5], sampling-based motion planning has emerged as

a promising technique for solving high-dimensional problems [6, 7].

Within sampling-based motion planning, we find two main approaches which most strategies

follow: graph-based approaches, e.g., Probabilistic Roadmaps (PRM) [6], and tree-based

approaches, e.g., Rapidly-Exploring Random Trees (RRT) [7]. PRMs perform two stages: the

learning phase, which constructs a mapping (roadmap) of the planning space (configuration

space (Cspace) [8]) encoding valid paths; and the query phase, where extracts a valid path from

the roadmap using a simple graph search. RRTs iteratively grow one or more trees from a

given configuration towards random configurations. In each iteration, a robot configuration

qrand is chosen as an expansion direction, and the nearest node in the tree qnear to qrand is

selected and expanded towards qrand. Construction stops when the tree reaches the goal.

Even though sampling-based strategies are quite efficient, the computational costs, in terms

of time and resources, of obtaining a solution are still expensive, especially in environments

where the ratio of obstacle space, Cobst, to the free space, Cfree, is high. Parallel motion plan-

ning embraces the notion that these kinds of problems can be solved with one or more pro-

cesses collaboratively yielding a more efficient solution. One such method, Radial RRT [9],

radially decomposes Cspace into conical regions with the origin at the initial configuration

and grows an RRT independently in each region. After this, branches are joined to adjacent

regions through connected component connection techniques. Finally, cycles are removed so
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the resulting graph is a tree. This method scales well, but lacks the benefits of being prob-

abilistically complete, which makes it impractical for many motion planning applications.

Intuitively, an obstacle could entirely block an RRT’s ability to grow in a region disallowing

coverage of Cfree.

In this work, we present an RRT variant, Blind RRT, which ignores obstacles during the

initial tree construction and retains all invalid and valid vertices and all valid edges. In this

way, Blind RRT expands regardless of encountering obstacles or not. After initial construc-

tion, a post processing step is performed where invalid nodes are removed and unconnected

pieces of the tree are merged back to the root. We apply this method in parallel to create

a probabilistically complete parallel algorithm, both scalable and effective in covering the

space.

Contributions of this work include:

• A novel method, Blind RRT, capable of exploring Cfree regardless of the Cobst to Cfree

ratio.

• Application of Blind RRT with radially subdivided RRT to provide both scalability

and usefulness in motion planning.

• Experimental analysis of the scalability of our strategy and the effectiveness in finding

paths measured through tree coverage. We compare our results to RRT and Radial

RRT.

The results in this thesis have been submitted for publication [10].

Thesis Organization

The chapter organization of this thesis is as follows:

• Chapter II contains the relevant previous work as well as the preliminary content of

motion planning.
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• Chapter III introduces a novel method Blind RRT, and explains its process in detail.

• Chapter IV presents Radial Blind RRT, the application of Blind RRT to Radial RRT

to provide both scalability and usefulness in motion planning.

• Chapter V contains the experimental analysis of the scalability of our strategy and the

effectiveness in finding paths measured through tree coverage.
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CHAPTER II

PREVIOUS WORK

In this section, we present preliminary definitions and related motion planning techniques

that are relevant to this thesis. We discuss strategies that use obstacle witnesses to increase

the quality of the roadmap and present previous work in parallel motion planning focusing

on the parallelization of RRTs.

Preliminaries

Motion planning is the problem of finding a valid path (e.g., collision-free) taking a movable

object (e.g., a robot) from a start configuration to a goal configuration in an environment [11].

A configuration of a robot is described by its n degrees of freedom (DOFs), each correspond-

ing to an object component (e.g., a position and orientation). The space of all possible

configurations, feasible or not, is called the configuration space (Cspace) [8]. Cspace is com-

prised into two sets: Cfree, all feasible configurations, and Cobst, all infeasible configurations.

Thus, motion planning becomes the problem of finding a continuous trajectory in Cfree from

a start configuration to a goal configuration. Exact solutions become intractable for high-

dimensional spaces as it is difficult to explicitly compute Cobst boundaries [5]. However, the

feasibility of configurations can be determined quite efficiently using collision detection (CD)

tests in the workspace, the robot’s natural space.

