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ABSTRACT Averaged event-related potential (ERP) data
recorded from the human scalp reveal electroencephalo-
graphic (EEG) activity that is reliably time-locked and phase-
locked to experimental events. We report here the application
of a method based on information theory that decomposes one
or more ERPs recorded at multiple scalp sensors into a sum
of components with fixed scalp distributions and sparsely
activated, maximally independent time courses. Independent
component analysis (ICA) decomposes ERP data into a num-
ber of components equal to the number of sensors. The derived
components have distinct but not necessarily orthogonal scalp
projections. Unlike dipole-fitting methods, the algorithm does
not model the locations of their generators in the head. Unlike
methods that remove second-order correlations, such as prin-
cipal component analysis (PCA), ICA also minimizes higher-
order dependencies. Applied to detected—and undetected—
target ERPs from an auditory vigilance experiment, the
algorithm derived ten components that decomposed each of
the major response peaks into one or more ICA components
with relatively simple scalp distributions. Three of these
components were active only when the subject detected the
targets, three other components only when the target went
undetected, and one in both cases. Three additional compo-
nents accounted for the steady-state brain response to a 39-Hz
background click train. Major features of the decomposition
proved robust across sessions and changes in sensor number
and placement. This method of ERP analysis can be used to
compare responses from multiple stimuli, task conditions,
and subject states.

Although the locations of the brain areas generating event-
related potentials (ERPs) cannot be uniquely determined by
scalp recordings from any number of channels (1), several
methods have been proposed for decomposing evoked re-
sponses into activations of distinct neural sources. Most of
these also attempt to locate the active areas, by assuming either
that they have a known or simple spatial configuration (2) or
that generators are restricted to a small subset of possible
locations and orientations (3). Other methods based on rota-
tions of principal components use optimization criteria not
directly related to brain anatomy and physiology. These meth-
ods may assume that each response component has the same
time course of activation in every experimental condition (4).
All these methods use second-order spatiotemporal correla-
tions to perform the decomposition.

Here we report a statistical method for decomposing one or
more event-related brain responses into a sum of components
with spatially fixed scalp distributions and maximally indepen-
dent (though possibly overlapping) time courses. Indepen-

dence requires the absence of higher-order as well as second-
order correlations between the time courses. Independence,
therefore, is a stronger condition than decorrelation and, in
particular, is not satisfied by decomposition into principal
components by principal component analysis (PCA).

Although the neural mechanisms that generate ERPs are
not known, the assumptions underlying the application of the
independent component analysis (ICA) algorithm (5) to ERP
data are generally compatible with a widely assumed model.
Anatomical and physiological studies have shown that sensory
perception and processing occur in multiple cortical areas, as
revealed in many current brain imaging studies (6). Averaged
ERPs evoked by sensory stimuli and recorded from the scalp
are thought to be generated in conjunction with synchronous
activity in radially oriented pyramidal cells in the activated
areas. Because volume conduction through the cerebrospinal
f luid, skull, and scalp is thought to be linear, sensory ERPs are
assumed to sum brief and relatively spatially stable potentials
associated with synchronous activation of neuropil in each
stimulated area.

Activity in neuronal fibers connecting cortical areas does not
produce macroscopic fields visible from the scalp. Thus the
activity underlying sensory evoked responses has a saltatory
character; individual features of sensory ERPs index discrete
stages within one or more parallel streams of sensory processing,
each stage involving potentials generated in one or more cortical
areas. However, the scalp distributions of these generators may
overlap in time and space, causing the ERP topography to shift
continuously and making decomposition into spatially fixed ac-
tivations difficult. For example, if two fixed dipole-like sources in
anterior and posterior cortex were to have spatially overlapping
activations with a small delay between them, the scalp potentials
they generate would have the appearance of a wave sweeping
from front to back on the scalp.

