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Blind Separation of Independent Sources for
Virtually Any Source Probability Density Function
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Abstract—The blind source separation (BSS) problem consists OBSERVED
of the recovery of a set of statistically independent source signals SIGIK“}f‘LS ESTIMATED
from a set of measurements that are mixtures of the sources when {r ;yl ' .
nothing is known about the sources and the mixture structure. In — 22 > S X
the BSS scenario, of two noiseless real-valued instantaneous linear X1 5 BLIND [ >527X
mixtures of two sources, an approximate maximum-likelihood A : SOURCE -
(ML) approach has been suggested in the literature, which is only ! | SEPARATION B
valid under certain constraints on the probability density function ; : : .
(pdf) of the sources. In the present paper, the expression for this . iyp > SaXq
ML estimator is reviewed and generalized to include virtually séu . :
any source distribution. An intuitive geometrical interpretation SIGNALS ik MK MATED
of the new estimator is also given in terms of the scatter plots An fp i
of the signals involved. An asymptotic performance analysis NOISE
is then carried out, yielding a closed-form expression for the UNKNOWN

estimator asymptotic pdf. Simulations illustrate the behavior of
the suggested estimator and show the accuracy of the asymptotic
analysis. In addition, an extension of the method to the general

BSS scenario of more than two sources and two sensors isthe presence of background noise and/or competing speakers,
successfully implemented. blind image restoration, fetal electrocardiogram extraction,
Index Terms—Asymptotic performance, blind signal separa- seismic exploration, etc. Several types of mixtures exist, such
tion, closed-form estimators, higher order statistics, maximum s convolutive or nonlinear, but in many of the above cases
likelinood, scatter diagram. the signals observed at the sensor output can be considered
to be instantaneous linear combinations of the sources so that
the mixing structure is represented by an unknomvixing
matrix. The BSS of instantaneous linear mixtures, which is
NUMBER of applications in a variety of areas comprisachematically portrayed in Fig. 1, is the focus of this paper.
the task of obtaining certain signals (so-calkmlirces, The development ohigher order statisticSYHOS) in the
which are not directly accessible but have to be extractéabt decade boosted the interest in this emerging research
(separategl from another set of measurable signals regardeslea, despite the fact that second-order (i.e., correlation-based)
as mixtures of the sources. As neither the source signals techniques can perform the source extraction under particular
the mixing structure are known, this is referred to ashlied conditions. For instance, the separation is feasible resorting
source separatioriBSS) problem. Major fields of applicationonly to second-order statistic{SOS) for temporally col-
include array processing, communications, biomedical sigraied (although spatially white) sources with different spectral
processing, image processing, and speech processing. dtwetent [1], [16]. However, if the sources are temporally
following are just a few examples where the BSS playshite, the time information can no longer be considered, and
a relevant role: direction-of-arrival (DOA) estimation whenhen, the source waveforms cannot be identified undistorted
waveforms are distorted and/or the array layout unknown by employing only SOS [10] unless th&ansfer vectors
poorly calibrated, jammer rejection, multichannel blind equafthe columns of the mixing matrix, also known asurce
ization/deconvolution, mobile radio and regenerative satellitérectiong are orthogonal [18]. On the other hand, SOS-
communications, data communications in the presence lidsed procedures are also able to extract sources with an
cross-coupling effects, airport surveillance, speech recordedaiitrary spectral matrix by exploiting some prior knowledge
on the mixing matrix structure, as done by the MUSIC
method for DOA [12]. Strictly speaking, however, these
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predict or model (e.g., multipaths in an urban environmengjving rise to the first formal mathematical definition of ICA.
then it may be wiser to resort to a blind procedure fofhe ML principle is considered by Harroy and Lacoume
recovering the source signals [3]. Along the same linels, [9], which is reminiscent of the seminal work on the
blind beamforming is shown in [2] to improve “informed” ML approach to BSS carried out by the latter and Gaeta in
beamforming when multipath propagation takes place. Thg. The source pdf is approximated by its Gram—Charlier
former is, by nature, insensitive to errors in the array manifokkpansion truncated at the fourth order. Taking advantage of
model. this expansion, an approximate ML estimator is found when
In an actual BSS problem, only one major hypothesi® noise disturbs the measurements. However, the conditions
is relied on to achieve the separation: the spatial statistifaf the Gram—Charlier expansion to be valid and certain
independence of the sources [2]-[7], [9]-[11]. In order fogimplifications and assumptions made in order to obtain a
temporally white sources to be separated without wavefortnactable analytical expression restrict the applicability of this
distortion under this sole assumption, the application of HOtimator to the case of symmetric sources with the same
is imperative. In statistical terms, a linear transformation atistribution and kurtosis value lying in a certain positive range.
the observed variables is sought so that it results in a sein the present paper, the expression of the Harroy—
of independent components. This is the so-cailheltpendent Lacoume’s ML estimator is taken up, and a similar method
component analysilCA) of the observations [6]. The HOSis put forward and analyzed. The most appealing feature
(usually the higher order cumulants) can be used as a natwhlthe propounded estimator is that it is able to deal with
measure of the degree of independence. Equivalently, the pralsnost any combination of source pdf's of arbitrary symmetry
lem of the source extraction becomes the task of separatfnd kurtosis value. In this sense, the new estimator can be
the observed joint probability density function (jpdf) into theonsidered to be a generalization of the approximate ML
independent source pdf's that generate the former througlgproach, broadening its applicability domain to situations
linear transformation. In signal terms, this leads to a successtside the validity region of the Gram—Charlier expansion
ful source-waveform estimation. A necessary and sufficieand the other restrictions imposed in [9].
condition for the waveform-preserving source estimation to The paper is organized as follows. Section Il summarizes
be feasible is that there be, at most, one Gaussian sigits model, terminology, and basic assumptions of the problem
among the sources [17]. This lack of ability of HOS in dealingn hand. The ML approach developed in [9] is recalled in
with Gaussian sources stems from the fact that the cumulaBgction lll. Founded on this method, the new angle estimator
of such distributions vanish for orders greater than twis introduced in Section IV. Section V unveils an interesting
An alternative explanation is that any linear combination gfeometrical rationale behind the new procedure in terms of
Gaussian random variables is Gaussian as well, and therefdiie, scatter diagrams of the signals involved. Later, Section VI
there is no way of discerning the original variables in this entirely devoted to studying the statistical properties of
measured linear mixture. the estimator for both finite and large sample size. When
A two-step approach is almost universally adopted wheensidering this latter case, an analytical expression for the
facing a source extraction problem [1], [2], [4]-[6], [9].estimator asymptotic pdf is sought. A few experiments carried
The first step is &pre-)whiteningoperation, consisting of a out to illustrate and validate the theoretical results are reported
projection of the observed processes on the signal subsptic&ection VII. In that section, an extension to the general BSS
(i.e., the space spanned by the transfer vectors) plus powetup composed of more than two sources and two measure-
normalization, which can all be accomplished by means @fents is also examined, and the effects of prewhitening on the
second-order tools. This process is equivalent to the diagstimator performance is evaluated. Finally, Section VIII sums
nalization of the sensor covariance matrix. After this initialip, provides some concluding remarks, and suggests potential
step, only a unitary transformation remains to be identified Rvenues of further research.
order to determine the actual source directions and, hence, the
source waveforms and mixing matrix. It is the identificatiofi, PRELIMINARIES: PROBLEM STATEMENT AND TERMINOLOGY
of this unitary matrix, carried out in a second step, that
needs the intervention of higher order techniques when tRe prgplem Description
temporal information cannot be exploited or is simply ignored. _ .
Algebraically, the transformation must diagonalize the higherThe goal of BSS can l_ae bn_efly stated as recovering a
order cumulant tensor of the whitened sensor output, thﬁ%tk of ¢ zero-mean statlsttlcally mdependesn_rburce signals
providing a set of higher order independent signals: the wan ) = ,[xl(k)’ wo, wg(R)]" from a set Offp Instantaneous
sources. In the basic scenario composed of two real-val %?ar m'th_"reSY(k) = [p1(k), .-, yp(K)]", which are t.he
mixtures of two sources, the unitary transformation is reduc erved signaler sensor outputSymbolk represents a time