Sampling-based Motion Planning

Because of the intractability of motion planning, sampling-based methods, which find approx-

imate solutions, are both successful and effective in practice [6, 7]. Probabilistic Roadmaps
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(PRMs) [6] and Rapidly-Exploring Random Trees (RRTs) [7] are two common approaches

to sampling-based motion planning. Whereas PRMs construct a graph representing the con-

nectivity of Cfree, RRTs iteratively grow a tree rooted at a start configuration and towards

unexplored areas of Cspace, described in Algorithm 1. In each iteration, RRT generates a

random configuration, qrand ∈ Cspace, and then it identifies the configuration qnear in the tree

that is nearest to qrand. qnear is expanded towards qrand at a distance of ∆q to generate a

new configuration qnew. qnew is added to the tree as well as an edge between qnear and qnew.

RRT iterates until a stopping criteria is met, e.g., a query is solved. RRT-Connect [12] is a

variant that greedily grows two trees, usually rooted at the start and the goal, towards each

other until a connection between them is found.

Algorithm 1 RRT

Input: Configuration qroot and expansion step ∆q
Output: Tree τ
1: τ ← qroot

2: while ¬done do

3: qrand ← RandomCfg()
4: qnear ← NearestNeighbor(τ, qrand)
5: qnew ← Expand(qnear, qrand, ∆q)
6: UpdateTree(T, qnear, qnew)
7: end while

8: return τ

Often, narrow passages are difficult for sampling-based motion planning. Many approaches

that solve this problem find samples on or near the Cobst boundary. Obstacle-based PRM

(OBPRM) [13] samples configurations near the obstacles by pushing configurations from Cobst

to Cfree. Uniform OBPRM performs the validation of random lines in Cspace to find obstacle

boundaries. Gaussian PRM [14] and Bridge Test PRM [15] attempt inexpensive tests to find

configurations near obstacles or contained in narrow passages. Toggle PRM entirely maps

both Cobst and Cfree, retaining witnesses from failed connections in one space to augment the

quality of the opposite space’s maps. These ideas inspire the algorithmic process presented

here.
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Parallel Motion Planning

As mentioned before, the computation required for motion planning problems has motivated

work on parallel motion planning. Early parallel motion planning was aimed at the dis-

cretization of Cspace, but it was limited to low dimensional problems [16, 17]. PRM was first

parallelized in [18]. A scalable Parallel PRM was presented in [19] where Cspace is subdivided,

each processor independently constructs a roadmap in a region, and the resulting roadmaps

are connected in a global connection phase. One of the first parallel RRTs built multiple

trees at the same time, concurrently exploring Cspace and returning once a process finds a

connection to the goal [20]. Three different distributed RRT algorithms are presented in [21].

The first is a message-passing implementation where a process sends an end-signal when the

goal is found. The second allows processes to build the tree collaboratively by communicat-

ing when a new node and edge are found. The last parallelization uses the manager-worker

pattern, where the workers perform collision detection on edges assigned by the manager.

The bottle-neck of this approach is the unbalanced work that the manager(s) may need to

perform while workers wait idly to receive their task.

Radial RRT [9] achieves scalability by introducing Cspace subdivision to RRTs. Radial RRT

divides Cspace into conical regions with a common origin, the root, and builds an RRT in

each of them. These trees are then connected to trees in neighboring regions and cycles are

pruned. While Radial RRT has almost linear scalability, it may fail to successfully explore

Cspace and find valid paths, lacking probabilistic completeness (as shown in Section IV). This

is due to the fact that an obstacle can completely prevent a region from expanding its tree,

leaving a portion of the space, that may contain a valid path to the goal, unexplored.
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CHAPTER III

BLIND RRT

In this section, we describe the design, motivation and advantages of Blind RRT compared

to the standard RRT. Although used in this work to improve Radial RRT, we present

Blind RRT as a probabilistically complete strategy for motion planning, capable of solving

problems independently of parallel computation. The motivation behind Blind RRT is the

incapability of expansion for Radial RRT when an obstacle completely blocks progress in a

region. Therefore, we propose to ignore obstacles, or blindly expand through them. Blind

RRT takes advantage of the rapid expansion rate of RRTs, i.e., growing towards unexplored

areas of all of Cspace.

Algorithm

The Blind RRT strategy, shown in Algorithm 2, starts by iteratively expanding a tree τ

rooted at a configuration qrand, similar to RRT. We alter the standard RRT Expand sub-

routine to continue growing through obstacles recording a set of configurations Qnew that

occur during an expansion step. These witnesses are added to τ in the Update function. If

valid edges exist between successive nodes in Qnew, these edges are added as well. Note that

at this point, a Blind RRT has the same nodes as an RRT in an obstacle free environment

and the RRT edges that are valid for the given environment. After performing N Blind

RRT iterations (Nbr) of expansion, Blind RRT deletes all invalid nodes in τ and performs a

connection phase for the various connected components (CC s) of the tree. Following this,

all CC s other than the CC containing the root are deleted. τ is returned.