When subjects process sensory signals for their meaning or task
relevance, later features appear in the ERP whose spatial scalp
patterns are often inconsistent with an origin in sensory cortex.
These are believed to index the later cognitive processing of
relevant stimulus attributes or information within frontal, infe-
rior, or possibly widespread cortical areas, after this information
is first extracted in early sensory areas. A subject’s preexisting
level of arousal and attention to the stimuli can also affect the
strength of early evoked response components (7).

ICA yields data decompositions consistent with the standard
view of ERP genesis outlined above, since the spatially stable
and sparsely active components sum to the observed mul-
tichannel responses. ICA determines what spatially fixed and
temporally independent component activations compose an
observed time-varying response, without attempting to directly
specify where in the brain these activations arise. Each ICA
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component is specified by a fixed linear spatial filter that
determines a time course of activation during each response
condition, plus a fixed pattern of strengths at each of the scalp
electrodes. Data from N electrodes can be reconstructed as the
sum of the N independent components.

Previously, we showed that the ICA algorithm can be used
to separate neural activity from recording and muscle artifacts
in spontaneous electroencephalographic (EEG) data and re-
ported its use for tracking changes in alertness (8). Here, we
use a computationally more efficient version of the algorithm
to decompose relatively brief evoked brain responses into
temporally independent components.

THE ICA ALGORITHM

The ICA algorithm we use (5, 9) (Fig. 1) is based on an
‘‘infomax’’ neural network (10, 11). It finds, by stochastic
gradient ascent, a matrix, W, which maximizes the entropy
(12), H(y), of an ensemble of ‘‘sphered’’ (zero-mean) input
vectors {xs}, linearly transformed and sigmoidally compressed
(u 5 Wxs, y 5 g(u)). The ‘‘unmixing’’ matrix W performs
component separation, while the sigmoidal nonlinearity g()
provides necessary higher-order statistical information. Spher-

ing of the input data (13) (xs 5 Sx, where S 5 2 ^x xT&21/2)
speeds convergence.

W is then initialized to the identity matrix (I) and iteratively
adjusted using small batches of data vectors (normally 10 or
more) drawn randomly from {xs} without substitution, accord-
ing to

DW 5 «
H~y!

W
WTW 5 «~I 1 ŷuT!W, [1]

where « is the learning rate (normally less than 0.01) and vector
ŷ has elements ŷi 5 (yui)ln(yiyui). The (WTW) ‘‘natural
gradient’’ term in the update equation (14, 15) avoids matrix
inversions and speeds convergence by normalizing the variance
in all directions.

We use the logistic nonlinearity, g(ui) 5 (1 1 exp(2ui))21,
which gives a simple update rule, ŷi 5 1 2 2yi, and biases the
algorithm toward finding sparsely activated or super-Gaussian
independent components with positive kurtosis (17), consonant
with the assumption that ERPs are composed of one or more
overlapping series of brief activations within spatially fixed brain
networks performing separable stages of stimulus information
processing. The algorithm is able to accurately decompose sums

FIG. 1. Schematic overview of ICA of EEG data. (A) (Upper) Averaged (or single) EEG epochs, x, recorded from multiple scalp sites are used
to train an ‘‘unmixing’’ weight matrix, W, so as to maximize the entropy of the nonlinearly transformed output, g(Wx). (Lower) After training, rows
of the trained weight matrix, W, are linear spatial filters decomposing the input data into the independent activities of the ICA components. Rows
of the product of W and the input data, x, are the activation waveforms of the ICA components, while columns of the inverse weight matrix, W21,
map their projections onto the scalp electrodes. (B) (Inset) Schematic illustration of ICA decompositions of a simulated evoked response, recorded
at two electrodes (A and B), summing the activity of two temporally independent response sources (#1 and #2) with arbitrary (focal or diffuse)
spatial distributions. (Upper) Scatterplot of potentials recorded at the two electrodes, showing the response as a two-dimensional trajectory. In this
plot, the activity of source #1 alone would lie on the near-vertical axis ICA-1; the activity of source #2 alone would lie on the near-horizontal (but
not orthogonal) axis ICA-2. If the time courses of activation of the two brain networks are independent of one another, the summed output of
sources #1 and #2 will, over time, fill the dashed parallelogram. The first principal component of the data (PCA-1) indicates the direction of
maximum data variance, but neither this nor the second principal component orthogonal to it identifies either of the independent components.
(Lower) The ICA algorithm finds the directions of the two axes (ICA-1, ICA-2) by maximizing the entropy of the data linearly transformed to the
ICA component axes and nonlinearly transformed using a logistic sigmoid. The linear transformation and sigmoidal nonlinearity rotates and spreads
the data to fill the dashed square as evenly as possible, whereas in the original (A, B) space (above), the data remain within an oblique parallelogram.
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of components with skewed distributions even without making
use of nonlinearities specifically tailored to them (5).

