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Abstract - Blind source separation (BSS) and independent component analysis (ICA) are
generally based on a wide class of unsupervised learning algorithms and they found potential
applications in many areas from engineering to neuroscience. A recent trend in BSS is
to consider problems in the framework of matrix factorization or more general signals
decomposition with probabilistic generative and tree structured graphical models and exploit
a priori knowledge about true nature and structure of latent (hidden) variables or sources
such as spatio-temporal decorrelation, statistical independence, sparseness, smoothness
or lowest complexity in the sense e.g., of best predictability. The possible goal of such
decomposition can be considered as the estimation of sources not necessary statistically
independent and parameters of a mixing system or more generally as finding a new reduced
or hierarchical and structured representation for the observed (sensor) data that can be
interpreted as physically meaningful coding or blind source estimation. The key issue is to
find a such transformation or coding (linear or nonlinear) which has true physical meaning
and interpretation. We present a review of BSS and ICA, including various algorithms for
static and dynamic models and their applications. The paper mainly consists of three parts:
(1) BSS algorithms for static models (instantaneous mixtures); (2) extension of BSS and ICA
incorporating with sparseness or non-negativity constraints; (3) BSS algorithms for dynamic
models (convolutive mixtures).

Keywords - Independent Component Analysis, Blind Source Separation, information theory,
feature extraction
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Figure 1. (a) General model illustrating blind source separation (BSS), (b) Such models are exploited in non-
invasive multi-sensor recording of brain activity using EEG or MEG. It is assumed that the scalp sensors (elec-
trodes, squids) picks up superposition neuronal brain sources and non-brain sources related to movements of eyes
and muscles. Objective is to identify the individual signals coming from different areas of the brain.

1. Introduction

A fairly general blind signal separation (BSS) problem often referred as blind signal decomposition or blind
source extraction (BSE) can be formulated as follows (see Figure 1 (a)).

We observe records of sensor signalsx(k) = [x1(k), . . . , xm(k)]T , wherek is a discrete time and(·)T

means transpose of the vector, from an unknown MIMO (multiple-input/multiple-output) mixing and filtering sys-
tem. The objective is to find an inverse system, sometimes termed a reconstruction system, neural network, or
an adaptive inverse system, if it exists and is stable, in order to estimate the all primary source signalss(k) =
[s1(k), . . . , sn(k)]T or only some of them with specific properties. This estimation is performed on the basis of
only the output signalsy(k) = [y1(k), . . . , yn(k)]T and the sensor signals. Preferably, the inverse (unmixing)
system should be adaptive in such a way that it has some tracking capability in non-stationary environments. In-
stead of estimating the source signals directly, it is sometimes more convenient to identify an unknown mixing and
filtering system first (e.g., when the inverse system does not exist, especially when system is overcomplete with
the number of observations is less than the number of source signals, i.e.,m < n) and then estimate source signals
implicitly by exploiting somea priori information about the mixing system and applying a suitable optimization
procedure. The problems of separating or extracting the original source waveforms from the sensor array, without
knowing the transmission channel characteristics and the sources can be expressed briefly as a number of related
BSS or blind signal decomposition problems such Independent Component Analysis (ICA) (and its extensions:
Topographic ICA, Multidimensional ICA, Kernel ICA, Tree-dependent Component Analysis, Subband Decompo-
sition -ICA), Sparse Component Analysis (SCA), Sparse PCA (SPCA), Non-negative Matrix Factorization (NMF),
Smooth Component Analysis (SmoCA), Parallel Factor Analysis (PARAFAC), Time-Frequency Component Ana-
lyzer (TFCA) and Multichannel Blind Deconvolution (MBD) [4, 40, 78, 13, 90, 149, 150, 36, 95, 108].

There appears to be something magical about blind source separation; we are estimating the original source
signals without knowing the parameters of mixing and/or filtering processes. It is difficult to imagine that one can
estimate this at all. In fact, without somea priori knowledge, it is not possible touniquely estimate the original
source signals. However, one can usually estimate them up to certain indeterminacies. In mathematical terms
these indeterminacies and ambiguities can be expressed as arbitrary scaling, permutation and delay of estimated
source signals [138]. These indeterminacies preserve, however, the waveforms of original sources. Although these
indeterminacies seem to be rather severe limitations, in a great number of applications these limitations are not
essential, since the most relevant information about the source signals is contained in the temporal waveforms
or time-frequency patterns of the source signals and usually not in their amplitudes or order in which they are
arranged in the output of the system. For some dynamical models, however, there is no guarantee that the estimated
or extracted signals have exactly the same waveforms as the source signals, and then the requirements must be
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Figure 2. Block diagrams illustrating linear blind source separation or blind identification problem: (a) General
schema with optional whitening, (b) Detailed model. For the overcomplete problem (m < n) the separating matrix
W may not exist; in such cases we attempt to identify the mixing matrixA first and next to estimate sources by
exploiting somea priori knowledge such as sparsity or independence of unknown sources.

sometimes further relaxed to the extent that the extracted waveforms are distorted (filtered or convolved) versions
of the primary source signals (see Figure 1(a)).