Blind Tree Expansion. We describe two alternatives when performing blind expansion.

Note that other RRT expansion algorithms could be modified and used appropriately. The

11



Algorithm 2 Blind RRT

Input: A root configuration qroot, the initial number of nodes Nbr, a maximum expanding
distance ∆q

Output: A tree τ containing Nbr nodes rooted at qroot

1: τ ← {qroot}
2: for n = 1 . . .Nbr do

3: qrand ← RandomNode()
4: qnear ← NearestNeighbor(τ, qrand)
5: Qnew ← Expand(qnear, qrand, ∆q)
6: τ.Update(qnear, Qnew)
7: end for

8: τ.DeleteInvalidNodes()
9: ConnectCCs(τ)

10: τ.DeleteInvalidCCs()
11: return τ

first performs validity checking for the entire line from qnear to qnew (either at a distance ∆q

from qnear towards qrand or qrand itself, whichever is closer), collecting nodes that are valid

along the boundary of Cobst (Figure III.1(b)). The second stops at the first validity change,

records the valid node, and directly jumps to qnew and validates it (Figure III.1(c)). The

latter skips part of the collision detection, while the former keeps track of more valid nodes

along the expansion. The first expansion method retains all witnesses along an expansion

step, which collects more configurations in narrow passages, while the second expansion

method more rapidly jumps to ∆q to avoid extraneous cost. Contrast these to regular

expansion (Figure III.1(a)) which stops at the first obstacle, a distance of ∆q towards qrand

or qrand itself, whichever is closest. It is important to note that nodes contained in Cobst may

be added to the tree if they are found ∆q away from qnear, but only edges between valid

configurations are added to the tree.

Connected Component Connection. At the end of the first step, any obstacles found

along the expansion may have caused parts of τ to become disconnected from the root,

yielding multiple CC s in τ . However, we would like to only have one CC in τ to find a path

from the root to any node within τ . For this, we attempt to connect pairs of CC s, CC a

and CC b, using RRT-Connect where τa = CC a and τb = CC b (refer to [12] for a detailed

12



(a) RRT Expand

(b) Blind RRT Expand 1

(c) Blind RRT Expand 2

Fig. III.1.: RRT Expand expands greedily up to ∆q, qrand, or an obstacle is hit (a). Blind
RRT Expand always expands up to ∆q distance or qrand while also retaining either all free
witnesses (b) or only the first free witness (c) to return a set of expansion nodes Qnew.
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description of RRT-Connect). In the connection step, we first choose CC a as a random

source CC , and then choose a target CC , CC b, by one of the following criteria:

• Random CC. This method is a naive and simplistic approach to avoid any nearest

neighbor queries. Although we save time getting the pair of CC s, it can be ineffective

in connecting CC s.

• The CC whose centroid is closest to the centroid of CC a. A nearest neighbor query

is performed between the centroid of CC a and the centroids of the other CC s. It

significantly reduces the nearest neighbor computation, as the number of CC s is much

smaller than the number of nodes in the tree. This is used as an approximation scheme

in selecting the closest CC .

• The CC with the closest node to the centroid of CC a. We chose the CC which mini-

mizes the distance between its closest node to the centroid of CC a and the centroid of

CC a. This method is a slightly more costly approximation scheme in determining the

closest CC to CC a.

• The CC whose centroid is closest to a node in CC a. Here, we calculate the centroid

of all other CC s, find the nearest node in CC a to each CC , and select the CC which

minimizes this distance. It is similar to the previous approach in that it is again a

cheap approximation compared with an overall closest node pair query.

• The CC containing the closest node to a node in CC a. We choose the CC which

minimizes the distance between the closest node pair between CC a and the candidate

CC . This is computationally expensive but accurate form of determining the closest

CC to CC a. As such, it can increase the possibility of a successful connection.

Component connection iteratively selects CC s to connect to until either one CC is achieved

or a maximum number of failures is reached. If after the CC connection phase the algo-

rithm was unable to connect all CC s to the root, we proceed to delete any CC s that are

disconnected from the root.
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Probabilistic Completeness

Probabilistic completeness is a desirable property of randomized planners which refers to

their ability to find a solution path, assuming one exists, as the number of samples tends to

infinity. In this section, we describe and prove the probabilistic completeness of Blind RRT.

