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Blind Separation of Independent Sources for
Virtually Any Source Probability Density Function
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Abstract—The blind source separation (BSS) problem consists
of the recovery of a set of statistically independent source signals
from a set of measurements that are mixtures of the sources when
nothing is known about the sources and the mixture structure. In
the BSS scenario, of two noiseless real-valued instantaneous linear
mixtures of two sources, an approximate maximum-likelihood
(ML) approach has been suggested in the literature, which is only
valid under certain constraints on the probability density function
(pdf) of the sources. In the present paper, the expression for this
ML estimator is reviewed and generalized to include virtually
any source distribution. An intuitive geometrical interpretation
of the new estimator is also given in terms of the scatter plots
of the signals involved. An asymptotic performance analysis
is then carried out, yielding a closed-form expression for the
estimator asymptotic pdf. Simulations illustrate the behavior of
the suggested estimator and show the accuracy of the asymptotic
analysis. In addition, an extension of the method to the general
BSS scenario of more than two sources and two sensors is
successfully implemented.

Index Terms—Asymptotic performance, blind signal separa-
tion, closed-form estimators, higher order statistics, maximum
likelihood, scatter diagram.

I. INTRODUCTION

A NUMBER of applications in a variety of areas comprise
the task of obtaining certain signals (so-calledsources),

which are not directly accessible but have to be extracted
(separated) from another set of measurable signals regarded
as mixtures of the sources. As neither the source signals nor
the mixing structure are known, this is referred to as theblind
source separation(BSS) problem. Major fields of application
include array processing, communications, biomedical signal
processing, image processing, and speech processing. The
following are just a few examples where the BSS plays
a relevant role: direction-of-arrival (DOA) estimation when
waveforms are distorted and/or the array layout unknown or
poorly calibrated, jammer rejection, multichannel blind equal-
ization/deconvolution, mobile radio and regenerative satellite
communications, data communications in the presence of
cross-coupling effects, airport surveillance, speech recorded in
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Fig. 1. Schematic diagram of the BSS of instantaneous linear mixtures.

the presence of background noise and/or competing speakers,
blind image restoration, fetal electrocardiogram extraction,
seismic exploration, etc. Several types of mixtures exist, such
as convolutive or nonlinear, but in many of the above cases
the signals observed at the sensor output can be considered
to be instantaneous linear combinations of the sources so that
the mixing structure is represented by an unknownmixing
matrix. The BSS of instantaneous linear mixtures, which is
schematically portrayed in Fig. 1, is the focus of this paper.

The development ofhigher order statistics(HOS) in the
last decade boosted the interest in this emerging research
area, despite the fact that second-order (i.e., correlation-based)
techniques can perform the source extraction under particular
conditions. For instance, the separation is feasible resorting
only to second-order statistics(SOS) for temporally col-
ored (although spatially white) sources with different spectral
content [1], [16]. However, if the sources are temporally
white, the time information can no longer be considered, and
then, the source waveforms cannot be identified undistorted
by employing only SOS [10] unless thetransfer vectors
(the columns of the mixing matrix, also known assource
directions) are orthogonal [18]. On the other hand, SOS-
based procedures are also able to extract sources with an
arbitrary spectral matrix by exploiting some prior knowledge
on the mixing matrix structure, as done by the MUSIC
method for DOA [12]. Strictly speaking, however, these
eigenstructure-based or spatial-coherence exploitation tech-
niques cannot be regarded as purelyblind since by defi-
nition, a blind algorithm works under no assumptions on
the mixing structure. Proceeding blindly often exhibits some
advantages. For example, in the context of narrowband array
processing, when the propagation conditions or the source
and sensor locations can suffer variations that are difficult to
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predict or model (e.g., multipaths in an urban environment),
then it may be wiser to resort to a blind procedure for
recovering the source signals [3]. Along the same lines,
blind beamforming is shown in [2] to improve “informed”
beamforming when multipath propagation takes place. The
former is, by nature, insensitive to errors in the array manifold
model.

In an actual BSS problem, only one major hypothesis
is relied on to achieve the separation: the spatial statistical
independence of the sources [2]–[7], [9]–[11]. In order for
temporally white sources to be separated without waveform
distortion under this sole assumption, the application of HOS
is imperative. In statistical terms, a linear transformation on
the observed variables is sought so that it results in a set
of independent components. This is the so-calledindependent
component analysis(ICA) of the observations [6]. The HOS
(usually the higher order cumulants) can be used as a natural
measure of the degree of independence. Equivalently, the prob-
lem of the source extraction becomes the task of separating
the observed joint probability density function (jpdf) into the
independent source pdf’s that generate the former through a
linear transformation. In signal terms, this leads to a success-
ful source-waveform estimation. A necessary and sufficient
condition for the waveform-preserving source estimation to
be feasible is that there be, at most, one Gaussian signal
among the sources [17]. This lack of ability of HOS in dealing
with Gaussian sources stems from the fact that the cumulants
of such distributions vanish for orders greater than two.
An alternative explanation is that any linear combination of
Gaussian random variables is Gaussian as well, and therefore,
there is no way of discerning the original variables in the
measured linear mixture.

A two-step approach is almost universally adopted when
facing a source extraction problem [1], [2], [4]–[6], [9].
The first step is a(pre-)whiteningoperation, consisting of a
projection of the observed processes on the signal subspace
(i.e., the space spanned by the transfer vectors) plus power
normalization, which can all be accomplished by means of
second-order tools. This process is equivalent to the diago-
nalization of the sensor covariance matrix. After this initial
step, only a unitary transformation remains to be identified in
order to determine the actual source directions and, hence, the
source waveforms and mixing matrix. It is the identification
of this unitary matrix, carried out in a second step, that
needs the intervention of higher order techniques when the
temporal information cannot be exploited or is simply ignored.
Algebraically, the transformation must diagonalize the higher
order cumulant tensor of the whitened sensor output, thus
providing a set of higher order independent signals: the wanted
sources. In the basic scenario composed of two real-valued
mixtures of two sources, the unitary transformation is reduced
to a Givens rotation matrix so that only a rotation angle needs
to be estimated.