The mixing and filtering processes of the unknown input sourcessj may have different mathematical or
physical models, depending on the specific applications [78, 4, 39]. Most of linear BSS models in the simplest
forms can be expressed algebraically as some specific problems of matrix factorization: Given observation (often
called sensor or data) matrixX = [x(1), . . . ,x(N)] ∈ R

m×N perform the matrix factorization:

X = AS + V , (1)

whereN is the number of available samples,m is the number of observations,n is the number of sources,
A ∈ R

m×n represents the unknown basis data matrix or mixing matrix (depending on applications),V ∈ R
m×N

is an unknown matrix representing errors or noise and matrix,S = [s(1), . . . , s(N)] ∈ R
n×N contains the

corresponding latent (hidden) components that give the contribution of each basis vectors. Usually these latent
components represent unknown source signals with specific statistical properties or temporal structures. The ma-
trices have usually clear physical meanings. For example, the rows of matrixS that represent of sources should
be as sparse as possible for SCA or statistically mutually independent as possible for ICA. Often it is required
that estimated components are piecewise smooth (SmoCA) or take only non-negative values (NMF) or values with
specific constraints [90, 44, 126].

Although some decompositions or matrix factorizations provide an exact reconstruction data (i.e.,X =
AS), we shall consider here decompositions which are approximative in nature. In fact, many problems in signal
and image processing can be expressed in such terms of matrix factorization. Different cost functions and imposed
constraints may lead to different types of matrix factorization. In many signal processing applications the data
matrix X = [x(1),x(2) . . . ,x(N)] is represented by vectorsx(k) (k = 1, 2, . . . , N ) for a set of discrete time
instants as multiple measurements or recordings, thus the compact aggregated matrix equation (1) can be written
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Figure 3. Basic approaches for blind source separation. Each approach exploits somea priori knowledge and
specific properties of the source signals.

in a vector form as the system of linear equations:

x(k) = A s(k) + v(k), (k = 1, 2 . . . , N) (2)

wherex(k) = [x1(k), x2(k), . . . , xm(k)]T is vector of the observed signals at the discrete time instantk while
s(k) = [s1(k), s2(k), . . . , sn(k)]T is the vector of components at the same time instant1.

The above formulated problems are related closely to linear inverse problem or more generally, to solving
a large ill-conditioned system of linear equations (overdetermined or underdetermined depending on applications)
where it is necessary to estimate reliably vectorss(k) and in some cases also to identify a matrixA for noisy data.
Such systems of equations are often contaminated by noise or errors, thus the problem of finding an optimal and
robust with respect noise solution arises. Wide classes of extrapolation, reconstruction, estimation, approxima-
tion, interpolation and inverse problems can be converted to minimum norm problems of solving underdetermined
systems of linear equations (2) form < n [88, 40]. Generally speaking, in signal processing applications, the
overdetermined (m > n) system of linear equations (2) describes filtering, enhancement, deconvolution and iden-
tification problems, while the underdetermined case describes inverse and extrapolation problems [51, 40]. In
general, the number of source signalsn is unknown. It is assumed that only the sensor vectorx(k) is available
and it is necessary to design a feed-forward or recurrent neural network and an associated adaptive learning algo-
rithm that enables estimation of sources, identification of the mixing matrixA and/or separating matrixW with
good tracking abilities. Often BSS is obtained by finding ann × m, full rank, linear transformation (separating)

matrix W = Â
+

, whereA+ means some well-defined pseudo-inverse ofA such that the output signal vector
y = [y1, y2, . . . , yn]T , by y = W x, contains components that are as independent as possible, as measured by
an information-theoretic cost function such as the Kullback-Leibler divergence or other criteria like sparseness,
smoothness or linear predictability [4, 40, 14, 24].

Although many different source separation algorithms are available, their principles can be summarized by
the following four fundamental approaches (see Figure 3):

• The most popular approach exploits as the cost function some measure of signals statistical independence,
non-Gaussianity or sparseness. When original sources are assumed to be statistically independent without a
temporal structure, the higher-order statistics (HOS) are essential (implicitly or explicitly) to solve the BSS
problem. In such a case, the method does not allow more than one Gaussian source.

• If sources have temporal structures, then each source has non-vanishing temporal correlation, and less re-
strictive conditions than statistical independence can be used, namely, second-order statistics (SOS) are often
sufficient to estimate the mixing matrix and sources. Along this line, several methods have been developed
[109, 19, 153, 37, 138, 42, 38]. Note that these SOS methods do not allow the separation of sources with
identical power spectra shapes or i.i.d. (independent and identically distributed) sources.

1The data are often represented not in the time domain but rather in the complex frequency or the time frequency domain, so indexk may
have different meaning.
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Figure 4. Fundamental three procedures implemented and exploited in the BSS/ICA for efficient decomposition
and extraction of signals.

• The third approach exploits non-stationarity (NS) properties and second order statistics (SOS). Mainly, we
are interested in the second-order non-stationarity in the sense that source variances vary in time. The
non-stationarity was first taken into account by [107] and it was shown that a simple decorrelation tech-
nique is able for wide class of source signals to perform the BSS task. In contrast to other approaches, the
non-stationarity information based methods allow the separation of colored Gaussian sources with identical
power spectra shapes. However, they do not allow the separation of sources with identical non-stationarity
properties. There are some recent works on non-stationary source separation [37, 36]. Methods that ex-
ploit either the temporal structure of sources (mainly second-order correlations) and/or the non-stationarity
of sources, lead in the simplest scenario to the second-order statistics BSS methods. In contrast to BSS
methods based on HOS, all the second-order statistics based methods do not have to infer the probability
distributions of sources or nonlinear activation (score) functions (see next sections).