to a Givens rotation matrix so that only a rotation angle nee&dex.tlntrr?atrlx gorlm and in the noiseless case, this problem
to be estimated. accepts the mode

Several methods have been proposed in the literature for y(k) = Mx(k), k=12 - (1)
the estimation of this angle. In [5], Comon finds an estimator
that is a function of the fourth-order cross-cumulants afhereM < IRP*? is the mixing or transfer matrix assumed
the whitened sensor signals. In [6], the angle estimatidall column rank. In the sequel, we will only consider real-
is accomplished by the maximization of contrast functionsalued sources and mixtures. The power of the sources is,



ZARZOSO AND NANDI: BLIND SEPARATION OF INDEPENDENT SOURCES 2421

in principle, arbitrary since a scalar factor can be swappeds
between any source and its associated column in the mixing
matrix without altering the measurements. The ordering of the 2
sources is also irrelevant. These well-known facts constitutef-
a basic indeterminacy in BSS. At best, matid{ can be
identified up to a permutation and scaling of its columns. 0
Therefore, nothing prevents us from further assuming that thet
sources are unit-power signalg£(k)] = 1 for 1 <4 < ¢ so ‘
that their dynamic range is accounted for by the magnitudes !
of the columns ofM. It should be noted, however, that this -3;—————F—7>% 3
is merely a convention. The source covariance matrix, hence,

(@ (b)
becomes _ _ - _
Fig. 2. Scatter diagram for 1000 samples of (a) original sources, two uni-
R, a E[xxt] —_ Iq (2) formly distributed independent signals, and (b) sensor signals after prewhiten-
ing. The latter corresponds to the former rotated by an unknown angle
0.

where the symbol denotes the transpose operator dpdhe
q X q identity matrix.

The first step to achieve the source extraction is to proje&tcounter-rotation of this angle performed on the whitened
the observations on the signal subspace (spanned by ¢hservations provides the original source waveforms.
columns of M) and to normalize them, which is a process
involving conventional second-order analysis, as commentgd The Scatter Diagram
in the introduction. Comon refers to this preliminary second-
order processing astandardization6]. Consider the singular . - . . .
value IC:jecompogslition (SVD) [8] gf ]the mixing matrng: b|d|men§|onal plot of the amphtude poirts; (k), ZQ(k)).’ k=
UX.Q. The covariance matrix of the observations may then g2 -~ Is called thescatter diagran{9]. The scatter diagram

expressed as a function 84 and its SVD, and in terms of its 'S an approximation of the true jpdf of the corresponding
own eigenvalue decomposition (EVD) ' pair of variables. Areas within the scatter diagram of high

point density correspond to a high value for the associated

R, 2 Elyy'] = {MRWMt = Ux2Ut 3) jpdf around the same area. The left panel of Fig. 2 shows
Y VAV, the scatter diagram of 1000 realizations of two uniformly

disSributed independent random variables, x2), which are

From these equalities, the range space (i.e., the column SPRf&) source signals. It can be appreciated, in the first place,

_?_L the trar;sfe_r matrix fctﬁf‘ be t'dffr;'f;e_d éﬁf‘z N q YA t'h how the density is, roughly, uniform over the definition range,
€ (pseudo)inverse of this matrii/>)" is referred to as the which means that the jpdf is flat. In addition, it corresponds

Ych'te”'lf‘g matr|i<5|?ce Wher: ': '3 applleddto tge senst(_)r”outr;]g a jpdf of independent variables since it can be decomposed
it supplies a set of uncorrelated (second-order spatially whi the product of its two 1-D marginal pdf's. The effect of an

unit-variance components, that is, with identity COV"’manC(()erthogonal transformation is a scatter plot rotation. Effectively,

matrix the scatter diagram corresponding to the whitened pair of
z(k) = (US)y (k) = Qx(k) (4) Vvariables(z1, 22) connected to the sources according to (4)
A . . is represented in the right-hand panel of Fig. 2. It preserves

R. = Elzz’] = QR.Q" = . () the exact shape of the previous one, but it is rotated an #@ngle

Observe that second-order analysis leaves a unitary traWét-h respect to the new axes. Observ_e that t_he source directions
formation undisclosed: the matri@ in (4) that relates the &€ the symmetry axes of the prewhitened jpdf, represented by

whitened signals to the true sources. The estimation of tH€ dashed lines in Fig. 2(b).
matrix requires the use of HOS-based techniques. In thelN€ sScatter diagram points accept a polar as well as a
case of batch processing; signal samples are stored in &£0MPplex form representation
measurement matriX’, with one vector sample per column. EY. 2o(E)) = 21 (k) + _ jdl /
P : . ) = + jxo(k) = pr &P = pr L,
Then, the whitening process above does not require the epr|C|t( 1(k), @2(k)) _ 1(£) J 2( )_ P Jon Pi L0
: ; . : (21(k), 22(k)) = 21 (k) + jza(k) = pr €/ = prl
computation of the sensor-output covariance matrix, but it can E—1 2 ... 7)
be directly affected from the SVD of the observation matrix o
[6]- o where, from (4) and (6), the angle§, and ¢, are readily
From now on, let us focus on the simplified two-source tWQg|4te( by
sensor BSS scenario, where the matgxbecomes a Givens
rotation of the form b = &, + 0. (8)
cos @ —gin 6
o= |

sin 6 cos

Consider the pair of signalz(k) = [21(k), z2(k)]*. The

(6) These polar and complex form representations will prove

very convenient at certain points of the development and
The problem, then, is reduced to determining the artglewill be helpful in providing a very interesting geometrical
from the whitened observations. Once this has been achievietierpretation of the estimator introduced in this paper.
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C. Some Statistical Relationships under these conditions, the ML estimatortoivas found to be
Before proceeding, let us define some statistical terms. In y
the first placeu?,, = E[z*2%] represents thém + n)th- Zpk sin 4¢y
order moment of the bivariate random varialtle= [z, x»]*. [ 1 arctan =~ (11)
4

Analogously, 7, = Cum,,[z1, 2] denotes the(m +
n)th-order cumulant of the same pair of variables. Similar
notation can be employed for the whitened observations, just ) ] o
by substituting the super-index™with * " in the moment and The properties of the eshmator_ were also studied in [9].
cumulant expressions. Moreover, it will be useful to recall thgnder all the above assumptions, it was found to be unbiased

following relationships [15], which hold under the assumptiofp @ny sample size. In addition, the CraraRao lower bound
of zero-mean unit-variance uncorrelated components: (CRLB) for the estimation ot under the conditions of this

ML development, i.e., when the source pdf's are approximated
by their Gram—Charlier expansion, was deduced to be

k
Z Py cos ddp
k

Ko = Mio — 33 Koy = Moy — 3
K31 = 1315 Kis = His; Ko = H3p — 1 var(f] > 6 (12)
K3 = Ki3 = K3y = 0. 9) = T((r5)* + (r8§4)?]