Several methods have been proposed in the literature for
the estimation of this angle. In [5], Comon finds an estimator
that is a function of the fourth-order cross-cumulants of
the whitened sensor signals. In [6], the angle estimation
is accomplished by the maximization of contrast functions,

giving rise to the first formal mathematical definition of ICA.
The ML principle is considered by Harroy and Lacoume
in [9], which is reminiscent of the seminal work on the
ML approach to BSS carried out by the latter and Gaeta in
[7]. The source pdf is approximated by its Gram–Charlier
expansion truncated at the fourth order. Taking advantage of
this expansion, an approximate ML estimator is found when
no noise disturbs the measurements. However, the conditions
for the Gram–Charlier expansion to be valid and certain
simplifications and assumptions made in order to obtain a
tractable analytical expression restrict the applicability of this
estimator to the case of symmetric sources with the same
distribution and kurtosis value lying in a certain positive range.

In the present paper, the expression of the Harroy–
Lacoume’s ML estimator is taken up, and a similar method
is put forward and analyzed. The most appealing feature
of the propounded estimator is that it is able to deal with
almost any combination of source pdf’s of arbitrary symmetry
and kurtosis value. In this sense, the new estimator can be
considered to be a generalization of the approximate ML
approach, broadening its applicability domain to situations
outside the validity region of the Gram–Charlier expansion
and the other restrictions imposed in [9].

The paper is organized as follows. Section II summarizes
the model, terminology, and basic assumptions of the problem
in hand. The ML approach developed in [9] is recalled in
Section III. Founded on this method, the new angle estimator
is introduced in Section IV. Section V unveils an interesting
geometrical rationale behind the new procedure in terms of
the scatter diagrams of the signals involved. Later, Section VI
is entirely devoted to studying the statistical properties of
the estimator for both finite and large sample size. When
considering this latter case, an analytical expression for the
estimator asymptotic pdf is sought. A few experiments carried
out to illustrate and validate the theoretical results are reported
in Section VII. In that section, an extension to the general BSS
setup composed of more than two sources and two measure-
ments is also examined, and the effects of prewhitening on the
estimator performance is evaluated. Finally, Section VIII sums
up, provides some concluding remarks, and suggests potential
avenues of further research.

II. PRELIMINARIES: PROBLEM STATEMENT AND TERMINOLOGY

A. Problem Description

The goal of BSS can be briefly stated as recovering a
set of zero-mean statistically independentsource signals

from a set of instantaneous
linear mixtures , which are the
observed signalsor sensor output. Symbol represents a time
index. In matrix form and in the noiseless case, this problem
accepts the model

(1)

where is the mixing or transfer matrix, assumed
full column rank. In the sequel, we will only consider real-
valued sources and mixtures. The power of the sources is,
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in principle, arbitrary since a scalar factor can be swapped
between any source and its associated column in the mixing
matrix without altering the measurements. The ordering of the
sources is also irrelevant. These well-known facts constitute
a basic indeterminacy in BSS. At best, matrix can be
identified up to a permutation and scaling of its columns.
Therefore, nothing prevents us from further assuming that the
sources are unit-power signals E for so
that their dynamic range is accounted for by the magnitudes
of the columns of . It should be noted, however, that this
is merely a convention. The source covariance matrix, hence,
becomes

E (2)

where the symbol denotes the transpose operator andthe
identity matrix.

The first step to achieve the source extraction is to project
the observations on the signal subspace (spanned by the
columns of ) and to normalize them, which is a process
involving conventional second-order analysis, as commented
in the introduction. Comon refers to this preliminary second-
order processing asstandardization[6]. Consider the singular
value decomposition (SVD) [8] of the mixing matrix

. The covariance matrix of the observations may then be
expressed as a function of and its SVD, and in terms of its
own eigenvalue decomposition (EVD)

E (3)

From these equalities, the range space (i.e., the column space)
of the transfer matrix can be identified as .
The (pseudo)inverse of this matrix is referred to as the
whitening matrixsince when it is applied to the sensor output,
it supplies a set of uncorrelated (second-order spatially white)
unit-variance components, that is, with identity covariance
matrix

(4)

E (5)

Observe that second-order analysis leaves a unitary trans-
formation undisclosed: the matrix in (4) that relates the
whitened signals to the true sources. The estimation of this
matrix requires the use of HOS-based techniques. In the
case of batch processing, signal samples are stored in a
measurement matrix , with one vector sample per column.
Then, the whitening process above does not require the explicit
computation of the sensor-output covariance matrix, but it can
be directly affected from the SVD of the observation matrix
[6].

From now on, let us focus on the simplified two-source two-
sensor BSS scenario, where the matrixbecomes a Givens
rotation of the form

(6)

The problem, then, is reduced to determining the angle
from the whitened observations. Once this has been achieved,

(a) (b)

Fig. 2. Scatter diagram for 1000 samples of (a) original sources, two uni-
formly distributed independent signals, and (b) sensor signals after prewhiten-
ing. The latter corresponds to the former rotated by an unknown angle
�.

a counter-rotation of this angle performed on the whitened
observations provides the original source waveforms.