• The fourth approach exploits the various diversities2 of signals, typically, time, frequency, (spectral or “time
coherence”) and/or time-frequency diversities, or more generally, joint space-time-frequency (STF) diver-
sity. Such approach leads to concept of Time-Frequency Component Analyzer (TFCA) [20]. TFCA decom-
poses the signal into specific components in the time-frequency domain and computes the time-frequency
representations (TFRs) of the individual components. Usually components are interpreted here as localized,
sparse and structured signals in the time-frequency plain (spectrogram). In other words, in TFCA compo-
nents are estimated by analyzing the time-frequency distribution of the observed signals. TFCA provides an
elegant and promising solution to suppression of some artifacts and interference via masking and/or filtering
of undesired - components.

More sophisticated or advanced approaches use combinations or integration of some of the above mentioned
approaches: HOS, SOS, NS and STF (Space-Time-Frequency) diversity, in order to separate or extract sources
with various statistical properties and to reduce the influence of noise and undesirable interferences.

The all above mentioned BSS methods belongs to a wide class of unsupervised learning algorithms. Unsu-
pervised learning techniques try to discover a structure underlying a data set, extraction of meaningful features and
finding useful representations of the given data [92] [81]. Since data can be always interpreted in many different
ways, some knowledge is needed to determine which features or properties represent our true latent (hidden) com-
ponents. For example, PCA finds a low-dimensional representation of the data that captures most of its variance.
On the other hand SCA tries to explain data as mixture of sparse components (usually in time-frequency domain)
and NMF seeks to explain data by parts-based localized additive representations (with non-negativity constraints).

BSS algorithms, e.g., ICA, SCA, NMF, STD and SmoCA, techniques are often considered as pure mathe-
matical formulas, powerful, but rather mechanical procedures: There is illusion that there are not very much left
for the user to do after the machinery has been optimally implemented. The successful and efficient use of the such
tools strongly depends ona priori knowledge, common sense and appropriate use of the preprocessing and postpro-
cessing tools. In other words, it is preprocessing of data and postprocessing of models where an expertise is truly
needed in order to extract reliable, significant and physiologically meaningful components. Typical preprocessing
tools include: Principal Component Analysis (PCA), Factor Analysis, (FA), model reduction, whitening, filter-
ing, Fast Fourier Transform (FFT), Time Frequency Representation (TFR) and sparsification (wavelets package

2By diversities we mean usually different characteristics or features of the signals.
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transformation) of data (see Figure 4). Postprocessing tools includes: Deflation and reconstruction (”cleaning”) of
original raw data by removing undesirable components, noise or artifacts. On the other hand, the assumed linear
mixing models must be valid at least approximately and original sources signals should have specified statistical
properties [40, 4, 41].

The problem of blind source separation (BSS) has received wide attention in various fields such as signal
analysis and processing of speech, image, and biomedical signals (EEG, MEG, fMRI, PET), especially, signal
extraction, enhancement, denoising, model reduction and classification problems [78, 40].

For many real-time applications one may need special hardwares, and both analogue [29] and digital [85]
chips had been developed.

2. Blind Source Separation Based on Spatio-Temporal Decorrelation and
Non-stationarity

Temporal, spatial and spatio-temporal3 decorrelations play important roles in EEG/MEG data analysis.
These techniques are based only on second-order statistics (SOS). They are the basis for modern subspace meth-
ods of spectrum analysis and array processing and are often used in a preprocessing stage in order to improve
convergence properties of adaptive systems, to eliminate redundancy or to reduce noise. Spatial decorrelation
or prewhitening is often considered a necessary (but not sufficient) condition for stronger stochastic indepen-
dence criteria. After prewhitening, the BSS or ICA tasks usually become somewhat easier and well-posed (less
ill-conditioned), because the subsequent separating (unmixing) system is described by an orthogonal matrix for
real-valued signals and a unitary matrix for complex-valued signals and weights. Furthermore, spatio-temporal
and time-delayed decorrelation can be used to identify the mixing matrix and to perform blind source separation
of colored sources under certain weak conditions [40].

2.1 Robust Orthogonalization/Whitening

The whitening (or data sphering) is an important pre-processing step in a variety of BSS methods. The
conventional whitening exploits the equal-time correlation matrix of the datax(k), so that the effect of additive
noise can not be removed. The idea of a new whitening method lies in utilizing the time-delayed correlation
matrices that are not sensitive to the white noise. A new whitening method is named as arobust whitening,
motivated by the fact that it is not sensitive to the white noise. However, it is somewhat different from (Huber’s)
robust statistics.

The time-delayed correlation matrix of the observation datax(k) has the form

Rx(τ) = E{x(k)xT (k − τ)}

= ARs(τ)AT , (3)

for τ 6= 0. One can easily see that the transformationR
− 1

2

x (τ) whiten the datax(k) without the effect of the
noise vectorv(k). It reduces the noise effect and project the data onto the signal subspace, in contrast to the

conventional whitening transformationR
− 1

2

x (0). Some source separation methods employed this robust whitening
transformation [110, 33, 32, 18, 21].

In general, however, the matrixRx(τ) is not always positive definite, so the whitening transformation

R
− 1

2

x (τ) may not be valid for some time-lagτ . The idea of the robust whitening is to consider a linear com-
bination of several time-delayed correlation matrices, i.e.,

Cx =

K∑

i=1

αiMx(τi), (4)

where

Mx(τi) =
1

2

{
Rx(τi) + RT

x (τi)
}

. (5)

3Literally, space and time. Spatio-temporal data has both a spatial (i.e. location) and a temporal (i.e. time related) components.
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A proper choice of{αi} results in the positive definite matrixCx, as in the extended matrix pencil method. Once
again, the FSGC method [137] can be used to find a set of coefficients{αi} such that the matrixCx is positive
definite.