The ICA algorithm is easily implemented and computation-
ally efficient. The present implementation does not require
matrix inversions, making it practical for use on data from a
hundred or more channels. The number of time points needed
for the method may be as few as several times the number of
recording channels, which in turn must be at least equal to the
number of components to be separated. The rows of the output
data matrix, u, are the activation waveforms of the ICA
components, while the columns of the inverse matrix, (WS)21,
of the overall transformation, WS, give the projection strengths
of the respective components onto the scalp sensors. The data
accounted for by the ith component are the outer product,
(WS)i

21ui, of the ith component activation with the ith column
of the inverse matrix. Scaling information is distributed be-
tween the activation waveforms, ui, and the maps, (WS)21,
hence relative component strengths can be compared only by
means of their projections (WS)i

21ui. Note that care must be
taken in interpreting decompositions of data sets in which the
channel means are far from the baseline means. The ICA
algorithm we use is one of a family of algorithms that exploit
independence to perform blind separation (9, 14, 15, 17–21).

Application to Evoked Response Decomposition. The ICA
algorithm was applied to two 14-channel, 1-s (312-point)
averaged ERPs time locked to detected and undetected tar-
gets, respectively, presented in an experiment in which the
subject responded by pressing a button each time he heard a
weak, slow-onset noise-burst [mean rate, 10ymin; duration,
350 ms; rise time, 150 ms; intensity, 6 decibel (dB) sensation
level] embedded in a continuous (62-dB) noise background
containing a 39-Hz click train producing a steady-state re-
sponse (SSR) (22). Target noise-bursts were presented in half
the intervals between brief nontarget tones (50 ms, 72 dB, 568

Hz, stimulus-onset asynchrony 2–4 s). Further details have
been reported elsewhere (23).

EEG data were collected from 13 scalp electrodes referred to
the right mastoid, and from a bipolar diagonal electrooculo-
graphic placement with a sampling rate of 312.5 Hz and an analog
pass band of 0.1–100 Hz. During the 28-min session, the subject
experienced variably increasing drowsiness while his target de-
tection rate declined from 100% to 40%. After rejecting trials
containing electrooculographic (EOG) potentials larger than 70
mV, brain responses to detected and undetected targets were
averaged separately, giving two 312-point ERPs.

ICA decomposition was performed simultaneously on all
624 time points of both ERPs by using Matlab 4.21 on a Sun
HyperSparc 125-MHz processor. The learning batch size was
10. Initial learning rate, «, was 0.006. Learning rate was
gradually reduced to 1026 during 50 training iterations taking
7 s of computer time. The input data are available via http with
a package of Matlab routines for performing the analysis.i

RESULTS

The two responses to detected and undetected targets (Fig.
2A) contained the standard auditory response peaks N1, P2,
and N2, although the N1 peak was indistinct, most probably
because of the long rise time of the noise-burst stimulus and
the variable noise background. As expected from sleep studies
of auditory evoked responses (24), the P2 and N2 peaks were
larger and had longer latencies in response to undetected
targets. The detected-target response also had a parietal P3
component (quite small in this subject), and both responses
contained a robust 39-Hz SSR in all channels. The EOG

iThe evoked response data and a collection of Matlab routines for
performing the analysis are available via http:yywww.cnl.salk.eduy
;scottyica-download-form.html.