The first two lines express the fourth-order marginal cumM\fh_ﬁ:ee IS exprt—iﬁsed n Ir.ad':r.]s' 91 the lack of itivity of
lants, or kurtosis and the fourth-order cross-cumulants of e same authors realized in [9] the lack of sensitivity 0

the whitened measurements as a function of their momentg(.a estimator (11) to t.h? data qu’ te;ting its robustness for
Totally analogous expressions hold for the kurtosis and cro§QUrees out Of_ the Val'd'ty domain of its devel_op_ment, SL.JCh
cumulants of the sources. The final identity (zero sour@® uniformly distributed signals, whose kurtosis is negative.

fourth-order cross-cumulants) comes from the source indep irprisingly, the results obtained were very favorable. An

dence assumption. Owing to the unit-variance convention, 8ffplanat|0|_1 for this ungxpected phenomenon was given from
statistics become normalized or standardized [6]. a geometrical standpoint, based on the scatter plot and the

source jpdf symmetry. Further experiments involving asym-
metric sources with kurtosis values outside the intefoali]
(e.g., exponential distributions) aroused the suspicion that
the validity scope of (11) was actually less restricted than
By definition, the ML estimator of is the value of the originally predicted. In fact, it is proved in the next section that

rotation angle that maximizes the (log-)likelihood of the givethe approximate ML estimator admits quite a straightforward
whitened observations(k). Mathematically, this idea can begeneralization, whereby almost any source joint distribution
expressed as can be treated.

1. AN APPROXIMATE MAXIMUM -LIKELIHOOD ESTIMATOR

R T IV. GENERALIZATION
Oy, = arg max Z log p.(z(k)[f) (10)
k=1 A. The Extended ML Estimator

) . Dropping the time index: in the sequel for convenience,
for I independent observationgk), k = 1, 2, ---, T, where ot ;5 define the fourth-order complex statistic
() denotes the pdf of the decorrelated measurements re-

lated to the source pdf through,(z|f) = p.(Q7'z) =

1 1 px,((Q'2);), wherep, () is the marginal pdf of the
ith source.

In [9], the source jpdf was approximated by
Gram—Charlier expansion truncated at the fourth-ord
term (hence, the adjective “approximate”). In order for this , o, ,
expansion to be a valid pdf approximation, the kurtosis of ¢ = YEpt e’ ] = S YE[(21 + jza)Y. 14)
each source must lie in the rande, 4], which excludes
all short-tailed (platykurtic, sub-Gaussian, with negativelowever, from the expressions given in (9)
kurtosis) pdf's and even some long-tailed (leptokurtic,
super-Gaussian, with positive kurtosis) ones, such as the E[(x1 + jz2)*] = K% + K3y (15)
exponential distribution. Furthermore, in a bid to simplify the
development, two other conditions were assumed: The souraesl therefore¢ may be expressed as a function of the source
have the same distribution (at least up to the fourth-order $atistics
their Gram—Charlier expansion) and are symmetric, i.e., with €= Cj4g(ﬁw + AT (16)
zero skewnessrsf, = r%;, = 0), and therefore, third-order 40T Toa
terms were also neglected. Then, developing the ML criteridrhe term in brackets, theource kurtosis sunfsks), is not
(10) over the Gram—Charlier expansion of the source jphown because, by definition, the sources are not known either.

¢ 2 E[p*e/] = E[(21 + jiz)Y]- (13)

itdiccording to (7) and (8), (13) accepts an expansion as a
fynction of the sources and the unknown rotation angle
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However, from (7) and (9), the sks can be obtained as B. Connection with the Approximate ML Estimator

Now, let us relate (11) and (23). Equation (11) can be
= E[p*] - 8 = E[(z] + 23)*] -8 = wiy + K&,  (17) written as

which is also available as a function of the whitened data éML _ % arctan <Im(§i)> (24)

Re($)
v=El({ + )% -8 (18)
where Ré-) and Im(-) represent, respectively, the real and
since from (7),0° = 2? 4 23 = 22 + 22. Therefore imagjnary part of their complex argument. First, let us assume
thatéyr, is calculated without regard to the sign of the numer-
A . ator and denominator of the arctangent argument. Contrastin
Loy =40, & = &-sign(y). (19) the latter expression with (23), it tl?rns ou? that both provideg
the same estimates Whed'é, € [-n/2, m/2] or, assuming
In practice, for single signal realizations composed 2f that no error occurs in the estimation of e, =¢, and
samples, thg ensemble or_popul_ation averages in (13), (17), 89irtue of (19), wherd € [—r/8, 7/8] = Q2. Estimator
(18) are estimated by their unbiased time or sample averages s 5 particular case Az Whenf e Q2,/4, and hence,

éMLA is indeed applicable under the same source pdf conditions

T T
s 1 4 jag, _ 1 . 4 asfgyr. Whend ¢ Q. ., estimator (11) is biased. This was
= (oA — 21 (k) + jza(k 20 Y F :
¢ T ; Pre T ;(71( )+ iz (k) (20) expected since if the sign of the arctangent arguments is not
; T_ taken into accountarctan(-) € [—n/2, w/2], and then, (11)
L1 “ 1 5 3,12 only provides estimates in the ranger /8, = /8]. Effectively,
=T ; PL=8=7 ;(zl(k) +2(k)" =8 (1) e arctangent function in (24) obtaigg — = when46 > r/2

and 46 + = when46 < —x /2. Consequently, i > 7 /8, the
expected bias is-w/4 rad, whereas i# < —= /8, such bias
becomesr /4. For6 ¢ Q.,4, we then need to resort to (23).