The matrixCx has the eigen-decomposition

Cx = UDUT , (6)

whereU = [u1, . . . ,um] and

D =

[
D1

0

]
, (7)

whereD1 ∈ R
n×n is a diagonal matrix whose diagonal elements aren principal eigenvalues ofCx. Let U1 =

[u1, . . . ,un]. Then the robust whitening transformation matrix is given byQ = D
− 1

2

1 UT
1 . The transformationQ

project the data onton-dimensional signal subspace as well as carrying out whitening.
Let us denote the whitenedn-dimensional data byx(k)

x(k) = Qx(k)

= Bs(k) + Qv(k), (8)

whereB ∈ R
n×n. The whitened datax(k) (in the sense that

∑K
i=1 αiMz(τi) = I) is a unitary mixture of sources

with additive noise, i.e.,BBT = I.

Algorithm Outline: Robust whitening

1. Estimate time-delayed correlation matrices and construct anm × mJ matrix

M = [Mx(τ1) · · ·Mx(τJ)]. (9)

Then compute the singular value decomposition (SVD) ofM, i.e.,

M = UΣV T , (10)

whereU ∈ R
m×m andV ∈ R

mJ×mJ are orthogonal matrices, andΣ has nonzero entries at(i, i) position
(i = 1, . . . , n) and zeros elsewhere. The number of sources,n can be detected by inspecting the singular
values. DefineU s by

U s = [u1 · · ·un], (11)

whereui is theith column vector of the matrixU andn ≤ m.

2. Fori = 1, . . . , J , compute

F i = UT
s Mx(τi)U s. (12)

3. Choose any initialα = [α1 · · ·αJ ]T .

4. Compute

F =

J∑

i=1

αiF i. (13)

5. Compute a Schur decomposition ofF and check ifF is positive definite or not. IfF is positive definite, the
algorithm is terminated. Otherwise, go to Step 6.
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6. Choose an eigenvectoru corresponding to the smallest eigenvalue ofF and updateα via replacingα by
α + δ where

δ =

[
uT F 1u · · ·uT F Ju

]T

‖[uT F 1u · · ·uT F Ju]‖
. (14)

Go to step 4. This loop is terminated in a finite number of steps (see [137] for proof).

7. Compute

Cx =

J∑

i=1

αiMx(τi), (15)

and perform an eigenvalue-decomposition ofCx,

Cx = [U c1, U c2]

[
D1

0

]
[U c1, U c2]

T (16)

whereU c1 contains the eigenvectors associated withn principal singular values ofD1.

8. The robust whitening transformation is performed by

x(k) = Qx(k), (17)

whereQ = D
− 1

2

1 UT
c1.

Note: In the case ofm = n (equal number of sources and sensors), steps 1 and 2 are not necessary. Simply we let
F i = Mx(τi).

2.2 AMUSE Algorithm and its Properties

AMUSE algorithm belongs to the group of the second-order statistics spatio-temporal decorrelation (SOS-
STD) algorithms [40, 138, 48]. It provides identical or at least very similar decomposition of raw data as the well
known and popular SOBI and TDSEP algorithms [19, 153]. This class algorithms are sometimes classified or
referred as ICA algorithms. However, these algorithms do not exploit implicitly or explicitly statistical indepen-
dence. Moreover, in the contrast to the standard higher order statistics ICA algorithms they are able to estimate
colored Gaussian distributed sources and their performance in estimation of original sources is usually better if the
sources have temporal structure.

AMUSE algorithm have some similarity with standard PCA. The main difference is that AMUSE em-
ploys PCA two times (in cascade way) in two separate steps: In the first step, standard PCA can be applied
for whitening (sphering) data and in the second step SVD/PCA is applied for time delayed covariance matrix
of the pre-whitened data. Mathematically AMUSE algorithm is the following two stage procedure: In the first
step we apply a standard or robust prewhitening (sphering) as linear transformationx1(k) = Qx(k) where
Q = R−1/2

x = (V ΛV T )−1/2 = V (Λ)−1/2V T of the standard covariance matrixRxx = E{x(k)xT (k)}
andx(k) is a vector of observed data for time instantk. Next, (for pre-whitened data) the SVD is applied for
time-delayed covariance matrixRx1x1 = E{x1(k)xT

1 (k − 1)} = UΣV T , whereΣ is diagonal matrix with
decreasing singular values andU , V are orthogonal matrices of left and right singular vectors. Then, an unmixing
(separating) matrix is estimated asW = UT Q [40].

The main advantage of AMUSE algorithm in comparison to other BSS/ICA algorithms is that it allows
us automatically to order components due to application of SVD (singular value decomposition). In fact, the
components are ordered according decreasing values of singular values of the time-delayed covariance matrix. In
other words, AMUSE algorithm exploit a simple principle that the estimated components tends to be less complex
or more precisely, they have better linear predictability than any mixture of those sources. It should be emphasized
that all components estimated by AMUSE are uniquely defined and consistently ranked. Consistent ranking is due
to the fact that these singular values are always ordered in decreasing order [48]. For real-world data probability
that two singular values achieve the exactly same value is very small, so ordering is very consistent and unique.
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The one disadvantage of AMUSE algorithm is that is relatively sensitive to additive noise since the algorithm
exploits only one time delayed covariance matrix.

