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Blind Separation of Gaussian Sources via
Second-Order Statistics with Asymptotically Optimal

Weighting
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Abstract—Blind separation of Gaussian sources with dif-
ferent spectra can be attained using second-order statistics. The
second-order blind identification (SOBI) algorithm, proposed by
Belouchrani et al., uses approximate joint diagonalization. We
show that substantial improvement over SOBI can be attained
when the joint diagonalization is transformed into a properly
weighted nonlinear least squares problem. We provide an iterative
solution and derive the optimal weights for our weights-adjusted
SOBI (WASOBI) algorithm. The improvement is demonstrated
by analysis and simulations.

Index Terms—Blind source separation, joint diagonalization,
weighted least squares.

I. INTRODUCTION

B LIND source separation (BSS) addresses the reconstruc-
tion of statistically independent source signals from

linear combinations thereof. In the static mixture frame-
work, the observation model is ,
where are the source signals,

are the observations, and
is the unknown mixing matrix. The term blind

ascribes the lack of any additional information regarding the
signals or .

When the signals are either nonstationary or stationary with
different spectra, second-order statistics may be used to attain
consistent estimates of. In [1], Belouchraniet al.proposed
the second-order blind identification (SOBI) algorithm for
stationary signals. The observations’ correlation matrices

satisfy

(1)

where are the source signals’ (un-
known) diagonal correlation matrices. Thus,is a joint diago-
nalizer of any set of matrices .
In addition, it can be shown that if all the source signals have
different spectra (differing by more than scale), then a set of
lags can be found such that the joint diagonalizer is unique, up
to irrelevant scaling and permutation of columns.

It is therefore proposed in [1] to estimateas the joint di-
agonalizer of a set of estimated correlation matrices ,
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, . However, while the set of true correlation
matrices admits exact diagonalization, it is almost surely im-
possible to jointly diagonalize the set of estimated matrices. It
is still possible, however, to obtain consistent estimators for
by resorting to approximate joint diagonalization, attained in [1]
in two phases.

In the first phase, a whitening matrix is found such that
equals the identity matrix. All the other matrices

are then similarly transformed
. In the second phase, the unitary approximate joint

diagonalizer of the transformed set is found using succes-
sive Jacobi rotations, which iteratively minimize the off-diag-
onal entries of the transformed matrices (see [1], [3]). The de-
sired estimate is then given by where denotes
the pseudo-inverse of .

It can be easily observed (see also [5]) that the second phase

optimizes a least-squares (LS) fit of the -s with respect to
. However, this LS criterion is not optimized with respect to,

since the nonunitary part is chosen to attainexactdiagonal-
ization of , possibly at the expense of poor diagonalization
of the other matrices. As noted in [2], such a “hard-whitening”
operation bounds the attainable performance. Furthermore, the
errors in estimating the correlations are strongly correlated. It
is therefore expected that an unweighted LS criterion might
yield inferior performance relative to an optimally weighted LS
(WLS) criterion.

In this letter, we address these two shortcomings of the SOBI
algorithm. First, we reformulate the approximate diagonaliza-
tion problem as a nonlinear WLS problem and outline an itera-
tive algorithm for minimization with respect to an arbitrary (not
necessarily unitary) matrix . We then find the optimal weight1

matrix under the assumption of Gaussian source signals with
finite-length correlations such as moving average (MA) pro-
cesses. We demonstrate via error analysis (supported by simula-
tions results) substantial improvement over the SOBI algorithm.

To capture the essence of our proposal in this limited-length
exposition, we focus on the case of 2 real-valued
signals with a real-valued mixing matrix. Extension to complex
signals (and mixing) is relatively straightforward. For more than
two signals, the algorithm can either be extended to higher di-
mensions at the cost of increased complexity, or be applied in
couples at the cost of possibly degraded performance. Our algo-
rithm is called weights-adjusted SOBI (WASOBI).

1The weighting approach has also been proposed in [4], but not pursued fur-
ther.
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II. FORMULATION AS A WEIGHTED LS PROBLEM

We assume that are estimated using

(2)

(assuming samples are available).
We seek a 2 2 matrix and and diagonal matrices

such that are “best fitted” by
for . Thus, there are four parameters of interest,
denoted vec , and

nuisance parameters, which are the 2 1 vectors
diag . However, due to the inherent

scaling ambiguity (which enables one to commute scales
between and ), we may arbitrarily fix, for example, ,
reducing the true number of nuisance parameters to .

Note that the estimated are not necessarily symmetric
(for ) in contrast to . We shall thus attempt to fit
each to a symmetric variant of the respective ,
obtained by substituting its off-diagonal terms with their arith-
metic average. We therefore define vec and

(3)

The desired fit for each can then be written as

(4)

Concatenating all into , we get

, where denotes the
identity matrix, denotes Kronecker’s product, and

is the concatenation of . We also define
, the vector of free parameters in. Given

any symmetric weight matrix , we may now define
the WLS criterion as

(5)

to be minimized with respect toand , with , set arbitrarily.
While linear in , this WLS criterion is nonlinear in. To use
Gauss’ method (e.g., [6]), we differentiate with respect
to , obtaining

...
...