In the second place, even if the sign of the arctangent

so that{, can be estimated from the above two

&y =& - sign(¥). (22) arguments are considered, estimator (24) only provides valid
separation solutions when the sks is positive. Else, a bias arises
As a result, the following angle estimator arises: in éML relative to@EML, which is7/4 rad whené < 0 and
—n/4 rad whené > 0. In this respect, the effect of the
O, = L angld.) (23) sign function in (22) and (23) can alternatively be seen as

applying an extra 45rotation to the estimate obtained for

. . . 2o , . positive sks so that the potential bias is avoided (this notion
in which function apgléﬁw) supplies tt\e pr,|’nC|paI value will be revisited when giving a geometrical interpretation of
of the argument of¢,. The acronym "EML” stands for \he method in Section V). In essence, by virtue of the sign
extended ML This name will find justification in the next function, the method is made transparent to the source pdf
section. Observe that no.assumpt_ions on thg source pdf's ha¥ess. To emphasize the key role played by the sks, notice
been made at all to arrive at this expression, which makggy; such a factor also appears itself in Harroy—Lacoume’s
this estimator valid forany source distribution combination yeyelopment but vanishes when nulling the score function (see
with any kurfc05|s value andany type of symmetry, as long the term “Lga(p)” in [9, Sec. 3, p. 171]). In conclusion, it
as the sks is n_ot zero. In the event of such a sum beipgy, pe claimed thaipy;. extendsfy; in the source pdf's
zero, the magnitude of would also be null, and could it \which it is able to deal. The constraints (symmetric
not be estimated from it any more. More specifically, Weorces with the same distribution and positive kurtosis in
will see in Section VI when carrying out the asymptotighe rangelo, 4]) under which the approximate ML estimator
performance analysis that estimator (23) becomes inconsistgat originally found to work are alleviated in the proposed
asy — 0. ) ) ) method and reduced to a much weaker single condition on

Before closing this section, we remark thatra2-rad he sum of source kurtosis. Althoughn. has not been
estimation range for the unknown parametesuffices. If §arived from the ML principle, the term “ML” has some
a rotation of arbitrary angl& has been performed on thegignificance. The condition fof to be the ML estimator of
source jpdf, any counter-rotation of andle- (w/2)n, forn = g ynder the assumptions of [9] may be restated a&iégn=
0, 1,2, ..., provides the source components, possibly with a('ﬂn(é)/Re(é)), which is fulfilled by (23), and hence, the latter

axis interchange and sign variation, effects that are irrelevagty|sq the ML estimator of under the same assumptions.
as far as the separation is concerned. Hence, all possible values

of 8 can be reduced to the interv@lhn/4, 7 /4], yet still )

providing acceptable separation solutions. Since dngle - Other Links

[—n, 7], the EML estimator (23) always yields angle estimates It is worth computingé as a function of the statistical

in the required range. properties of the whitened observations. On the one hand,
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from (9) and (13) "

zZy] 17 2y
£ = E[(z1+72)* = (ki0—6r5+r5a)+54(r51 —KT3) (25) )
and, on the other hand, from (9) and (16)—(18)

€= el = (W + 265, + Ky)- (26)

The last two equations state thifatan be determined from the
fourth-order cumulants of the decorrelated measurements. In .
particular, the modulus of (25) and (26) must be equal, which T
leads to the following relationship among the fourth-order @) (0)
cumulants of the whitened sensor outputs:

Fig. 3. Centroid location and angle estimation for a mixture of (a) two

(ﬁz _KE )2 4 (Hz + K2 ) + 2(/«;Z )2 -0 (27) leptokurtic distributions and (b) two platykurtic distributions.
31 13 22\fvq0 04 22) — Y

This relationship was originally deduced by Comon in [S}5mg an angles¢ with respect to ther axis. That is, the
following different and more algebraic arguments. purpose of the “sigh)” term in the estimator expression (22)

and (23) wherxj, +~§, < 0 is to rotate the sample centrofd
V. GEOMETRICAL INTERPRETATION (20) by = rad so that its argument becomes an estimaté of

There exists a fairly enlightening geometrical rationale For combinations of platykurtic and leptokurtic distribu-
behind the apparently obscure estimator expression (23) whiéfs, the geometrical interpretation becomes more involved
the two sources are symmetrically distributed. Ana|ogo[§gld less intuitive, but the results obtained in Section IV
geometric ideas are exposed in [4]. First, consider a mixtufdicate that those cases can also be explained in terms of
of two leptokurtic pdf's, such as, for instance, two Laplaciai’e above two instances, comprising sources with positive and
distributions. Since the kurtosis of both sources is positivBegative kurtosis sum.
it is guaranteed that the sum is. The jpdf of the unit-power
sources exhibits highest values along the lines defined by the VI. STATISTICAL CHARACTERIZATION

;L - .
angles¢ T n(m/2), n =0, ,1’ 2, 3. Accordlngly, the source Having introduced the expression of the EML estimator
scatter_d|agram has a maximum point concentration a'long % examined its behavior from a geometrical point of view,
Sr? m_eg:lfnefs .hOn t:_e otr:jer hand, as expl:lﬂnekd Imk Seth'Onf”'g'study of its statistical properties is in order. The present
the jp Obt ew |te;n% rgeasuremebnt_s 00 T( ke that o tl%%ction is devoted to analyzing its asymptotic performance,
sources, but rotated by degreesf being unknown. As a ¢ is jts estimation characteristics when large samples are

result, the new scatter diagram displays the highest density,.oqsed. Specifically, our main objective is to obtain an

along¢ = 6 +n(r/2), n = 0,1, 2, 3. Now, assume that all ;. vical expression for the estimator asymptotic pdf.
the scatter diagram points are transformed according to

P EPF piej‘lm_ (28) A. Bias
Before entering the asymptotic domain, observe first that

In particular, all the previous points cluttered aroupid= the EML estimator (23) isinbiased for any sample sizehen

9; 7;1(|Z:ra/1 I? ) ;Vé” iZ?eVé i?]eF?atg?Sdl:]ot?ﬁ;hﬁ; alci)tn?ai éz,ae:sue%t least one of the sources has a symmetric distribution. The
grap y dep 9. ’ Yy 9U&Sroof of this claim flows along the same lines as that offered

that acentrqldcalcula.ted as the resultant mean point after tlfﬁ [9. Sec. 4.1] for the approximate ML estimator (11). If
transformation, that is

there is an asymmetric source, let its corresponding axis form
&= E[pgei‘m] (29) an angled with respect to the whitened observations frame
of reference. Consider a set of observatigps, ¢x). From
will show that orientation. Therefore, (23) will provide thenpijs set, parameteré<1) and 51 are computed by means
required angle with which the whitened def is rotated Wltla)f (20) and (21), respective|y, y|e|d|ng an ang|e estimator
respect to the true source jpdf. . 65 . Now, consider the set of symmetric (with respect to
In the second place, let us now consider two platykurtige trye anglef) observations(py, 26 — ¢.). It turns out

distributions playing the role of sources. Hence, their kurtosigat the new parameters are related to the previous ones via
sum is negative, as for two sinusoidal signals. In this case, tg)e) =4O and§(2> _ é(l)* ¢#%¢ | symbol* denoting complex
maximum concentration in the source scatter diagram occurs.: ; ' (2 51

9 Whjugation. Then, from (22) and (232, = (26— 6%, ).

along the linesp’ = (w/4) + n(r/2), n = 0, 1, 2, 3. There- 1) ML :2)

_ grat
fore, in the scatter diagram of the signals after decorrelatio?,/ symmetry of the source(s)| ML "~ Elfk - 1t follows .
at Hbgnr.] = 0 for any sample size. We remark that for this

L . . t
this high density will be shown along= 6+ (7 /4) +n(x/2),
n =0, 1,2 3. These points will all clutter roung = 46 + result to hold, we do not need to assume that both sources

when transformed as indicated by (28), and therefore, tRRSSess equal symmetr!c distribution as in [9] but just that
centroid (29) will also have this orientation [Fig. 3(b)]. |none source be symmetric.
conclusion, the centroid projected across the origin, &€, 1Plus a potential, irrelevantpi/2 bias term.