In the following proof, we assume that the Cspace is ǫ-good [22] for some ǫ > 0.

Theorem III.0.1 Blind RRT is probabilistically complete.

Proof Given any two configurations qs and qg in the same connected component of Cfree,

a path exists between qs and qg. If no obstacles are present in the environment, i.e., Cfree ≡

Cspace, then an RRT rooted at qs will reach within ǫ of qg after n0 fixed step expansions of

distance ∆q. (i.e., a path exists in the tree between qs and qg.) n0 Blind RRT expansions

are also sufficient to reach within ǫ of qg. This is due to the fact that Blind RRT explores

Cspace identically to an RRT grown in the absence of obstacles because Blind RRT expansions

ignore Cobst.

After Blind RRT removes invalid nodes of the tree, qg exists in some component of the tree

CC g. If CC s ≡ CC g, where CC s is the component of the tree containing qs, then a path

exists in the tree between qs and qg. If CC s 6≡ CC g, then Blind RRT uses RRT-Connect to

merge CC g with CC s. It follows from the probabilistic completeness of RRT-Connect [12]

that Blind RRT will connect CC g to CC s to yield a valid path between qs and qg.
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CHAPTER IV

AN IMPROVED RADIAL RRT USING BLIND RRT

In this section, we introduce an improved Radial RRT framework for distributed RRTs which

uses Blind RRT as a subroutine, shown in Algorithm 3.

Algorithm

Radial Blind RRT starts by radially subdividing Cspace as in Radial RRT [9]. It makes use

of a region graph, which is an abstraction of the different subdivisions of the space we are

handling. To construct the region graph, the algorithm randomly samples Nr points QNr
on

a d dimensional hypersphere of radius r centered at qroot, where d is the dimension of Cspace,

r is a bound on the growth of the region, and qroot is the root configuration of the RRT.

These samples become the vertices of the region graph, each representing a region. Then,

a k-closest connection routine determines the adjacency of the regions defining the edges of

the region graph.

Radial Blind RRT, shown in Algorithm 3, constructs a Blind RRT in parallel in each region.

Each region construct a tree of Nbr/p nodes whose growth is bounded to the region, where

Nbr is input as the number of nodes for the tree and p is the number of processing elements.

Most likely, the result will be that each region will contain several CC s that need to be

connected back to the root component of the tree. This takes place in a global region

connection phase.

The region connection phase is described in Algorithm 4 which attempts to connect CC s from

neighboring regions. The neighboring regions found from the region graph allow for reducing

the global communication between processing elements, thus improving scalability of the

approach. Prior to the region connection phase, a minimum spanning tree of the region graph

16



Algorithm 3 Radial Blind RRT

Input: A root configuration qroot, the number of nodes Nbr, a maximum expansion distance
∆q, the number of processors p, the number of regions Nr, a region radius r, the number
of adjacent regions k

Output: A tree τ containing Nbr nodes rooted at qroot

1: Gr(V, E)← ConstructRegionGraph(Nr, r, k)
2: for all vi ∈ V par do

3: τ ← τ ∪ BlindRRT(qroot, Nbr/p, ∆q, vi)
4: end for

5: τmst ← MinimumSpanningTree(G(V, E))
6: for all (vi, vj) ∈ τmst par do

7: ConnectRegions(vi, vj)
8: end for

9: return τ

is computed so that no cycles are produced in the tree when connecting regions. Additionally,

the minimum spanning tree provides information as to which neighbors are closest, and thus

there is a higher probability of successful connection. To reduce the communication overhead

in the region connection phase, we import all necessary information from the target region

Rt, instead of updating the CC information every time a connection is performed. At the

beginning, we know that none of the CC s in the source region Rs are connected to the

CC s in Rt, so we initialize two sets: U the unconnected CC s and C the already merged

CC s. Initially, the first contains all Rs CC s and the second is the empty set. P is a queue

containing all the CC s in the source region, Rs. The goal is to merge U with P without

creating cycles. First, we dequeue a CC , CC local from P , and iterate through the CC s in

C, attempting connections and stopping if one is found. Then, we iterate through the CC s

in U , attempting connections to all of them; if a connection is made, we update the sets C

and U , by adding CC local to C and removing it from U . We perform this operation until P

is empty. Note that connections between CC s from the same region are never attempted,

but multiple CC s may connect to the same remote CC progressively merging the CC s

into one. This procedure not only performs region connection with reduced communication

overhead, but also indirectly connects local CC s through the remote CC s. After this global

CC connection step, we may or may not have connected all CC s of the overall tree back to
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the root component CC root. Even with all the measures taken to connect all disconnected

components back to the root, there is no guarantee that only one CC will exist globally.