FIG. 2. Decomposition of an ERP data set. (A) Averaged evoked responses at 14 scalp channels from one subject in a sustained auditory
detection experiment (23) to detected (blue traces, 209 epochs) and undetected (red traces, 81 epochs) slow-onset noise-burst targets. (B) Activation
wave forms of the resulting 14 ICA components during the detected (blue traces) and undetected (red traces) response epochs. Seven components
(ICA-1 to ICA-7) are predominantly activated for a period of 50–300 ms during one or the other response. Three more ICA components (ICA-8
to ICA-10) compose the auditory SSR (22) to a click train presented throughout the experiment at one-eighth the EEG sampling rate. The remaining
four ICA components (ICA-11 to ICA-14) presumably sum activity of multiple weak brain and extra-brain sources.
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channel showed some residual ocular activity spreading into
frontal sites (see, e.g., Fpz). Absolute correlations between
channels averaged 0.604 (range: 0.001 to 0.987).

The ICA algorithm was used to simultaneously decompose
the two 1-s ERPs into 14 ICA components whose activation
waveforms are shown in Fig. 2b. Although the algorithm used
no temporal sequence information, seven of the ICA compo-

nents (ICA-1 to ICA-7) were active in a single 50- to 300-ms
interval in one of the response conditions. One of these
(ICA-4) was active in both conditions. Three more ICA
components (ICA-8 to ICA-10) were predominantly periodic
at the 39-Hz SSR driving rate. Absolute residual correlations
between activation waveforms of these 10 ICA components
averaged 0.034, ranging from 0.0001 to 0.143. Projection of

FIG. 3. Scalp distributions of the ICA components. (A) Projected activity of components ICA-1 to ICA-4 (colored traces) superimposed on the
scalp wave forms of the detected-target response (black traces) together with interpolated topographic maps of the component projections (25).
Component ICA-2 (green traces) accounts for the central parietal positivity near 450 ms (labeled P3) as well as the concurrent prefrontal positivity
at Fpz, whereas the central negativity near 400 ms (labeled N2) includes the activity of component ICA-4 (red traces) which has a different scalp
distribution (map scaling 6 6 mV). (B) Projected scalp activity of components ICA-4 to ICA-7 (colored traces) superimposed on the scalp wave
forms of the undetected-target response (black traces). The positive central peak near 300 ms (labeled P2) is accounted for by a single component
ICA-4 (red traces), whereas the succeeding frontal negativity (labeled N2) is decomposed by the algorithm into three other components (ICA-5
to ICA-7) having central, frontal, and periocular topographies, respectively (map scaling 6 12 mV). (C) The ICA algorithm decomposes the 39-Hz
auditory SSR in the detected-target response into three components (ICA-8 to ICA-10) derived from the detected-target ERP (Fig. 2A) by averaging
39 successive 25.6-ms (8-point) ERP time segments. The leftmost traces show the whole SSR at all 14 channels, the right traces, the projected time
wave forms and scalp projections (scaled individually) of the three ICA components. The largest component, ICA-8, has a bilateral frontotemporal
scalp distribution, as expected (26), while component ICA-9 has a bilateral parietal scalp distribution and component ICA-10 projects mainly to
EOG and prefrontal channels. (D) Time courses and scalp topographies of corresponding ICA-2 components obtained in separate decompositions
of detected-target responses in two separate sessions from two subjects (right columns) and from the grand-mean detected-target response for 11
subjects (left column). Note the nearly identical time courses (right traces) and scalp maps.
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these 10 components onto the scalp array accounted for 96.8%
of total response variance. Four remaining ICA components
(ICA-11 to ICA-14) had higher residual correlations (mean
0.093, range 0.009 to 0.207) and more complex scalp maps (not
shown), suggesting they accounted mainly for residual EEG
and ocular and muscle activity.