B. The Scatter Diagram

Consider the pair of signals . The
bidimensional plot of the amplitude points ,

is called thescatter diagram[9]. The scatter diagram
is an approximation of the true jpdf of the corresponding
pair of variables. Areas within the scatter diagram of high
point density correspond to a high value for the associated
jpdf around the same area. The left panel of Fig. 2 shows
the scatter diagram of 1000 realizations of two uniformly
distributed independent random variables , which are
the source signals. It can be appreciated, in the first place,
how the density is, roughly, uniform over the definition range,
which means that the jpdf is flat. In addition, it corresponds
to a jpdf of independent variables since it can be decomposed
as the product of its two 1-D marginal pdf’s. The effect of an
orthogonal transformation is a scatter plot rotation. Effectively,
the scatter diagram corresponding to the whitened pair of
variables connected to the sources according to (4)
is represented in the right-hand panel of Fig. 2. It preserves
the exact shape of the previous one, but it is rotated an angle
with respect to the new axes. Observe that the source directions
are the symmetry axes of the prewhitened jpdf, represented by
the dashed lines in Fig. 2(b).

The scatter diagram points accept a polar as well as a
complex form representation

(7)

where, from (4) and (6), the angles and are readily
related by

(8)

These polar and complex form representations will prove
very convenient at certain points of the development and
will be helpful in providing a very interesting geometrical
interpretation of the estimator introduced in this paper.
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C. Some Statistical Relationships

Before proceeding, let us define some statistical terms. In
the first place, E represents the th-
order moment of the bivariate random variable .
Analogously, Cum denotes the

th-order cumulant of the same pair of variables. Similar
notation can be employed for the whitened observations, just
by substituting the super-index “” with “ ” in the moment and
cumulant expressions. Moreover, it will be useful to recall the
following relationships [15], which hold under the assumption
of zero-mean unit-variance uncorrelated components:

(9)

The first two lines express the fourth-order marginal cumu-
lants, or kurtosis, and the fourth-order cross-cumulants of
the whitened measurements as a function of their moments.
Totally analogous expressions hold for the kurtosis and cross-
cumulants of the sources. The final identity (zero source
fourth-order cross-cumulants) comes from the source indepen-
dence assumption. Owing to the unit-variance convention, all
statistics become normalized or standardized [6].

III. A N APPROXIMATE MAXIMUM -LIKELIHOOD ESTIMATOR

By definition, the ML estimator of is the value of the
rotation angle that maximizes the (log-)likelihood of the given
whitened observations . Mathematically, this idea can be
expressed as

(10)

for independent observations , , where
denotes the pdf of the decorrelated measurements re-

lated to the source pdf through
, where is the marginal pdf of the

th source.
In [9], the source jpdf was approximated by its

Gram–Charlier expansion truncated at the fourth-order
term (hence, the adjective “approximate”). In order for this
expansion to be a valid pdf approximation, the kurtosis of
each source must lie in the range , which excludes
all short-tailed (platykurtic, sub-Gaussian, with negative
kurtosis) pdf’s and even some long-tailed (leptokurtic,
super-Gaussian, with positive kurtosis) ones, such as the
exponential distribution. Furthermore, in a bid to simplify the
development, two other conditions were assumed: The sources
have the same distribution (at least up to the fourth-order in
their Gram–Charlier expansion) and are symmetric, i.e., with
zero skewness ( ), and therefore, third-order
terms were also neglected. Then, developing the ML criterion
(10) over the Gram–Charlier expansion of the source jpdf

under these conditions, the ML estimator ofwas found to be

(11)

The properties of the estimator were also studied in [9].
Under all the above assumptions, it was found to be unbiased
for any sample size. In addition, the Cramér–Rao lower bound
(CRLB) for the estimation of under the conditions of this
ML development, i.e., when the source pdf’s are approximated
by their Gram–Charlier expansion, was deduced to be

Var (12)

where is expressed in radians.
The same authors realized in [9] the lack of sensitivity of

the estimator (11) to the data pdf, testing its robustness for
sources out of the validity domain of its development, such
as uniformly distributed signals, whose kurtosis is negative.
Surprisingly, the results obtained were very favorable. An
explanation for this unexpected phenomenon was given from
a geometrical standpoint, based on the scatter plot and the
source jpdf symmetry. Further experiments involving asym-
metric sources with kurtosis values outside the interval
(e.g., exponential distributions) aroused the suspicion that
the validity scope of (11) was actually less restricted than
originally predicted. In fact, it is proved in the next section that
the approximate ML estimator admits quite a straightforward
generalization, whereby almost any source joint distribution
can be treated.

IV. GENERALIZATION

A. The Extended ML Estimator

Dropping the time index in the sequel for convenience,
let us define the fourth-order complex statistic

E E (13)

According to (7) and (8), (13) accepts an expansion as a
function of the sources and the unknown rotation angle

E E (14)

However, from the expressions given in (9)

E (15)

and therefore, may be expressed as a function of the source
statistics

(16)

The term in brackets, thesource kurtosis sum(sks), is not
known because, by definition, the sources are not known either.



ZARZOSO AND NANDI: BLIND SEPARATION OF INDEPENDENT SOURCES 2423

However, from (7) and (9), the sks can be obtained as

E E (17)

which is also available as a function of the whitened data

E (18)

since from (7), . Therefore

sign (19)

In practice, for single signal realizations composed of
samples, the ensemble or population averages in (13), (17), and
(18) are estimated by their unbiased time or sample averages

(20)

(21)

so that can be estimated from the above two

sign (22)

As a result, the following angle estimator arises:

angle (23)

in which function “angle ” supplies the principal value
of the argument of . The acronym “EML” stands for
extended ML. This name will find justification in the next
section. Observe that no assumptions on the source pdf’s have
been made at all to arrive at this expression, which makes
this estimator valid forany source distribution combination
with any kurtosis value andany type of symmetry, as long
as the sks is not zero. In the event of such a sum being
zero, the magnitude of would also be null, and could
not be estimated from it any more. More specifically, we
will see in Section VI when carrying out the asymptotic
performance analysis that estimator (23) becomes inconsistent
as .