ZARZOSO AND NANDI: BLIND SEPARATION OF INDEPENDENT SOURCES 2425

B. Basic Asymptotic Results wherew; andw- are obtained by developing the fourth power

If the sources are both asymmetric, the above result is Bt (32)
generally true. However, under basic regularity conditions, 1 & 4 5 5 4
other interesting conclusions about estimator (23) can B8 ~ 7 Z(xl(k)_6$1(k)”72(k)+”72(k))
drawn, which hold for all kind of source pdf. Effectively,

»
Il
—

assuming independent and identically distributed (i.i.d.) ob- 1
servations, the strong law of large numbers [13] ensures that — 7° Z @1 (k) (38)
éTX_%og and?yTX_lj—zofy, and in compliance with (19)—(23) and =
1 « 1 «
Ny (30) w:=7 »_ 4ai®)aa(k) — wr(R)ad(k) = 7 D @a(k).

}
Il
=

k=1

wp . ™ 39
where ™} denotes convergence with probability one. Hence, . . . ( . )
the estimator isstrongly consistenand asymptotically unbi- W|th~the help Of_ (9) and [15], the stat|st|_cal propertiesdgf
ased provided~y # 0. and w, are obtained as follows. In the first place, the mean

and variance ofo; are given by

C. Asymptotic pdf Elwi] = pio + 164 — 6 = Ko + K5y =7 (40)
In order to arrive at a more complete characterization of the 57 éVar[Cul]
estimator, consider first that from (8) = (1Zy — (150)3) — 12(4Ey — %) + 36(uZopE, — 1)
T T 1201 — U + T x \2
é’: l pﬁeﬂ‘” _J1 Z pﬁeﬂ“yk’ G40 _ éx 440 x (Noi 164) x(lios x (N042 ) L L
T~ T &= = (kg0 + Kos) + 16(rgo + rGe) + 56(r30r50 + KG5k0s)
(31) +34((150)” + (£54)) + 160((r30)* + (K53)°)
) ) + 144(k%y + Kgy) + 36K50kG4 + 192. (41)
in which i -
Analogously, the first- and second-order statistical parameters
é’ 1 ET: 4 jag! 1 ET:( (k) +j (k))4 (32) of @, are
z = 7 e = 1 Jx2 . -
r= r= Elwa] =0, (42)
~2 A ~
Then, the estimator becomes a3 = Varlws)]

=16(pgo — 2140104 + 106)

6 = fangldd - sign(3)) = ¢ + ; angldé, - sign(3)) - (33) —16((sE, 4 1) 4 O 4 )

so that +10((r50)? + (rg3)?) — 2rory + 12). (43)
Ad—=f—_p= % angle{é’m - sign(7)). (34) For two Gaussian sources, these statistical parameters become
v=0, &7 =255=192 (44)

That is, the bias of the estimatahd = 6§ — 6 depends The covariance o1 (k) and @s(k) is

exclusively on the source signals (note thabnly depends oA ) ) o o

on them too) and is independent of the specific value of the ¢1z = Elwiwa] — Elw1]E[ws] = —28(p5ou5s — #304405)

rotation angled. Our objective, then, is reduced to obtaining = — 28(KZgKhs — K3pkos) (45)

the pdf of the biasAs. and therefore, these variables are not necessarily uncorrelated.

In the second place, let us assume that the sign of the ever, the sole existence of a symmetric source makes

is properly estimated, which is a reasonable assumption fOf&hish, and the same applies when both sources have identical
high enough sample siZE and/or when|y| = |5, + k&4 is distribution, for example.

not too small. Let us also assume that this sign is posmve.Next, from (38) and (39), and assuming that each source

Calling signal is temporally white [a property that is inherited by
§ = 4A0 = angle{ém) (35) statisticsw; (k) and @2(k)], the central limit theorem [13]
states that for a high enough sample si#ew; can be
we have approximated by a Gaussian distribution of meanand
IV 5 i T variances? = 57 /T, andw, can be approximated by another
Pas(A0) = dps(400), 8] <, [A6] < 4 (36) Gaussian variable of zero mean and variamge= 53 /7, i.e.,
so that it is sufficient to obtaips(6). If the sks is negative, Wi T—d—> N(y, 02) = N(~, 53/7)
the actual pdf will be ar-radian circularly-shifted version of -
. . . . . . 2 ~
ps(6) above, due to the sign function in (34). At this point, it w2 — N(0, 03) = N(0, 63/7) (46)

'~ T—oo
is convenient to decompogg in its real and imaginary parts d . L
where — indicates convergence in distribution. On the

&r = w1 + jwo (37) other hand, for temporally white sourcesjwlE(k)ws(n)] =
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v justification for the term “sigt)” given in Section V] or two
modes symmetrically located for; < o9. For oy < oo,
P % the two modes merge into only one &s/|/o;) increases.
""""""" \ 8 As an example to illustrate this intuitive reasoning, consider
~Gz[ | two Gaussian sources, for which, according to (44)= 0

i — ando; = o9; thus, the level curves becoming circumferences
\/ centered at the origin. This givega(é) uniformly distributed
! between—= and .

Y ~Gy The main result derived from these geometrical considera-
7 tions is that the distribution of (and, hence, oﬁé) becomes
Fig. 4. Level curves of the asymptotic jpdf©f andws, the source centroid more “peaky” around O orr (depending on whethey is
coordinates in the complex plane. positive or negative, respectively) as the ratipg|/o1) and
(01/02) become larger. In order to give a first mathematical
E[@1(k)]E[@2(n)] = 0 for all k # n, and thus, the covarianceSUpport to this claim, we can readily work out the analytical
of w; andw; is given by expression ofps when~y = 0:

12 2 Elorws] — Elur]Elws] = 22 5 (LT tare)
12 = Blwiws] - Elwn |Elws] = —=. (“7) ps(6) = —22 . (51)

- 2

If ¢12 = 0, thenw; andw, are uncorrelated. However, even o |1+ [ “tans

if the coefficienté;» is far from zero,c;» cancels ag’ tends " o

to infinity, and hencew; andw, are at least asymptotically . .

uncorrelated in any case. In conclusion, the asymptotic jp-clgllfﬁ'en' foray > o3, the maximum value ofs is (01/02)/(2)

of the real and imaginary parts é@ is given by the product and occurs até = 0, m, whereas the minimum is
. : g, yp 9 y P 1/(2n(o1/02)) at 6 = +£x/2. The ratio of the maximum
of their marginal pdf's