Therefore, we remove all remaining CC s.

Figure IV.1 shows an example of the different steps of the parallel algorithm on a simple

2-D environment with p = 4 processors. Figure IV.1(a) shows the example environment

with regions decomposed. Regions are represented by points (blue) on the outer sphere.

Figure IV.1(b) shows a Blind RRT expanded for Nbr/p = 20 expansions. Notice how Blind

RRT ignores and expands through Cobst covering all of Cspace. Figure IV.1(c) shows the

tree after local CC connection is performed. New edges are emphasized by magenta ellipses.

Figure IV.1(d) shows the tree after global region connection. Again new edges are emphasized

with magenta ellipses.

Algorithm 4 Connect Regions

Input: Two regions Rs and Rt

1: Pending CC s Queue P ← Rs.GetCCs()
2: Connected CC s C ← ∅
3: Unconnected CC s U ← Rt.GetCCs()
4: while ¬P.IsEmpty() do

5: CC local ← P.Dequeue()
6: for all CC remote ∈ C do

7: if RRT− Connect(CC local,CC remote) then

8: break
9: end if

10: end for

11: for all CC remote ∈ U do

12: if RRT− Connect(CC local,CC remote) then

13: C = C ∪ CC remote

14: U = U\CC remote

15: end if

16: end for

17: end while
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(a) Region Decomposi-
tion

(b) Blind RRT Expansion(c) Local CC Connection (d) Region Connection

Fig. IV.1.: (a) An example environment with four regions, represented by their points (blue)
on the outer circle. (b) Blind RRT concurrently expanding in the four regions ignoring
obstacles as it goes. (c) Blind RRT concurrently and locally removes invalid nodes of the
tree and connects CC s within each region (new edges emphasized in magenta). (d) Blind
RRT connects CC s between regions yielding a final tree.
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Probabilistic Completeness

In this section, we show two things: the probabilistic incompleteness of Radial RRT and the

probabilistic completeness of Radial Blind RRT.

Observation IV.0.1 Radial RRT is probabilistically incomplete because an obstacle can

entirely block exploration of a region in such a way that connections between adjacent regions

will not be able to cover Cspace. This is shown in Figure IV.2.

Fig. IV.2.: Example of Radial RRT not being able to solve an example query.

Theorem IV.0.2 Radial Blind RRT is probabilistically complete.

Proof Without loss of generality assume Cfree is a single connected component. Collec-

tively the Blind RRTs built in each region will be able to expand and cover all of Cspace in the

initial expansion phase, for the reasons stated in the proof of Theorem III.0.1. After the local

connection phase, Radial Blind RRT recombines adjacent regions with RRT-Connect. By

the probabilistic completeness of RRT-Connect [12], all regions will be merged and all com-

ponents of the tree will be merged into one. Thus, Blind RRT is probabilistically complete.
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CHAPTER V

EXPERIMENTAL SETUP AND RESULTS

In this section, we analyze Radial Blind RRT under two different perspectives. We compare

its effectiveness to that of Radial RRT and sequential RRT. Also, we present the scalability of

the algorithm. Section V compares the methods in some environments showing the efficiency

of Blind RRT covering the map, and Section V presents the performance of Blind RRT with

different processor counts. Recall, the goal of this algorithm is to have a scalable RRT useful

for motion planning. Standard parallel RRT methods do not scale well, whereas Radial RRT

does. However, Radial RRT is unable to cover the planning space as well as RRT. Thus, the

goal of this work is to show that Radial Blind RRT allows both scalability, like Radial RRT,

and good coverage, almost as good (sometimes better) than RRT.

Experimental Setup

Experiments were conducted on a Linux computer center at Texas A&M University. The

cluster has a total of 300 nodes, 172 of which are made of two quad core Intel Xeon and

AMD Opteron processors running at 2.5GHz with 16 to 32GB per node. The 300 nodes

have 8TB of memory and a peak performance of 24 Tflops. Each node of the cluster is

made of 8 processor cores, thus, for this machine we present results for processor counts in

multiples of 8. RRT, Radial RRT, and Radial Blind RRT were implemented in a C++ motion

planning library which uses the Standard Template Adaptive Parallel Library (STAPL), a

C++ parallel library a [23, 24]. Our code was compiled with gcc-4.5.2.