Before closing this section, we remark that a -rad
estimation range for the unknown parametersuffices. If
a rotation of arbitrary angle has been performed on the
source jpdf, any counter-rotation of angle , for

, provides the source components, possibly with an
axis interchange and sign variation, effects that are irrelevant
as far as the separation is concerned. Hence, all possible values
of can be reduced to the interval , yet still
providing acceptable separation solutions. Since angle

, the EML estimator (23) always yields angle estimates
in the required range.

B. Connection with the Approximate ML Estimator

Now, let us relate (11) and (23). Equation (11) can be
written as

Im

Re
(24)

where Re and Im represent, respectively, the real and
imaginary part of their complex argument. First, let us assume
that is calculated without regard to the sign of the numer-
ator and denominator of the arctangent argument. Contrasting
the latter expression with (23), it turns out that both provide
the same estimates when or, assuming
that no error occurs in the estimation of, i.e., , and
by virtue of (19), when . Estimator

is a particular case of when , and hence,
is indeed applicable under the same source pdf conditions

as . When , estimator (11) is biased. This was
expected since if the sign of the arctangent arguments is not
taken into account, , and then, (11)
only provides estimates in the range . Effectively,
the arctangent function in (24) obtains when
and when . Consequently, if , the
expected bias is rad, whereas if , such bias
becomes . For , we then need to resort to (23).

In the second place, even if the sign of the arctangent
arguments are considered, estimator (24) only provides valid
separation solutions when the sks is positive. Else, a bias arises
in relative to , which is rad when and

rad when . In this respect, the effect of the
sign function in (22) and (23) can alternatively be seen as
applying an extra 45 rotation to the estimate obtained for
positive sks so that the potential bias is avoided (this notion
will be revisited when giving a geometrical interpretation of
the method in Section V). In essence, by virtue of the sign
function, the method is made transparent to the source pdf
tailness. To emphasize the key role played by the sks, notice
that such a factor also appears itself in Harroy–Lacoume’s
development but vanishes when nulling the score function (see
the term “Lgc ” in [9, Sec. 3, p. 171]). In conclusion, it
can be claimed that extends in the source pdf’s
with which it is able to deal. The constraints (symmetric
sources with the same distribution and positive kurtosis in
the range ) under which the approximate ML estimator
was originally found to work are alleviated in the proposed
method and reduced to a much weaker single condition on
the sum of source kurtosis. Although has not been
derived from the ML principle, the term “ML” has some
significance. The condition for to be the ML estimator of

under the assumptions of [9] may be restated as tan
Im Re , which is fulfilled by (23), and hence, the latter

is also the ML estimator of under the same assumptions.

C. Other Links

It is worth computing as a function of the statistical
properties of the whitened observations. On the one hand,
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from (9) and (13)

(25)

and, on the other hand, from (9) and (16)–(18)

(26)

The last two equations state thatcan be determined from the
fourth-order cumulants of the decorrelated measurements. In
particular, the modulus of (25) and (26) must be equal, which
leads to the following relationship among the fourth-order
cumulants of the whitened sensor outputs:

(27)

This relationship was originally deduced by Comon in [5]
following different and more algebraic arguments.

V. GEOMETRICAL INTERPRETATION

There exists a fairly enlightening geometrical rationale
behind the apparently obscure estimator expression (23) when
the two sources are symmetrically distributed. Analogous
geometric ideas are exposed in [4]. First, consider a mixture
of two leptokurtic pdf’s, such as, for instance, two Laplacian
distributions. Since the kurtosis of both sources is positive,
it is guaranteed that the sum is. The jpdf of the unit-power
sources exhibits highest values along the lines defined by the
angles , . Accordingly, the source
scatter diagram has a maximum point concentration along the
same lines. On the other hand, as explained in Section II-B,
the jpdf of the whitened measurements looks like that of the
sources, but rotated by degrees, being unknown. As a
result, the new scatter diagram displays the highest density
along , . Now, assume that all
the scatter diagram points are transformed according to

(28)

In particular, all the previous points cluttered around
will now be gathered together along , as

graphically depicted in Fig. 3(a). In this way, it can be argued
that acentroidcalculated as the resultant mean point after the
transformation, that is

E (29)

will show that orientation. Therefore, (23) will provide the
required angle with which the whitened jpdf is rotated with
respect to the true source jpdf.

In the second place, let us now consider two platykurtic
distributions playing the role of sources. Hence, their kurtosis
sum is negative, as for two sinusoidal signals. In this case, the
maximum concentration in the source scatter diagram occurs
along the lines , . There-
fore, in the scatter diagram of the signals after decorrelation,
this high density will be shown along ,

. These points will all clutter round
when transformed as indicated by (28), and therefore, the
centroid (29) will also have this orientation [Fig. 3(b)]. In
conclusion, the centroid projected across the origin, i.e.,,

(a) (b)

Fig. 3. Centroid location and angle estimation for a mixture of (a) two
leptokurtic distributions and (b) two platykurtic distributions.

forms an angle with respect to the axis. That is, the
purpose of the “sign ” term in the estimator expression (22)
and (23) when is to rotate the sample centroid
(20) by rad so that its argument becomes an estimate of.

For combinations of platykurtic and leptokurtic distribu-
tions, the geometrical interpretation becomes more involved
and less intuitive, but the results obtained in Section IV
indicate that those cases can also be explained in terms of
the above two instances, comprising sources with positive and
negative kurtosis sum.

VI. STATISTICAL CHARACTERIZATION

Having introduced the expression of the EML estimator
and examined its behavior from a geometrical point of view,
a study of its statistical properties is in order. The present
section is devoted to analyzing its asymptotic performance,
that is, its estimation characteristics when large samples are
processed. Specifically, our main objective is to obtain an
analytical expression for the estimator asymptotic pdf.