) ) to the minimum value is thués; /o2)?, confirming that the
p {_ (=77 U_} (48) distribution becomes more “peaky” &s;/02) increases, as
2ma107 207 203 seen in Fig. 5(a). If, on the contrany; < o2, the maximum
The level curves of this pdf are ellipses of semi-axes prealue becomes/(2n (o1 /02)) at§ = +x /2 and the minimum
portional to o; and o, centered at(v, 0), as depicted in (o1/03)/(2r) at § = 0, +m, as graphically described in
Fig. 4. Fig. 5(b). The pdf is flat if and only i&#; = o5, as occurs, for
Having obtained the jpdf ab; andw,, (35) and (37) suggest instance, for Gaussian sources [see (44)].
that we try the variable change All this preceding analysis establishes approximately the
o Ju=rcosé behavior ofps as a function of(v/c1) and (o1 /02). Now,
(w, v) — (7, 6): {v =7sind (49) it will be seen how these trer(ldé aZe actEJaII/y e)xhibited by
which yields for the marginal pdf of: the analytical expression of the pdf. With the help of the
© symbolic mathematics package MAPIYE and after some
ps(8) = /0 2roL 09 tedious algebraic manipulations, we can arrive from (50) at
(rcos § — )2 (r sin §)2 the following general closed-form analytical expression for
exp {_ —o) rsm }dr. (50) the pdf of &:
207 205

. . . . . . g1
Although this expression admits an analytical solution, as will —(1+tarrs) _A2
exp ( )

P, (U, v) =

be seen later on, let us first derive further simplificationsps(8) = 22 2 2:2
to gain a deeper insight into its behavior as a function of or |1+ <ﬂtan6) ] !
parametersy, o1, and o2. Fig. 4 can still be viewed as an 02
approximation to a level curve of the integrand in (50). v(1 + tarks) sign(cos §)
Roughly speaking, the value qf; at a particular anglé, 5
corresponds to the integral with respectrtof a slice of the V&7 oo |1+ <ﬂ tané) ]

T2
think of this value as being related to the distance from the
origin to the point on the level curve located &t 6y, i.e., )
distanceOP in Fig. 4. As a result of this, it is easy to see —y*tar’ §

3/2

function (48) along the anglé = &,. Therefore, we could

now that foro; > o2 and~ > 0, the distribution ofé will P 5 o1 2

concentrate more closely around its matle= 0 as (v/o7) 20511+ <O_—2tan6>

increases. The same outcome is obtained if the (atigo>) is

increased. On the other handgif < o3, the distribution ofé

will show two modes, neither &= 0, though symmetric with v sign(cos 6)

respect to that point. Analogous results are obtained faro, 1+erf (52)
but in that case, the pdf df will exhibit one mode at = = V2414 <ﬂ tané)

for o1 > o9 [this is the statistical counterpart of the geometric 72
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0.7 T T T TABLE |
- RESULTS OF THE SIMULATIONS WITH THE EML ESTIMATOR. SIGNALS ARE
N — o,/c,=2 ] ComposEeD oF5000 i.i.d. SWMPLES. EACH FOUR-ELEMENT COLUMN DISPLAYS,
061, _—— °'1/°2 =4 1 FROM TorP TO BoTTOM, THE MEAN, THE STANDARD DEVIATION, THE
MAXIMUM , AND THE MINIMUM VALUE OBTAINED FOR THE CORRESPONDING

1 PARAMETER AND SIGNAL COMBINATION OVER 100 MoNTE CARLO
RuUNs. ANGLE VALUES (6 — #) ARE EXPRESSED INDEGREES

DISTR. | BOTH SYMMETRIC || SYMMET. - ASYMMET. | BOTH ASYMMETRIC
TYPE || PAIR 5 g-0 || PAIR ] -9 | PAIR 4 -0
SHORT. || Uni | -2.397 | 0000 || Uni- | —1.790 | —0.05 || Shsk- | —1.199 | —0.004
_SHORT || -Uni | 0.032 | 0.005 || -Shsk | 0.052 0.262 || -Shsk | 0.066 | 0.061
—2.983 | 0.017 —1.619 0.668 —1.068 | 0.138
—92.462 | —0.014 1933 | —0.888 —1.421 | —0.237
SHORT- || Uni- | 1.795 | —0.595 §| Uni- | 4.809 | ~0.186 || Shsk- | 5.353 | —0.036
CLONG | -Lap | 0677 | 1760 || -Exp | 1.202 0601 | -Exp | 1.126 | 0.328
6.593 | 3.487 3.869 1.083 10.807 | 0.824
0.886 | —4.801 2605 | —1.813 3.391 | —0.719
LONG- | Lap- | 5.000 | —0.006 || kxp- | 8915 | —0.117 || Exp- | 6.087 | —0.003
07 . . . CLONG | Lap | 0595 ! 0.195 | -Lap | 1599 0339 || Ray | 1.181| 0.402
: ‘ 7089 | 0.548 16.622 0.619 11570 | 0.899
pol_ 0Jo,=05 " 4684 | —1.168 6031 | —1.212 4205 | —1.405
0Bf e T 02 = 0.5 | i 1
: 172
0.5} 4

examined. Finally, an uncomplicated extension to the general
BSS scenario composed of more than two signals is tested.

L process prior to the application of the estimator are also
! This extension is based upon the ideas of [6].

A. Two-Source Two-Sensor Scenario

In the first place, several Monte Carlo simulations have
: 5 been run to test and compare the new estimator performance.
: . i Three different combinations of source pdf's, with regard to

- 08 &n?rad) 0s ! their tail or kurtosis sign, have been considered (both short,
(b) long-short, and both long), together with three different sym-
Fig. 5. Pdf ofé for v = 0. (@) o1 /02 > 1. (b) 01 /02 < 1. metry combinations (both symmetric, symmetric-asymmetric,

and both asymmetric). That makes a total of nine distinct
distribution pairs for the source signals. The actual source
8df’s employed are (in parentheses the abbreviations used
i . . in the results table): uniform (“Uni”), exponential (“Exp”),
be deduced from (52). Effectively, this pdf is, in all Casei’apl acian (“Lap”) R)ayl eigh (“R;y”) ;nd apsh ort-ske(wedpd)i s-

symmetric with respect t6 = 0, and hence, B] =0, thatis, .~ .~ " . . o "
the EML estimator is unbiased for large enough sample sizt%l;uuon ("Shsk?), which is simply an asymmetric triangular