2.3 Robust SOBI Alagorithm

There is a current trend in ICA/BSS to investigate the “average eigen-structure” of a large set of data matrices
formed as functions of available data (typically, covariance or cumulant matrices for different time delays). In other
words, the objective is to extract reliable information (e.g., estimation of sources and/or the mixing matrix) from
the eigen-structure of a possibly large set of data matrices [152, 27, 40]. However, since in practice we only have
a finite number of samples of signals corrupted by noise, the data matrices do not exactly share the same eigen-
structure. Furthermore, it should be noted that determining the eigen-structure on the basis of one or even two
data matrices leads usually to poor or unsatisfactory results because such matrices, based usually on an arbitrary
choice, may have some degenerate eigenvalues which leads to loss of information contained in other data matrices.
Therefore, from a statistical point of view, in order to provide robustness and accuracy, it is necessary to consider
the average eigen-structure by taking into account simultaneously a possibly large set of data matrices [40, 8, 152].

The average eigen-structure can be easily implemented via linear combination of several time-delayed co-
variance matrices and applying the standard EVD or SVD. An alternative approach to EVD/SVD is to apply the
approximate joint diagonalization procedure (JAD). The objective of this procedure is to find the orthogonal matrix
U which diagonalizes a set of matrices [152, 27]:

Rx(pi) = UDiU
T + εi, (i = 1, 2, . . . , L) (18)

whereRx(pi) ∈ R
n×n are data matrices (for example, time-delayed covariance matricesRx(pi) = E{x(k)xT (k−

pi)} and/or cumulant matrices), theDi are diagonal and real, andεi represent additive errors or noise matrix (as
small as possible). IfL > 2 for arbitrary matricesRx(pi), the problem becomes overdetermined and generally we
can not find an exact diagonalizing matrixU with εi = 0, ∀i. An important advantage of the Joint Approximate
Diagonalization (JAD) is that several numerically efficient algorithms exist for its computation, including Jacobi
techniques (one sided and two sided), Alternating Least Squares (ALS), PARAFAC (Parallel Factor Analysis) and
subspace fitting techniques employing the efficient Gauss-Newton optimization [152].

This idea has been implemented in robust SOBI algorithm which can be briefly outlined as follows:

1. Perform robust orthogonalizationx(k) = Q x(k) similar as in AMUSE algorithm.

2. Estimate the set of covariance matrices:

R̂x(pi) = (1/N)

N∑

k=1

x(k)xT (k − pi) = QR̂x(pi) QT (19)

for a preselected set of time lags (p1, p2, . . . , pL) or band-pass filtersBi.

3. Perform JAD:Rx(pi) = UDiU
T , ∀i, i.e., estimate the orthogonal matrixU using one of the available

numerical algorithm.

4. Estimate the source signals asŝ(k) = UT Qx(k) and the mixing matrix aŝA = Q+ U .

The main advantage of the SOBI algorithm is its robustness in respect additive noise if number of covariance
matrices is sufficiently large (typically more than 100).

2.4 SEONS: Incorporating with Non-stationarity

The SEcond-Order Non-stationary Source separation (SEONS) algorithm is illustrated here. The set of all
matrices of the formR1 −λR2 with λ ∈ R is said to be apencil. Frequently we encounter into the case whereR1

is symmetric andR2 is symmetric and positive definite. Pencils of this variety are referred to assymmetric-definite

pencils [71].
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Theorem 1 (pp. 468 in [71]) If R1 − λR2 is symmetric-definite, then there exists a nonsingular matrix U =
[u1, . . . ,un] such that

UT R1U = diag {γ1(τ1), . . . , γn(τ1)} , (20)

UT R2U = diag {γ1(τ2), . . . , γn(τ2)} . (21)

Moreover R1ui = λiR2ui for i = 1, . . . , n, and λi = γi(τ1)
γi(τ2)

.

It is apparent from Theorem 1 thatR1 should be symmetric andR2 should be symmetric and positive
definite so that the generalized eigenvectorU can be a valid solution if{λi} are distinct. Unfortunately in [28], the
symmetric-definite pencil was not considered, so we might have a numerical instability problem in the calculation
of the generalized eigenvectors.

Now we explain how we construct a symmetric-definite pencil. Let us consider two time-delayed correlation
matricesRx(τ1) andRx(τ2) for nonzero time-lagsτ1 andτ2. For the requirement of symmetry, we replaceRx(τ1)
andRx(τ2) by Mx(τ1) andMx(τ2) that are defined by

Mx(τ1) =
1

2

{
Rx(τ1) + RT

x (τ1)
}

, (22)

Mx(τ2) =
1

2

{
Rx(τ2) + RT

x (τ2)
}

. (23)

Then the pencilMx(τ2) − λMx(τ1) is a symmetric pencil. In general, the matrixMx(τ1) is not positive
definite forτ1 6= 0. Thus instead ofMx(τ1), we consider a linear combination of several time-delayed correlation
matrices, i.e.,

C1 =

J∑

i=1

αiMx(τi). (24)

The set of coefficients,{αi}, is chosen in such a way that the symmetric matrixC1 is positive definite. One simple
way to do this is to use the finite step global convergence (FSGC) algorithm [137]. This method is referred to as
Extended Matrix Pencil Method that is summarized below.

Algorithm Outline: Extended Matrix Pencil Method

1. ComputeMx(τ2) for some time-lagτ2 6= 0 and calculate the matrixC1 =
∑J

i=1 αiMx(τi) by the FSGC
method.