A. Bias

Before entering the asymptotic domain, observe first that
the EML estimator (23) isunbiased for any sample sizewhen
at least one of the sources has a symmetric distribution. The
proof of this claim flows along the same lines as that offered
in [9, Sec. 4.1] for the approximate ML estimator (11). If
there is an asymmetric source, let its corresponding axis form
an angle with respect to the whitened observations frame
of reference. Consider a set of observations . From
this set, parameters and are computed by means
of (20) and (21), respectively, yielding an angle estimator

. Now, consider the set of symmetric (with respect to
the true angle ) observations . It turns out
that the new parameters are related to the previous ones via

and , symbol denoting complex
conjugation. Then, from (22) and (23), .1

By symmetry of the source(s), E E . It follows
that E for any sample size. We remark that for this
result to hold, we do not need to assume that both sources
possess equal symmetric distribution as in [9] but just that
one source be symmetric.

1Plus a potential, irrelevant�pi=2 bias term.



ZARZOSO AND NANDI: BLIND SEPARATION OF INDEPENDENT SOURCES 2425

B. Basic Asymptotic Results

If the sources are both asymmetric, the above result is not
generally true. However, under basic regularity conditions,
other interesting conclusions about estimator (23) can be
drawn, which hold for all kind of source pdf. Effectively,
assuming independent and identically distributed (i.i.d.) ob-
servations, the strong law of large numbers [13] ensures that

and , and in compliance with (19)–(23)

(30)

where denotes convergence with probability one. Hence,
the estimator isstrongly consistentand asymptotically unbi-
ased, provided .

C. Asymptotic pdf

In order to arrive at a more complete characterization of the
estimator, consider first that from (8)

(31)

in which

(32)

Then, the estimator becomes

angle sign angle sign (33)

so that

angle sign (34)

That is, the bias of the estimator depends
exclusively on the source signals (note thatonly depends
on them too) and is independent of the specific value of the
rotation angle . Our objective, then, is reduced to obtaining
the pdf of the bias .

In the second place, let us assume that the sign of the sks
is properly estimated, which is a reasonable assumption for a
high enough sample size and/or when is
not too small. Let us also assume that this sign is positive.
Calling

angle (35)

we have

(36)

so that it is sufficient to obtain . If the sks is negative,
the actual pdf will be a -radian circularly-shifted version of

above, due to the sign function in (34). At this point, it
is convenient to decompose in its real and imaginary parts

(37)

where and are obtained by developing the fourth power
in (32)

(38)

and

(39)

With the help of (9) and [15], the statistical properties of
and are obtained as follows. In the first place, the mean
and variance of are given by

E (40)

Var

(41)

Analogously, the first- and second-order statistical parameters
of are

E (42)

Var

(43)

For two Gaussian sources, these statistical parameters become

(44)

The covariance of and is

E E E

(45)

and therefore, these variables are not necessarily uncorrelated.
However, the sole existence of a symmetric source makes
vanish, and the same applies when both sources have identical
distribution, for example.

Next, from (38) and (39), and assuming that each source
signal is temporally white [a property that is inherited by
statistics and ], the central limit theorem [13]
states that for a high enough sample size can be
approximated by a Gaussian distribution of meanand
variance , and can be approximated by another
Gaussian variable of zero mean and variance , i.e.,

N N

N N (46)

where indicates convergence in distribution. On the
other hand, for temporally white sources, E
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Fig. 4. Level curves of the asymptotic jpdf of!1 and!2, the source centroid
coordinates in the complex plane.

E E for all , and thus, the covariance
of and is given by

E E E (47)

If , then and are uncorrelated. However, even
if the coefficient is far from zero, cancels as tends
to infinity, and hence, and are at least asymptotically
uncorrelated in any case. In conclusion, the asymptotic jpdf
of the real and imaginary parts of is given by the product
of their marginal pdf’s

(48)

The level curves of this pdf are ellipses of semi-axes pro-
portional to and centered at , as depicted in
Fig. 4.

Having obtained the jpdf of and , (35) and (37) suggest
that we try the variable change

(49)

which yields for the marginal pdf of:

(50)

Although this expression admits an analytical solution, as will
be seen later on, let us first derive further simplifications
to gain a deeper insight into its behavior as a function of
parameters and . Fig. 4 can still be viewed as an
approximation to a level curve of the integrand in (50).
Roughly speaking, the value of at a particular angle
corresponds to the integral with respect toof a slice of the
function (48) along the angle . Therefore, we could
think of this value as being related to the distance from the
origin to the point on the level curve located at , i.e.,
distance in Fig. 4. As a result of this, it is easy to see
now that for and , the distribution of will
concentrate more closely around its mode as
increases. The same outcome is obtained if the ratio is
increased. On the other hand, if , the distribution of
will show two modes, neither at , though symmetric with
respect to that point. Analogous results are obtained for ,
but in that case, the pdf of will exhibit one mode at
for [this is the statistical counterpart of the geometric

justification for the term “sign ” given in Section V] or two
modes symmetrically located for . For ,
the two modes merge into only one as increases.
As an example to illustrate this intuitive reasoning, consider
two Gaussian sources, for which, according to (44),
and ; thus, the level curves becoming circumferences
centered at the origin. This gives a uniformly distributed
between and .

The main result derived from these geometrical considera-
tions is that the distribution of (and, hence, of ) becomes
more “peaky” around 0 or (depending on whether is
positive or negative, respectively) as the ratios and

become larger. In order to give a first mathematical
support to this claim, we can readily work out the analytical
expression of when :

tan

tan

(51)

Then, for , the maximum value of is
and occurs at , whereas the minimum is

at . The ratio of the maximum
to the minimum value is thus , confirming that the
distribution becomes more “peaky” as increases, as
seen in Fig. 5(a). If, on the contrary, , the maximum
value becomes at and the minimum

at , as graphically described in
Fig. 5(b). The pdf is flat if and only if , as occurs, for
instance, for Gaussian sources [see (44)].