In addition, asT increases, both; ando, tend to zero, and

Observe that fory = 0, the above formula simplifies into
(51). The asymptotic results derived in Section VI-B may al

o . For each distribution pair, zero-mean unit-variance source
Lﬁi[)eeigirliet;/tﬁ\?;\sdslsfigg;?end (g;l (%ni(:] o;ﬁetzruldswto) glapr?;ntAZf signal realizations are created from 5000 i.i.d. samples, and
a consequence, the EML esti7mator showé’stfong cor{sisterfc):OSSible remains of statistical dependence up to fourth-order
T ; - . &6 removed by using the ICA procedure developed in [6]
as long aSWN#NO’ I-€., Figo + Ky # 0. Fory = 0, since (denoted herein as ICA-HOEVD method). Then, a rotation
(01/02) = (61/62), which is a constant for a given pair of i~ ot fiveq angled = 15° is applied to the set of
&urce signals, giving a hypothetical set of whitened sensor
%[%uts. The estimation of the rotation angle is carried out
through (22) and (23), where the sample estimaftemdfy
rad, which is necessary whesf, + k2, < 0, as discussed at are obtained from the whiteped sensor data by means of (20)
the7beginning of this section iot suﬂ‘?ées t(; Usé instead of and (21). From each realization, two parameters are computed:
i ’ the bias(¢ — 6) expressed in degrees and the values @b
v in (52). check how they approximate the sksj, + xZ,). The mean,
standard deviation, maximum, and minimum value for these
VII. SIMULATION EXAMPLES two parameters computed over 100 Monte Carlo runs are
The purpose of this section is to illustrate the propertiesimmarized in Table I.
of the suggested estimator and to test the quality of theln light of these results, the new estimator can be judged
theoretical asymptotic analysis. The effects of a whitenirgs successful in estimating the unknown rotation afiglehis

not vary as the sample size increases. Therefore, the estim
loses its consistency property when the sks is null.
Finally, in order to circularly shift the pdf expression by
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TABLE I 30 v T T
COMPARISON OF SEVERAL EsTIMATORS. EML, ML W ITHOUT REGARD TO q :
ARGUMENT SiGNs (ML-a), ML CONSIDERING ARGUMENT SIGNS (ML-b), AND
ComoN's FormuLA [5] (CF). Sources ARECoMPOSED OF1000 NDEPENDENT 25
UNIFORMLY DISTRIBUTED SAMPLES. EACH FOUR-ELEMENT COLUMN
SHOWS THE MEAN, THE STANDARD DEVIATION, THE MAXIMUM , AND

THE MINIMUM VALUE OBTAINED FOR THE Bias (6 — #) over 100 201
MONTE CARLO RUNS. ALL VALUES ARE EXPRESSED INDEGREES
EXPERIMENTS FORDIFFERENT ANGLE VALUES ARE INDEPENDENT

_ gl
MEIHOD | FMIL | MLa | ML-b | CF a
=200 0.006 | 0.006 | —44.991 | 1.382 1ol
0.033 | 0.033| 0.033 | L1415
01231 0.123 | —44.877 | 5.117
—0.056 | —0.056 | —45.056 | —1.217 i
6=—30°| 0.002| 45.002 | 45.002 | —0.698
0.034 | 0.034 | 0.031| 0614 83 -0.05 0 005 0.1
0.088 | 45.08% | 45.088 | 0.994 48 (rad)
—0.109 | 44.891 | 44891 | —2.527 Fig. 6. Pdf of the bias for exponential and Rayleigh sour@és= 1000

samples per signal, 1000 signal realizations. Solid line: naive density estimate,
. window width = 8.3 - 10~ rad. Dashed line: pdf estimate from analytical
is manifested in the low bias and variancefofln addition, expression (52).

4 approximates the sks very accurately in all cases (e.g., for
uniform-exponential sources, its mean is approximately eqys\
to —1.24 6 = 4.8). _
It is interesting to compare the variance obtained here with!n the second place, some other experiments have been
the bound given by (12). For example, for two Laplacian distrgarried out to test the validity and accuracy of the analytical
butions €2, = xZ, = 3) andT = 5000 samples, (12) predicts expression obtained for the pdf &fd. In the first simulation,
a lower bound for the standard deviation of 0.24680owever. e source distributions are chosen to be the exponential and
from Table I, the empirical standard deviation obtained fdrayleigh distributions, respectively, yielding a positive sum of
this case turns out to be just 0.F9%which is clearly below kurtosis. Each signal realization is composed of 1000 samples,
that limit. This outcome confirms the initial suspicion that th@nd from each of them, another realization of the his
conditions of the Gram—Charlier expansion are too restrictiV® directly calculated from (21), (32), and (34). From 1000
and, indeed, not necessary to be met if estimator (11) is replizations ofAd, its pdf is estimated by using a standard
be applied. method (the naive pdf estimator [14]) with window width
For the sake of comparison with the ML estimator (11) = 8-?'1_0_3 rad. This pdf estimate corresponds to the solid
and in order to illustrate the comments made in Sections IV§!Tve in Fig. 6. From the realizations of the real and imaginary
and V, Table Il shows the angle bias results obtained BRrS Ofé., parameters, o,, ando, are approximated by the
both estimators in a further simulation. This time, the tw8amMPle estimates Of[‘ElA]’Q Varlw], and Vafw,], which are
independent sources are composed of 1000 samples dr&gRoted byy’, 67, and &3, respfactlvel)?. TheAexact v:’;llues
from a uniform distribution. The simulation is run undePbtained for the parameters afé = 6.299, 61 = 2.563,
the conditions cited earlier, generating independent sour@d &2 = 0.363; therefore,(¥'/61) = 2.458, and (61/62) =
realizations over 100 Monte Carlo iterations but feeding tHe063. Substituting these coefficients in (52) and bearing in
same data into both methods at each iteration. For the Nftind (36), we obtain the analytic pdf estimate represented
method, two cases are considered: when the sign of #p the dashed line in Fig. 6. The similarity between the two
arctangent arguments are not taken into account (“ML-a”) a§rves is remarkable. . _ .
when they are (“ML-b”). The first row corresponds to a true In the next expe_nment, a neg_atlve kurtosis sum is tested
rotation angle o = 20°. As predicted in Section IV-B, the Py means of a uniform and a binary source. Under exactly
outcome is identical for EML and ML-a becaulé < (r/8), the same conditions as above, the solid line in Fig. 7(a)
but a —45° bias appears in the results of ML-b since th&hows the naive pdf estimate directly obtained from the angle
sources have negative kurtosis ahg 0. The second row of &Stimates. Nowy)’ = —3.192, &; = 0.040, and, = 0.142,
Table Il shows the results for a new independent set of sou¥ing (|7'|/61) = 80.211, and (6, /62) = 0.280, for which
realizations and a new anglé, = —30° < —22.5°. Note the analytical expression of the pdf produces the dashed-line
that now, an exact5° bias comes up in the results of botHfurve in Fig. 7(a). Again, th_ere is an outstanding resemblance
ML estimators, just as anticipated in Section IV-B: in ML-g€tween the tvy/o plots. Sincé, < &, two modes were
becausedd| > (r/8) and in ML-b because the sks is negativ€XPected, bu(|3’|/41) is so high as to prevent them from
and # < 0. The final column summarizes the performanci!™Ming up. Fig. 7(b) displays the results for the same source
under the same source realizations of the closed-form formul@we remark that the sample estimateof E[w1] defined in (40) is different

for the estimation o found by Comon in [5]. EML results from the sample estimat¢ (21) of v defined in (17) and (18), despite

. . : expected value of both estimates being= «j, + x{,. The former
are ConS|StentIy more reliable than those offered by this Iatég\folves several signal realizations, whereas the latter comprises a single

analytical expression. signal realization.