All the methods use Euclidean distance as distance metric, straight-line local planner, brute

force neighborhood finder and collision detection tests as validity tests. Four different en-
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(a) 2D Clutter (b) 2D Grid (c) 2D Maze

Fig. V.1.: (a), (b), and (c) are 2DOF problems. All RRTs begin expansion from the origin
of the environment.
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vironments were used: 2D Clutter (Figure V.1a), 2D Grid (Figure V.1b), and 2D Maze

(Figure V.1c).

We analyze the effect of varying the CC selection policy and the number of regions in Radial

Blind RRT; we also compare against a sequential RRT and Radial RRT. We approximate the

map coverage of each method by taking a uniformly sampled set of nodes in an environment

and determining the percentage of nodes visible to the tree.

Map Coverage

In this section, we compare the methods ability to map space by analyzing the coverage of

the generated trees. We approximate coverage with a sample size of 250 uniformly sampled

nodes. Since Radial Blind RRT deletes nodes at two points of its execution, it is not effective

to use a desired final number of nodes. Instead, we fixed the parameter Nbr to be 500.

Another parameter that plays an important role is the number of CC connection attempts

in the local phase. Given that for each environment the number of CC s will vary, we decided

to set the number of CC connection attempts to be 5 times the number of CC s after the

initial expansion phase. This number was chosen according to initial testing results which

demonstrated that a high number of CC connection attempts only increases the number of

nodes but does not connect the tree significantly better, making the method rather slow. To

have a fair comparison between methods, we ran Radial Blind RRT first and recorded the

average number of nodes per test case, and we took the maximum number of nodes to be the

N for both RRT and Radial RRT. This N was different for each environment. Radial Blind

RRT and Radial RRT were tested with Nr = [1, 2, 4, 8]. Radial Blind RRT was also tested

for each of the CC selection criteria except for Random. Coverage results are normalized to

RRT.

As shown in Figures V.2 and V.3, Radial Blind RRT results in a better map coverage

compared to Radial RRT except for one case in the 2D Maze. We omitted a plot of the
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Fig. V.2.: Comparing coverage with RRT, Radial RRT, and Blind RRT in the 2D Grid
environment.

coverage in 2D Clutter because all RRTs were able to reach 100% coverage. Differentiating

between CC selection policies is difficult, we observed that Centroid to Centroid had the

most reliable results and was the cheapest method to perform. Even though there are cases

where Radial Blind RRT outperforms RRT, the results are usually in between those of Radial

RRT and RRT. We observe that Radial Blind RRT performs well in mapping the space, but

recall the goal of this thesis is to show a scalable RRT method for useful motion planning.

In the future, we will further analyze the cases where the coverage is better than RRT to

optimize them and implement its sequential version.

Scalability Experiment

We evaluated the Blind RRT algorithm on the LINUX cluster varying the processor count

from 1 to 16. This experiment is to substantiate our claim for scalability. We carried out

this experiment in the 2D Clutter, 2D Grid and 2D Maze environments. The initial input

sample size was fixed at 1600 for each environment tested. Each experiment was run five

times and the average maximum time for the 5 runs was computed. Figure V.4 shows the

running time in the three environments.
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Fig. V.3.: Comparing coverage with RRT, Radial RRT, and Blind RRT in the 2D Maze
environment.
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Except for the outlier spike at processor count 2 for the 2D Maze environment, we observe

that the running time decreases with an increase in the number of processors. Initial inves-

tigation to understand the cause of the spike show that the resulting tree size at processor

count 2 is more than doubled of the tree size at processor count 1 for the 2D Maze environ-

ment, which could explain the reason for the unexpected increase in time. However, we are

investigating further the actual cause of the increase in both the tree size and time.

Fig. V.4.: Running Time with increase in processors(p=1,2,4,8,16).
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CHAPTER VI

CONCLUSIONS

We show a scalable Radial Blind RRT that subdivides Cspace, builds an RRT in each section

by ignoring obstacles, then connects disjoint CC s. After the local computation, it attempts

connections across CC s in different regions. As a post-processing step, it removes any parts

of the graph that could not be connected back to the root. In the experiments, we show

that Radial Blind RRT scales almost linearly while effectively covering the space as opposed

to Radial RRT. In future work, we will analyze the CC selection policy to optimize it and

implement a sequential version of Blind RRT.
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