All this preceding analysis establishes approximately the
behavior of as a function of and . Now,
it will be seen how these trends are actually exhibited by
the analytical expression of the pdf. With the help of the
symbolic mathematics package MAPLETM and after some
tedious algebraic manipulations, we can arrive from (50) at
the following general closed-form analytical expression for
the pdf of :

tan

tan

tan sign

tan

tan

tan

erf
sign

tan

(52)
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(a)

(b)

Fig. 5. Pdf of� for 
 = 0. (a) �1=�2 > 1. (b) �1=�2 < 1.

Observe that for , the above formula simplifies into
(51). The asymptotic results derived in Section VI-B may also
be deduced from (52). Effectively, this pdf is, in all cases,
symmetric with respect to , and hence, E , that is,
the EML estimator is unbiased for large enough sample size.
In addition, as increases, both and tend to zero, and
therefore, the distribution of and tends to a point of
probability mass 1 located at in the plane. As
a consequence, the EML estimator shows strong consistency,
as long as , i.e., . For , since

, which is a constant for a given pair of
source distributions, according to (51), the estimator pdf does
not vary as the sample size increases. Therefore, the estimator
loses its consistency property when the sks is null.

Finally, in order to circularly shift the pdf expression by
rad, which is necessary when , as discussed at
the beginning of this section, it suffices to use instead of

in (52).

VII. SIMULATION EXAMPLES

The purpose of this section is to illustrate the properties
of the suggested estimator and to test the quality of the
theoretical asymptotic analysis. The effects of a whitening

TABLE I
RESULTS OF THESIMULATIONS WITH THE EML ESTIMATOR. SIGNALS ARE

COMPOSED OF5000 i.i.d. SAMPLES. EACH FOUR-ELEMENT COLUMN DISPLAYS,
FROM TOP TO BOTTOM, THE MEAN, THE STANDARD DEVIATION, THE

MAXIMUM , AND THE MINIMUM VALUE OBTAINED FOR THE CORRESPONDING

PARAMETER AND SIGNAL COMBINATION OVER 100 MONTE CARLO

RUNS. ANGLE VALUES (�̂ � �) ARE EXPRESSED INDEGREES

process prior to the application of the estimator are also
examined. Finally, an uncomplicated extension to the general
BSS scenario composed of more than two signals is tested.
This extension is based upon the ideas of [6].

A. Two-Source Two-Sensor Scenario

In the first place, several Monte Carlo simulations have
been run to test and compare the new estimator performance.
Three different combinations of source pdf’s, with regard to
their tail or kurtosis sign, have been considered (both short,
long-short, and both long), together with three different sym-
metry combinations (both symmetric, symmetric-asymmetric,
and both asymmetric). That makes a total of nine distinct
distribution pairs for the source signals. The actual source
pdf’s employed are (in parentheses the abbreviations used
in the results table): uniform (“Uni”), exponential (“Exp”),
Laplacian (“Lap”), Rayleigh (“Ray”), and a short-skewed dis-
tribution (“Shsk”), which is simply an asymmetric triangular
pdf.

For each distribution pair, zero-mean unit-variance source
signal realizations are created from 5000 i.i.d. samples, and
possible remains of statistical dependence up to fourth-order
are removed by using the ICA procedure developed in [6]
(denoted herein as ICA-HOEVD method). Then, a rotation
matrix of fixed angle is applied to the set of
source signals, giving a hypothetical set of whitened sensor
outputs. The estimation of the rotation angle is carried out
through (22) and (23), where the sample estimatesand
are obtained from the whitened sensor data by means of (20)
and (21). From each realization, two parameters are computed:
the bias expressed in degrees and the values ofto
check how they approximate the sks . The mean,
standard deviation, maximum, and minimum value for these
two parameters computed over 100 Monte Carlo runs are
summarized in Table I.

In light of these results, the new estimator can be judged
as successful in estimating the unknown rotation angle. This
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TABLE II
COMPARISON OFSEVERAL ESTIMATORS. EML, ML WITHOUT REGARD TO

ARGUMENT SIGNS (ML-a), ML CONSIDERING ARGUMENT SIGNS (ML-b), AND

COMON’S FORMULA [5] (CF). SOURCES ARECOMPOSED OF1000 INDEPENDENT

UNIFORMLY DISTRIBUTED SAMPLES. EACH FOUR-ELEMENT COLUMN

SHOWS THE MEAN, THE STANDARD DEVIATION, THE MAXIMUM , AND

THE MINIMUM VALUE OBTAINED FOR THE BIAS (�̂ � �) OVER 100
MONTE CARLO RUNS. ALL VALUES ARE EXPRESSED INDEGREES.
EXPERIMENTS FORDIFFERENT ANGLE VALUES ARE INDEPENDENT

is manifested in the low bias and variance of. In addition,
approximates the sks very accurately in all cases (e.g., for

uniform-exponential sources, its mean is approximately equal
to ).

It is interesting to compare the variance obtained here with
the bound given by (12). For example, for two Laplacian distri-
butions ( ) and samples, (12) predicts
a lower bound for the standard deviation of 0.468. However,
from Table I, the empirical standard deviation obtained for
this case turns out to be just 0.195, which is clearly below
that limit. This outcome confirms the initial suspicion that the
conditions of the Gram–Charlier expansion are too restrictive
and, indeed, not necessary to be met if estimator (11) is to
be applied.