Asymptotic Behavior
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Fig. 7. Pdf of the bias for uniform and binary sourcesI{ag- 1000 samples Fig. 8. Pdf of the bias for two Gaussian sourc€s= 5000 samples per

per signal, 1000 signal realizations. Solid line: naive density estimate, windeygnal, 1000 signal realizations. Solid line: Gaussian kernel density estimate,
width = 8.3-10~3 rad. Dashed line: pdf estimate using analytical expressidiainction width= 78.5 - 10~3 rad. Dashed line: pdf estimate from analytical
(52). (b) T = 5000 samples per signal, 1000 signal realizations. Solid linesxpression (52).

naive density estimate, window width 4.2 - 10~ rad. Dashed line: pdf

estimate using analytical expression (52).

on the same sensor-output realizations followed by EML
distributions but for a sample size @ = 5000. The new estimation. The dashed line corresponds to a particular mixing
values for the pdf parameters aye = —3.199, 5, = 0.016, matrix with nonorthogonal transfer vectors with second plus
and &, = 0.062, i.e., (|3'|/61) = 197.438, and (61/52) = fourth-order separation stages. The prewhitening process is
0.261. The values ofs; andé» decrease by a factor of/5, accomplished by means of the SVD of the sensor-output data
as (46) predicts and, hence, is the variance reduction in tRétrix, as done, e.g., in [6]. The variances at each sample-
obtained pdf. size value are obtained by sample averaging ovevionte

Finally, two 5000-sample Gaussian signals are chosen Garlo runs with»I" = 5 - 10°. The same source realizations

play the role of sources. For 1000 signal realizations, botheg used in all three cases. As expected, for i.i.d. signals, the
standard estimate and the analytical solution of the bias peifiances decrease & . This is endorsed by the dotted
are plotted in Fig. 8. They approximate a uniform distributiodines of Fig. 9, which represent least-squares approximations
just as anticipated in Section VI. The standard pdf estimatié® the curves of the form “constafif.” The results for
procedure employed in this example is the kernel method [1,§j},e first and second curves are identical, whereas for the

with Gaussian kernel of widtfig.5 - 102 rad. For this source third, the results are slightly higher. Second-order processing
combination;s’ = —0.005, 61 = 0.194, andé, = 0.201, i.e., introduces errors in the estimation of the whitening matrix

(|3|/61) = 0.028, and(54 /62) = 0.966. Sinced’ < 0, it was that translate into inaccuracies in the resulting orthogonal
assumed that < 0 to get the analytical solution. Note thatotation operating on the sources. Consequently, the variance

&1 = &2 ~ 1/192/(5 - 10%) = 0.196, as deduced from (44). ©f the angle estimates increases with regard to prewhitening.
Results of Fig. 9 also reveal that the variance increase seems

to depend on the mixing matrix conditioning. Nonetheless,
Al th ) d h further simulations show that this dependence is not too acute,
the experiments reported up to now assess the eslly yhe yvariance trajectory remains essentially the same and

mator performance when only the higher order processifg, ciose to that without prewhitening over a wide range
part of the separation is Con5|d_ered. In a practical separat ixing matrix conditioning. In particular, when the mixing
SVS“?”"" however, the EML estimator (23) WOUId have to k}ﬁa rix is orthogonal, the effects of the second-order processing
applied after the sensor output has been whitened, as explalgpa%e on the performance of the EML estimator are totally
in Section II-A. Intuitively, the estimator performance Wherﬁegligible.

second-order processing is included would differ from the

results when it is not since the uncertainties generated by )

the prewhitening would add to those introduced by the EMP- EXtension to More than Two Sources and Sensors
estimator on its own. In order to empirically check this A final simulation demonstrates how the method pro-
claim, we can compare the variance of the angle estimafmsunded here, which is, in principle, only valid for the
obtained with and without prewhitening for fixed mixingsimplified two-source two-sensor BSS scenario, is also useful
matrices. Fig. 9 shows how these variances behave as itheseparating more than two source signals from more
sample size increases for two uniformly distributed sourcaban two measurements. The idea is inspired by [6] and
The solid line represents the variance of the EML angleasically consists of operating pairwise and applying (23) to
estimates for a 30rotation on the sources. The dash-dottedvery whitened-signal pair in turn over several sweeps until
line (with “x" markers) also includes the prewhitening appliedonvergence. Geometrically, this corresponds to performing

C. Influence of Prewhitening
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Fig. 9. Influence of prewhitening on the variance of the EML estimator fdfig. 11.
two i.i.d. sources with uniform distribution. Solid line: EML estimation only,
orthogonal mixing matrix. Dash-dotted line (witkx® markers): prewhitening

plus EML estimation, orthogonal mixing matrix. Dashed line: prewhitening 5
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Instantaneous linear mixture of the source signals shown in Fig. 10.
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Sources retrieved by the EML method from the mixture shown in

Fig. 10. Realization of three sources: a sinusoid, a binary sequence, and an 2
exponentially distributed random process.
of

1]

. . . -2
at each iteration an elementary planar rotation on the two-

dimensional scatter plot of the current signal pair. Fig. 10 ~*

displays three sources to be separated by means of this 2
straightforward extension:
1) a sinusoid; w
2) a binary sequence,

3) an exponentially distributed signal;

all composed of 1000 samples of which only the first 500

are shown. The three-sensor output resulting from a par-
ticular instantaneous linear mixture of those three source$ °f
appear in Fig. 11. Again, the SVD is used for prewhitening.

The pairwise extension of the EML procedure supplies the %
sources shown in Fig. 12, whereas Fig. 13 displays the sources

obtained by the ICA-HOEVD method of [6]. Both set ofjy 13

. : . .
100 200 300 400 500
Sample number

Sources extracted by the ICA-HOEVD method from the mixture

estimated source waveforms are nearly identical, apart frehown in Fig. 11.
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the different signal arrangements and unitary scale factorslt has also been proved that spurious modes can appear
Additional experiments on a number of sources and measuire-the asymptotic pdf of the EML estimator whern, <
ments higher than two validate the implemented extension.oo if (|v|/o1) is not large enough, thereby degrading the
estimation quality. In which situations this occurs deserves to
be investigated as well. The estimator has been proven to turn
VIIl. SUMMARY, CONCLUSIONS AND OUTLOOK inefficient when the sks approaches zero. In order to enhance

The approximate ML approach proposed in [9] has bedfie performance in such scenarios, an additional expression
considered. Due to the validity domain of the Gram—Charlighay be utilized instead. This alternative fourth-order estimator
expansion and certain assumptions made during its devel&pcurrently under study, together with an appropriate decision
ment, the applicability of this ML estimator is restricted tdule to make an optimal choice between both expressions given
symmetric sources with the same distribution and normalizédsignal set. Preliminary results for this combined estimation
kurtosis lying in the range [0, 4]. strategy are very encouraging. Alternative generalizations to

Along the same lines, a new expression for the estimatitif case of more than two signals are being considered
of the rotation angle is found, also based on the fourt@s well.
order statistics of the data. Interestingly, to arrive at the Noise has been disregarded in this paper, yet the noise
new expression, neither pdf expansions nor assumptions impact on the estimator performance is another important issue
the source pdfs are necessary. Consequently, the propotedpe explored.
estimator is valid for any source pdf combination with arbitrary
kurtosis value and symmetry. The only condition is that the sks
must be different from zero. This estimator can be regarded as REFERENCES
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