2. Find the generalized eigenvector matrixV of the pencilMx(τ2) − λC1 which satisfies

Mx(τ2)V = C1V Λ. (25)

3. The unmixing matrix is given byW = V T .

Now we consider the case where sources are second-order non-stationary and have non-vanishing temporal
correlations. It follows from the assumptions (AS1)-(AS3) that we have

Mx(kr, τi) = AM s(kr, τi)A
T , (26)

for τi 6= 0. In practiceMx(kr, τi) is computed using the samples in therth time-windowed data frame, i.e.,

Rx(kr, τi) =
1

Nr

∑

k∈Nr

x(k)xT (k − τi),

Mx(kr, τi) =
1

2

{
Rx(kr, τi) + RT

x (kr, τi)
}

,

whereNr is a set of data points in therth time-windowed frame andNr is the number of data points inNr. It
is straightforward to see that the extended matrix pencil method can be also applied to the case of non-stationary
sources.

Algorithm Outline: Extended Matrix Pencil Method (non-stationary case)
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1. We partition the observation data into two non-overlapping blocks,{N1,N2}.

2. ComputeMx(k2, τ2) for some time-lagτ2 6= 0 using the data points inN2.

3. Calculate the matrixC1(k1) =
∑J

i=1 αiMx(k1, τi) by the FSGC method using the data points inN1.

4. Find the generalized eigenvector matrixV of the pencilMx(k2, τ2) − λC1(k1) which satisfies

Mx(k2, τ2)V = C1(k1)V Λ. (27)

3. The unmixing matrix is given byW = V T .

Remarks: The method in [132] employed two matricesRx(k1, 0) andR(k2, 0) to estimate the unmixing matrix.

In order to improve the statistical efficiency, we can employ the joint approximate diagonalization method
[23] in our case, as in the JADE and SOBI. The joint approximate diagonalization method in [23] finds an unitary
transformation that jointly diagonalizes several matrices (which do not have to be symmetric nor positive definite).
The method SEONS is based on this joint approximate diagonalization. In this sense the SEONS includes the
SOBI as its special case (if sources are stationary). The algorithm is summarized below.

Algorithm Outline: SEONS

1. The robust whitening method (described in Section??) is applied to obtain the whitened vectorx(k) =
Qx(k). In the robust whitening step, we used the whole available data points.

2. Divide the whitened data{x(k)} into K non-overlapping blocks and calculateMx(kr, τj) for r = 1, . . . ,K
andj = 1, . . . , J . In other words, at each time-windowed data frame, we computeJ different time-delayed
correlation matrices ofx(k).

3. Find a unitary joint diagonalizerV of {Mx(kr, τj)} using the joint approximate diagonalization method in
[23], which satisfies

V T Mx(kr, τj)V = Λr,j , (28)

where{Λr,j} is a set of diagonal matrices.

4 The unmixing matrix is computed asW = V T Q.

Recently Pham [121] developed a joint approximate diagonalization method where non-unitary joint di-
agonalizer of several Hermitian positive matrices is computed by a way similar to the classical Jacobi method.
Second-order non-stationarity was also exploited in [122], but only noise-free data was considered. The following
extended Pham-Cardoso method generalizes the method in [122]. One advantage of the extended Pham-Cardoso
is the fact that it does not require the whitening step because the joint approximate diagonalization method in [122]
finds a non-unitary joint diagonalizer. However, it requires that the set of matrices to be diagonalized should be
Hermitian and positive definite, so we need to find a linear combination of time-delayed correlation matrices that
is positive definite at each data frame, which increase the computational complexity.

Algorithm Outline: Extended Pham-Cardoso

1. Divide the data{x(k)} into K non-overlapping blocks and calculateMx(kr, τj) for r = 1, . . . , K and
j = 1, . . . , J .
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2. At each data frame, we compute

Cr =

J∑

i=1

α
(k)
i Mx(kr, τi) (29)

by the FSGC method forr = 1, . . . , K. Note that{Cr} is symmetric and positive definite.

3. Find a non-unitary joint diagonalizerV of {Cr} using the joint approximate diagonalization method in
[121], which satisfies

V CrV
T = Λr, (30)

where{Λr} is a set of diagonal matrices.

4. The unmixing matrix is computed asW = V .

3. Blind Source Extraction Using Linear Predictability and Adaptive Band-Pass Filters

There are two main approaches to solve the problem of blind separation and deconvolution. The first ap-
proach, which was mentioned briefly in the previous section, is to simultaneously separate all sources. In the
second one, we extract sources sequentially in a blind fashion, one by one, rather than separating them all simul-
taneously. In many applications, a large number of sensors (electrodes, sensors, microphones or transducers) are
available but only a very few source signals are subjects of interest. For example, in the modern EEG or MEG
devices, we observe typically more than 100 sensor signals, but only a few source signals are interesting; the rest
can be considered as interfering noise. In another example, the cocktail party problem, it is usually essential to
extract the voices of specific persons rather than separate all the source signals of all speakers available (in mixing
form) from an array of microphones. For such applications it is essential to develop and apply reliable, robust
and effective learning algorithms which enable us to extract only a small number of source signals that are poten-
tially interesting and contain useful information. The blind source extraction (BSE) approach may have several
advantages over simultaneous blind separation/deconvolution, such as.

• Only “interesting” signals need to be extracted. For example, if the source signals are mixed with a large
number of noise terms, we may extract only specific signals which possess some desired statistical properties.

• Signals can be extracted in aspecified order according to the statistical features of the source signals, e.g.,
in the order determined by absolute values of generalized normalized kurtosis. Blind extraction of sources
can be considered as a generalization of sequential extraction of principal components, where decorrelated
output signals are extracted according to the decreasing order of their variances.