For the sake of comparison with the ML estimator (11),
and in order to illustrate the comments made in Sections IV-B
and V, Table II shows the angle bias results obtained by
both estimators in a further simulation. This time, the two
independent sources are composed of 1000 samples drawn
from a uniform distribution. The simulation is run under
the conditions cited earlier, generating independent source-
realizations over 100 Monte Carlo iterations but feeding the
same data into both methods at each iteration. For the ML
method, two cases are considered: when the sign of the
arctangent arguments are not taken into account (“ML-a”) and
when they are (“ML-b”). The first row corresponds to a true
rotation angle of . As predicted in Section IV-B, the
outcome is identical for EML and ML-a because ,
but a bias appears in the results of ML-b since the
sources have negative kurtosis and . The second row of
Table II shows the results for a new independent set of source
realizations and a new angle, . Note
that now, an exact bias comes up in the results of both
ML estimators, just as anticipated in Section IV-B: in ML-a
because and in ML-b because the sks is negative
and . The final column summarizes the performance
under the same source realizations of the closed-form formula
for the estimation of found by Comon in [5]. EML results
are consistently more reliable than those offered by this latter
analytical expression.

Fig. 6. Pdf of the bias for exponential and Rayleigh sources,T = 1000
samples per signal, 1000 signal realizations. Solid line: naive density estimate,
window width = 8:3 � 10�3 rad. Dashed line: pdf estimate from analytical
expression (52).

B. Asymptotic Behavior

In the second place, some other experiments have been
carried out to test the validity and accuracy of the analytical
expression obtained for the pdf of . In the first simulation,
the source distributions are chosen to be the exponential and
Rayleigh distributions, respectively, yielding a positive sum of
kurtosis. Each signal realization is composed of 1000 samples,
and from each of them, another realization of the bias
is directly calculated from (21), (32), and (34). From 1000
realizations of , its pdf is estimated by using a standard
method (the naive pdf estimator [14]) with window width

rad. This pdf estimate corresponds to the solid
curve in Fig. 6. From the realizations of the real and imaginary
parts of , parameters , , and are approximated by the
sample estimates of E , Var , and Var , which are
denoted by , , and , respectively.2 The exact values
obtained for the parameters are , ,
and ; therefore, , and

. Substituting these coefficients in (52) and bearing in
mind (36), we obtain the analytic pdf estimate represented
by the dashed line in Fig. 6. The similarity between the two
curves is remarkable.

In the next experiment, a negative kurtosis sum is tested
by means of a uniform and a binary source. Under exactly
the same conditions as above, the solid line in Fig. 7(a)
shows the naive pdf estimate directly obtained from the angle
estimates. Now, , , and ,
giving , and , for which
the analytical expression of the pdf produces the dashed-line
curve in Fig. 7(a). Again, there is an outstanding resemblance
between the two plots. Since , two modes were
expected, but is so high as to prevent them from
turning up. Fig. 7(b) displays the results for the same source

2We remark that the sample estimate
̂0 of E[!1] defined in (40) is different
from the sample estimatê
 (21) of 
 defined in (17) and (18), despite
the expected value of both estimates being
 = �x

40
+ �x

04
. The former

involves several signal realizations, whereas the latter comprises a single
signal realization.
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Fig. 7. Pdf of the bias for uniform and binary sources. (a)T = 1000 samples
per signal, 1000 signal realizations. Solid line: naive density estimate, window
width = 8:3 �10�3 rad. Dashed line: pdf estimate using analytical expression
(52). (b)T = 5000 samples per signal, 1000 signal realizations. Solid line:
naive density estimate, window width= 4:2 � 10�3 rad. Dashed line: pdf
estimate using analytical expression (52).

distributions but for a sample size of . The new
values for the pdf parameters are , ,
and , i.e., , and

. The values of and decrease by a factor of ,
as (46) predicts and, hence, is the variance reduction in the
obtained pdf.

Finally, two 5000-sample Gaussian signals are chosen to
play the role of sources. For 1000 signal realizations, both a
standard estimate and the analytical solution of the bias pdf
are plotted in Fig. 8. They approximate a uniform distribution,
just as anticipated in Section VI. The standard pdf estimation
procedure employed in this example is the kernel method [14],
with Gaussian kernel of width rad. For this source
combination, , , and , i.e.,

, and . Since , it was
assumed that to get the analytical solution. Note that

, as deduced from (44).

C. Influence of Prewhitening

All the experiments reported up to now assess the esti-
mator performance when only the higher order processing
part of the separation is considered. In a practical separation
system, however, the EML estimator (23) would have to be
applied after the sensor output has been whitened, as explained
in Section II-A. Intuitively, the estimator performance when
second-order processing is included would differ from the
results when it is not since the uncertainties generated by
the prewhitening would add to those introduced by the EML
estimator on its own. In order to empirically check this
claim, we can compare the variance of the angle estimates
obtained with and without prewhitening for fixed mixing
matrices. Fig. 9 shows how these variances behave as the
sample size increases for two uniformly distributed sources.
The solid line represents the variance of the EML angle
estimates for a 30rotation on the sources. The dash-dotted
line (with “ ” markers) also includes the prewhitening applied

Fig. 8. Pdf of the bias for two Gaussian sources,T = 5000 samples per
signal, 1000 signal realizations. Solid line: Gaussian kernel density estimate,
function width= 78:5 � 10�3 rad. Dashed line: pdf estimate from analytical
expression (52).

on the same sensor-output realizations followed by EML
estimation. The dashed line corresponds to a particular mixing
matrix with nonorthogonal transfer vectors with second plus
fourth-order separation stages. The prewhitening process is
accomplished by means of the SVD of the sensor-output data
matrix, as done, e.g., in [6]. The variances at each sample-
size value are obtained by sample averaging overMonte
Carlo runs with . The same source realizations
are used in all three cases. As expected, for i.i.d. signals, the
variances decrease as . This is endorsed by the dotted
lines of Fig. 9, which represent least-squares approximations
to the curves of the form “constant .” The results for
the first and second curves are identical, whereas for the
third, the results are slightly higher. Second-order processing
introduces errors in the estimation of the whitening matrix
that translate into inaccuracies in the resulting orthogonal
rotation operating on the sources. Consequently, the variance
of the angle estimates increases with regard to prewhitening.
Results of Fig. 9 also reveal that the variance increase seems
to depend on the mixing matrix conditioning. Nonetheless,
further simulations show that this dependence is not too acute,
but the variance trajectory remains essentially the same and
very close to that without prewhitening over a wide range
of mixing matrix conditioning. In particular, when the mixing
matrix is orthogonal, the effects of the second-order processing
stage on the performance of the EML estimator are totally
negligible.