(6)

where denotes theth element of , and where

(7)

The derivative of with respect to is
... , where denotes a

all-zeros matrix. The iterative Gauss algorithm thus assumes
the following form:

(8)

where , , and are shorthand for , , and
, respectively. An intelligent initial guess for and

can be obtained by using the SOBI algorithm.
The apparent computational load involved in applying (8) can

be alleviated by exploiting the sparse structure of and also
by alternating between linear minimization (with respect to)
and nonlinear minimization (with respect to). However, these
computational aspects are beyond the scope of this letter. Note
only that the computational load of the minimization depends
only on and is independent of the number of observations.

III. OPTIMAL WEIGHTING

To apply optimal weighting, we need the covariance matrix
of , denoted . Assuming Gaussian signals, we have from (2)

(9)

which implies that the covariance of and
is given by the expression of the last three rows. We now further
assume that the source signals are MA processes of orders,
whereas the selected lags are .
The summation over can then be reduced from to for

, which implies that estimating the
correlation matrices up to lag is also sufficient for consistently
estimating .

Observe also that (9) can be reformulated in matrix form, such
that

Cov

(10)

where is a permutation matrix that swaps the second and third
columns of the matrix to its left. Recalling the linear transfor-
mation (4) from to , we conclude that the ( )th 3 3
block of is given by Cov Cov .
The optimal weight matrix is then given by . In
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Fig. 1. Predicted ISR’s (solid lines) and simulation results for SOBI and WASOBI. In the nominal setup,s [t] is an MA(4) process with zeros at0:8e
and0:7e (and their reciprocals).s [t] is an MA(3) process with zeros at 0.7 and0:3e (and their reciprocals). Results for Gaussian signals are
denoted by “o,” and for non-Gaussian signals (using uniformly-distributed driving noise), by “*.” To demonstrate performance with non-MA signals (denoted by
“}”), auto-regressive moving average (ARMA) signals were generated by adding to each source signal a weak AR(1) signal with a pole at�0.95. Only lags 0 to
4 were used in each case. Improvement of about 10 dB of WASOBI over SOBI is evident in all cases. Both algorithms used the same data. Each simulation point
represents an average of 1000 trials.

practice, estimated correlations would replace true correlations
in (10), providing a consistent estimate of .

IV. PERFORMANCEANALYSIS AND SIMULATIONS RESULTS

The minimizers of (5) are denoted and ,
whereas denotes the true entries of, and de-
note the true source signals correlations. We assume temporarily
that is set to its true value diag , although this
value is unknown (discussion will follow). As a result, there is
no scaling ambiguity in . Assuming small errors, and are
unbiased, and their joint covariance for anyis given by (e.g.
[6])

Cov

(11)

where and are shorthand for and , respec-
tively. When is used, this expression reduces to its first
term. Cov is given by the 4 4 upper-left block of (11).

Once is constructed from, can be applied to to
retrieve . To translate Cov into the residual interference to
signal ratio (ISR), we seek the off-diagonal elements of ,
given by and for the

(1,2) and (2,1) elements, respectively. Under the small errors
assumption, these terms have zero means with variances given
by

ISR Cov

ISR Cov (12)

Although we assumed that was set to its true (unknown)
value of , the ISR expressions in (12) hold valid even when

is set arbitrarily. This is because any (nonzero) setting for
merely inflicts scaling on the columns of, translated to the

rows of . While the retrieved signals are thus scaled, the
resulting ISR’s remain unchanged.

Equations (11) and (12) can be used to predict the perfor-
mance with any . For example, for the SOBI (unweighted)
algorithm, would be set to diag
(in the matrices-to-matrix sense), where (we used

100) is a large constant reflecting SOBI’s obligatory
whitening phase, which attributes infinite weight to warrant
exact diagonalization of .

For WASOBI, is used. Note however, that since in prac-
tice is also estimated from the data, the predicted ISR’s
are only expected to be approached asymptotically, when the er-
rors in estimating are negligible. In simulations, we used
the estimated .

Fig. 1 presents the predicted ISR’s versus simulation results
for both SOBI and WASOBI. Predictions are approached as
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increases, when the small-errors assumption prevails. The sig-
nals were MA(4) and MA(3) processes. We used2 .
It is evident that WASOBI significantly outperforms SOBI for
all ’s in this example.

To demonstrate (empirically) the robustness of WASOBI with
respect to the MA and Gaussianity assumptions, we also pro-
vide simulation results for the cases of non-Gaussian signals and
of infinite correlation auto-regressive moving average (ARMA)
signals (using only lags 0 to 4).

2Interestingly, it turns out that neither the predicted nor the simulated perfor-
mance (in terms of ISR’s) depend onAAA for neitherSOBI nor WASOBI. The
AAA-invariance of SOBI agrees with [1]. For WASOBI, it is more subtle to con-
clude from the derivation (invariance is not attained with arbitraryWWW ).
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