Fig. 3 A and B shows projections of the first seven compo-
nents to selected scalp electrodes. The detected-target P2 and
P3 peaks and the undetected-target P2 were accounted for by
single ICA components, while the algorithm decomposed the
N2 peak in each response into two or more ICA components.
Maps of the individual component scalp projections contained
one or two spatial extrema and clearly distinguished compo-
nents having central, frontal, and periocular foci, even when
these appeared to form a single broad peak in the response
waveforms at some sites (e.g., ICA-5 to ICA-7). Component
ICA-2 accounted for both the detected-target P3 waveform at
site Pz and the parallel late negativity at site Fpz. A component
with similar time course and topography was found for other
subjects in the experiment (Fig. 3D). Component ICA-4
accounted for much of the P2 and early-N2 complex in the
detected-target response, but only the central-P2 peak in the
undetected-target response.

Fig. 3C shows averaged single-cycle SSRs computed by
averaging all SSR cycles in the detected-target ERP and in the
scalp projections of the three periodic ICA components. SSR
waveforms for all 14 channels are superimposed. Above each
of the three ICA SSR components is the map associated with
each component. The map of the largest component (ICA-8)
strongly resembled the topography of the whole SSR at its
amplitude peak (not shown). Components ICA-9 and ICA-10
accounted for differences in SSR topography at other time
points.

Stability of the Decomposition. Nearly identical ICA com-
ponents were recovered from evoked responses collected on
different days from the same subject, and similar ICA com-
ponents from different subjects in the same experiment (Fig.
3D). The activation waveforms and scalp maps of the ICA
components with largest projected activities were relatively
robust to changes in initial weights, the number of training
conditions, and even the number and placement of electrodes.
For example, decomposing the data in Fig. 2A by using
arbitrary subsets of 11 of the 14 channels gave components
whose activations and scalp projections correlated 0.9 or above
with ICA components 1, 4, 5, 6, 8, and 9 of Fig. 2B.

ICA decompositions of electric and magnetic evoked re-
sponses to a variety of stimuli from several experiments
(unpublished) proved similar in character and stability. The
algorithm is particularly effective at detecting common re-
sponse topography in multiple response conditions and at
quantifying differences between conditions in activation
strength of multiple components.

Relation to Traditional Peak Analysis. ERP components
usually are identified with individual event-related response
peaks (e.g., N1, P2, N2, etc.) which were first supposed to
represent the activities of brain areas involved in discrete
stages of information processing. However, even the peaks of
a response waveform may sum the spatially and temporally
overlapping activities from two or more brain areas with
different time courses of activation (27). When this happens,
the scalp topography of the response appears to move con-
tinuously even when the brain locations of the active genera-
tors are fixed, producing different peak latencies at each scalp
site. This is incompatible with the assumption that each peak
represents a single response component arising in a fixed brain
area. ICA accounts for channels differences in ERP peak
latencies by decomposing the activity under each peak into two
or more ICA components, each having a spatially fixed scalp
topography.

Relation to PCA. Another linear transformation method
previously proposed for ERP decomposition (4), PCA, finds
orthogonal directions of greatest variance in the data, whereas
ICA finds nearly temporally independent (not just uncorre-
lated) components whose maps may be nonorthogonal (Fig.
1B). Principal components of data generated by temporally
sparse and independent, but spatially nonorthogonal, sources
will be linear combinations of activity in all the sources,
whereas ICA components of the data will individually identify
the larger sources (28). The proposed Varimax extension of the
PCA method rotates the PCA vectors to maximize the variance
of their activation waveforms (4). However, the relevance of
this criterion to ERP genesis is unclear. Applying PCA to the
ERP data in Fig. 2A, either alone or followed by Varimax
rotation, produced components active throughout both re-
sponses (unpublished) with minimal correspondence to the
ICA components. When evoked brain activity arises through
temporally distinct or partially overlapping activations of in-
dependently active neural populations, then ICA appears to be
a more appropriate method for separating their contributions
to scalp data.