D. Extension to More than Two Sources and Sensors

A final simulation demonstrates how the method pro-
pounded here, which is, in principle, only valid for the
simplified two-source two-sensor BSS scenario, is also useful
in separating more than two source signals from more
than two measurements. The idea is inspired by [6] and
basically consists of operating pairwise and applying (23) to
every whitened-signal pair in turn over several sweeps until
convergence. Geometrically, this corresponds to performing
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Fig. 9. Influence of prewhitening on the variance of the EML estimator for
two i.i.d. sources with uniform distribution. Solid line: EML estimation only,
orthogonal mixing matrix. Dash-dotted line (with “�” markers): prewhitening
plus EML estimation, orthogonal mixing matrix. Dashed line: prewhitening
plus EML estimation, nonorthogonal mixing matrix. Dotted lines:O(T�1)
LS approximations.

Fig. 10. Realization of three sources: a sinusoid, a binary sequence, and an
exponentially distributed random process.

at each iteration an elementary planar rotation on the two-
dimensional scatter plot of the current signal pair. Fig. 10
displays three sources to be separated by means of this
straightforward extension:

1) a sinusoid;
2) a binary sequence,
3) an exponentially distributed signal;

all composed of 1000 samples of which only the first 500
are shown. The three-sensor output resulting from a par-
ticular instantaneous linear mixture of those three sources
appear in Fig. 11. Again, the SVD is used for prewhitening.
The pairwise extension of the EML procedure supplies the
sources shown in Fig. 12, whereas Fig. 13 displays the sources
obtained by the ICA-HOEVD method of [6]. Both set of
estimated source waveforms are nearly identical, apart from

Fig. 11. Instantaneous linear mixture of the source signals shown in Fig. 10.

Fig. 12. Sources retrieved by the EML method from the mixture shown in
Fig. 11.

Fig. 13. Sources extracted by the ICA-HOEVD method from the mixture
shown in Fig. 11.
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the different signal arrangements and unitary scale factors.
Additional experiments on a number of sources and measure-
ments higher than two validate the implemented extension.

VIII. SUMMARY , CONCLUSIONS, AND OUTLOOK

The approximate ML approach proposed in [9] has been
considered. Due to the validity domain of the Gram–Charlier
expansion and certain assumptions made during its develop-
ment, the applicability of this ML estimator is restricted to
symmetric sources with the same distribution and normalized
kurtosis lying in the range [0, 4].

Along the same lines, a new expression for the estimation
of the rotation angle is found, also based on the fourth-
order statistics of the data. Interestingly, to arrive at the
new expression, neither pdf expansions nor assumptions on
the source pdf’s are necessary. Consequently, the proposed
estimator is valid for any source pdf combination with arbitrary
kurtosis value and symmetry. The only condition is that the sks
must be different from zero. This estimator can be regarded as
an extension of the ML solution of [9], and hence, the name
extended ML(EML) estimator.

The modus operandiof the EML estimator has been ex-
plained in terms of the scatter plots of the signals involved.
This geometrical rationale behind the method becomes espe-
cially apparent when the sources have the same distribution
with symmetric pdf. From this standpoint, it can be argued
that the estimator exploits the specific symmetries existing in
the jpdf of independent variables: the sources.

A closed-form analytical expression for the asymptotic pdf
of the estimator bias when i.i.d. observations are processed
has been obtained. From this formula, it has also been seen
how the estimator behaves as some parameters (, , and

) vary. These parameters depend, basically, on the higher
order statistics (up to the eighth order) of the source signals.
It is shown that the larger the and , the more
precise becomes the estimation. In the i.i.d. case, the estimator
exhibits strong consistency (except when the sks is null) and
asymptotic unbiasedness. When there is a symmetric source,
the estimator is unbiased for any sample size.

Several simulations prove the validity of the theoretical
results, offering satisfactory angle estimation in a wide va-
riety of source pdf combinations, with different tails (i.e.,
kurtosis value and sign) and symmetries. Additional experi-
ments endorse the validity of the analytical solution found for
the estimator asymptotic pdf. The potential of the presented
method is substantiated through an extension to the general
BSS setup composed of more than two mixtures of more than
two sources. Performance is also very satisfactory for this
extension.

To complete the statistical characterization and as a first
point of further research, the dependence of the pdf behavior
on the above parameters needs to be translated into particular
conditions on the source signals in order to find out which
distributions are more easily treated by the proposed estimator.
In an initial step to achieve this goal, it would be desirable to
obtain the estimator variance as a function of the mentioned
parameters.

It has also been proved that spurious modes can appear
in the asymptotic pdf of the EML estimator when

if is not large enough, thereby degrading the
estimation quality. In which situations this occurs deserves to
be investigated as well. The estimator has been proven to turn
inefficient when the sks approaches zero. In order to enhance
the performance in such scenarios, an additional expression
may be utilized instead. This alternative fourth-order estimator
is currently under study, together with an appropriate decision
rule to make an optimal choice between both expressions given
a signal set. Preliminary results for this combined estimation
strategy are very encouraging. Alternative generalizations to
the case of more than two signals are being considered
as well.

Noise has been disregarded in this paper, yet the noise
impact on the estimator performance is another important issue
to be explored.
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