• The available learning algorithms for BSE are purely local, global stable and typically biologically plausible.

We can use two different models and criteria. The first criterion is based on higher order statistics (HOS)
which assumes that the sources are mutually statistically independent and non-Gaussian (at most only one can be
Gaussian). For independence criteria, we will use some measures of non-Gaussianity [40].

The second criterion, based on the concept of linear predictability and assumes that source signals have
some temporal structure, i.e., the sources are colored with different autocorrelation functions or equivalently have
different spectra shapes. In this approach, we exploit the temporal structure of signals rather than their statistical
independence [49, 134]. Intuitively speaking, the source signalssj have less complexity than the mixed sensor
signalsxj . In other words, the degree of temporal predictability of any source signal is higher than (or equal
to) that of any mixture. For example, waveforms of a mixture of two sine waves with different frequencies are
more complex or less predictable than either of the original sine waves. This means that applying the standard
linear predictor model and minimizing the mean squared errorE{ε2}, which is measure of predictability, we
can separate or extract signals with different temporal structures. More precisely, by minimizing the error, we
maximize a measure of temporal predictability for each recovered signal [50, 47].
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Figure 5. Block diagram illustrating implementation of learning algorithm for blind extraction of a temporally
correlated source.

It is worth to note that two criteria used in BSE: temporal linear predictability and non-Gaussianity based on
kurtosis may lead to different results. Temporal predictability forces the extracted signal to be smooth and possibly
less complex while the non-Gaussianity measure forces the extracted signals to be as independent as possible with
sparse representation for sources that have positive kurtosis.

Let us assume that temporally correlated source signals are modelled by autoregressive processes (AR) (see
Figure 5) as

sj(k) = s̃j(k) +

L∑

p=1

ãjpsj(k − p) = s̃j(k) + Aj(z)sj(k), (31)

whereAj(z) =
∑L

p=1 ãjp z−p, z−ps(k) = s(k−p) ands̃j(k) are i.i.d. unknown innovative processes. In practice,
the AR model can be extended to more general models such as the Auto Regressive Moving Average (ARMA)
model or the Hidden Markov Model (HMM) [40, 78, 7].

For ill-conditioned problems (when a mixing matrix is ill-conditioned and/or source signals have different
amplitudes), we can apply optional preprocessing (prewhitening) to the sensor signalsx in the form

x1 = Qx,

whereQ ∈ R
n×m is a decorrelation matrix ensuring that the auto-correlation matrixRx1x1

= E{x1x
T
1 } = In is

an identity matrix.
To model temporal structures of source signals, we consider a linear processing unit with an adaptive filter

with the transfer functionB1(z) (which estimates oneAj(z)) as illustrated in Figure 5.
Let us assume for simplicity, that we want to extract only one source signal, e.g.sj(k), from the available

sensor vectorx(k). For this purpose, we employ a single processing unit described as (see Figure 6):

y1 (k) = wT
1 x (k) =

m∑

i=1

w1i xi (k) , (32)

ε1 (k) = y1 (k) −
L∑

p=1

b1p y1 (k − p) = wT
1 x (k) − bT

1 ȳ1(k), (33)

where w1 = [w11, w12, . . . , w1m]
T , ȳ1(k) = [y1 (k − 1) , y1(k − 2), . . . , y1 (k − L)]

T ,

b1 = [b11, b12, . . . , b1L]
T andB1 (z) =

L∑
p=1

b1pz
−p is the transfer function of the corresponding FIR filter. It
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Figure 6. The neural network structure of single extraction unit using a linear predictor.

should be noted that the FIR filter can have a sparse representation. In particular, only one single processing unit,
e.g. with delayp andb1p 6= 0 can be used instead ofL parameters. The processing unit has two outputs:y1(k)
which estimates the extracted source signals, andε1 (k), which represents a linear prediction error or estimation
of the innovation, after passing the output signaly1(k) through FIR filter.

Our objective is to estimate optimal values of vectorsw1 andb1, in such a way that the processing unit suc-

cessfully extracts one of the sources. This is achieved if the global vector defined asg1 = AT w1 =
(
wT

1 A
)T

=
cjej contains only one nonzero element, e.g. in thej-th row, such thaty1 (k) = cjsj , wherecj is an arbitrary
nonzero scaling factor. For this purpose, we reformulate the problem as a minimization of the cost function

J (w1, b1) = E
{
ε2
1

}
. (34)

The main motivation for applying such a cost function is the assumption that primary source signals (signals of
interest) have temporal structures and can be modelled, e.g., by an autoregressive model [40, 16, 67, 82].

According to the AR model of source signals, the filter output can be represented asε1(k) = y1(k)− ỹ1(k),

whereỹ1(k) =
∑L

p=1 b1py1(k − p) is defined as an error or estimator of the innovation sources̃j(k). The mean
squared errorE{ε2

1(k)} achieves a minimumc2
1E{s̃2

j (k)}, wherec1 is a positive scaling constant, if and only if
y1 = ±c1sj for anyj ∈ {1, 2, . . . , m} or y1 = 0 holds.