DISCUSSION

The exploratory use of ICA decomposition for ERP analysis
is based on three assumptions: (i) that summation at scalp
electrodes of potentials arising in different brain areas is linear;
(ii) that ERPs are largely the sum of relatively brief activations
in a restricted set of spatially stable brain areas, networks, or
neural populations; and (iii) that the time courses of activation
are largely temporally independent. The first two assumptions
appear reasonable. The third assumption limits the decompo-
sition to temporally independent components.

To explore the strengths and limitations of the method, we
ran a number of numerical simulations in which 600-point
signals recorded from the cortex of a patient during prepara-
tion for operation for epilepsy were projected to simulated
scalp electrodes through a three-shell spherical model (28, 29).
We used electrocorticographic data in these simulations as a
plausible best approximation to the temporal dynamics of the
unknown ERP brain generators. Results confirmed that the
ICA algorithm could accurately identify the activation wave-
forms and scalp topographies of relatively large and more
temporally independent simulated sources, even in the pres-
ence of a large number of small and temporally independent
simulated sources.

However, given simulated ERP activity arising from sepa-
rate brain generators whose time courses of activation were
substantially correlated, the algorithm parsed the resulting
continuously varying scalp responses into distributed activity
within overlapping subsets of the simulated sources (28).
Similarly, SSR components ICA-8 and ICA-9 (Fig. 3C) col-
lected synchronous bilateral SSR activity instead of splitting it
into components with left- and right-sided topographies, and
the neural populations generating the activities accounted for
by two spatially overlapping components, for example ICA-4
and ICA-5 (Fig. 3B), might not be disjoint, since their scalp
distributions are so similar. More generally, given data sum-
ming components (however defined) that are not temporally
independent, spatially fixed, or sparsely activated, or whose
number is not the same as the number of data channels, the
algorithm will not reproduce the original component distribu-
tion, and other linear blind separation algorithms may produce
somewhat different results.

The range of ERP components that can be separated by the
algorithm is illustrated by the single broad component (ICA-
2), accounting for the posterior P3 response to detected targets
as well as the accompanying anterior negativity (Fig. 3A) and
the three near-periodic ICA components (ICA8, ICA-9, ICA-
10) that together accounted for 95.3% of the total SSR (Fig.
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3C). This ICA decomposition of the auditory SSR into three
spatially fixed components contrasted sharply with a previ-
ously proposed interpretation that the nonstationary SSR
reflects a moving crest of activity sweeping through cortex
every 25 ms (30). By itself, however, ICA cannot be used to
decide between these or other source models (26, 31).

CONCLUSIONS

ICA decomposition opens a new and potentially useful window
into complex event-related brain data that can complement
other analysis techniques. Further research will be required to
fully assess the value and limitations of temporal independence
as a segregation criterion. Blind separation by ICA decompo-
sition appears promising for multidimensional measurement
of the effects of experimental variables on electric and mag-
netic evoked-response components representing rapid and
discrete stages of brain information processing, particularly
when these overlap in scalp distribution. The method may be
especially effective for comparing the activations of brain
response components that are differentially activated in sev-
eral related stimulus and cognitive task conditions. Although
it may be difficult to locate ICA components within the brain
on the basis of their time courses and scalp projections, ICA
decomposition might nonetheless prove useful for preprocess-
ing data prior to applying source localization algorithms. ICA
decomposition may be useful as well for observing event-
related changes in the spatial structure of correlated ongoing
EEG activity in multiple brain areas (32–36). The method
should be equally applicable to magnetoencephalographic
(MEG) data, and it can be generalized to track changes in the
spatial structure of EEG or MEG activity in different brain
states (8).
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T.J.S. from the Howard Hughes Medical Institute.
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