Let us consider the processing unit shown in Figure 6. The associated cost function (34) can be evaluated as
follows:

E
{
ε2
1

}
= wT

1 R̂x1x1
w1 − 2wT

1 R̂x1ȳ1

b1 + bT
1 R̂ȳ

1
ȳ

1

b1, (35)

whereR̂x1x1
≈ E{x1x

T
1 }, R̂x1ȳ1

≈ E{x1ȳ
T
1 } andR̂ȳ

1
ȳ

1

≈ E{ȳ1ȳ
T
1 }, are estimators of true values of

correlation and cross-correlation matrices:Rx1x1
, Rx1ȳ1

, Rȳ
1
ȳ

1

, respectively. In order to estimate vectorsw1

andb1, we evaluate gradients of the cost function and equalize them to zero as follows:

∂J1 (w1, b1)

∂w1
= 2R̂x1x1

w1 − 2R̂x1ȳ1

b1 = 0, (36)

∂J1 (w1, b1)

∂b1
= 2R̂ȳ

1
ȳ

1

b1 − 2R̂ȳ
1
x1

w1 = 0. (37)

Solving the above matrix equations, we obtain a simple iterative algorithm:

w̃1 = R̂
−1

x1x1
R̂x1ȳ1

b1, w1 =
w̃1

||w̃1||2
, (38)

b1 = R̂
−1

ȳ
1
ȳ

1

R̂ȳ
1
x1

w1 = R̂
−1

ȳ
1
ȳ

1

R̂ȳ
1

y1
, (39)

where the matriceŝRȳ
1
ȳ

1

andR̂ȳ
1

y1
are estimated based on the parametersw1 obtained in the previous iteration

step. In order to avoid the trivial solutionw1 = 0, we normalize the vectorw1 to unit length in each iteration step
asw1(l + 1) = w̃1(l + 1)/ ‖w̃1(l + 1)‖2 (which ensures thatE{y2

1} = 1).
It is worth to note here that in our derivation matricesR̂ȳ

1
ȳ

1

andR̂ȳ
1

y1
are assumed to be independent

of the vectorw1(l + 1), i.e., they are estimated based onw1(l) in the previous iteration step. This two-phase
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procedure is similar to the expectation maximization (EM) scheme: (i) Freeze the correlation and cross-correlation
matrices and learn the parameters of the processing unit (w1, b1); (ii) freezew1 andb1 and learn new statistics
(i.e., matriceŝRȳ

1
y1

andRȳ
1
ȳ

1

) of the estimated source signal, then go back to (i) and repeat. Hence, in phase
(i), our algorithm extracts a source signal, whereas in phase (ii) it learns the statistics of the source.

The above algorithm can be further considerably simplified. It should be noted that in order to avoid inversion
of the autocorrelation matrixRx1x1

in each iteration step, we can perform the standard prewhitening or standard
PCA as a preprocessing step and then normalize the sensor signals to unit variance. In such cases,R̂x1x1

= In

and the algorithm is simplified to [16]

w̃1 = R̂x1ȳ1

b1 = R̂x1ỹ1
, w1 =

w̃1

||w̃1||2
, (40)

whereR̂x1ỹ1
= 1

N

N∑
k=1

x1 (k) ỹ1 (k).

It is interesting to note that the algorithm can be formulated in an equivalent form as

w1(l + 1) =
〈x1(k)ỹ1(k)〉

〈y2
1(k)〉

. (41)

From (40)-(41) it follows that our algorithm is similar to the power method for finding the eigenvectorw1

associated with the maximal eigenvalue of the matrixRx1
(b1) = E{

∑L
p=1 b1px1(k)xT

1 (k−p)}. This observation
suggests that it is not necessary to minimize the cost function with respect to parameters{b1p} but it is enough to
choose an arbitrary set of them for which the largest eigenvalue is unique (single). More generally, if all eigenvalues
of the generalized covariance matrixRx1

(b1) are distinct, then we can extract all sources simultaneously by
estimating principal eigenvectors ofRx1

(b1).
For noisy data, instead of linear predictor, we can use a band-pass filter (or in a parallel way several pro-

cessing units with a bank of band-pass filters) with fixed or adjustable center frequency and a band-pass bandwidth
[42, 47, 68]. The approach is illustrated in Figure 7. By minimizing the cost functionJ (wj) = E{ε2

j} subject to
the constraint‖wj‖2 = 1, we obtain the on-line learning rule (for prewhitened data):

w̃j(l + 1) = 〈x1(k)ỹj(k)〉 =
1

N

N∑

k=1

x1(k)ỹj(k), (42)

wj(l + 1) =
w̃j(l + 1)

||w̃j(l + 1)||2
, (43)

whereyj(k) = wT
j (l) x1(k), ỹj(k) = Bj(z)yj(k) = wT

j (l)x̃T
1 (k), x̃1(k) = Bj(z)x1(k). The above algorithm

can extract a source successfully if the cross covariance matrixRx1x̃1
= E{x1x̃1} has a unique (single) maxi-

mum eigenvalue.

The proposed algorithm (42)-(43) is insensitive to white noise and/or arbitrary distributed zero-mean noise
which is beyond the bandwidth of the band-pass filter. Moreover, the processing unit is able to extract the filtered
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from noise version of a source signal if it is a narrow band signal.

Summarizing, the method employed adaptive band-pass filter has several advantages:

• The method does not need a deflation procedure. One processing unit can extract all desired narrow-band
sources sequentially one-by-one by adjusting the center frequency and bandwidth of the band-pass filter.
Parallel extraction of an arbitrary group of sources is also possible by employing several band-pass filters
with different characteristics.

• The algorithm is computationally very simple and efficient.

• The proposed algorithm is robust to additive noise, both white and narrow band colored noise. In contrast to
other methods, the covariance matrix of noise does not need to be estimated or modelled.

4. Independent Component Analysis (ICA)

ICA can be defined as follows: The ICA of a random vectorx(k) ∈ R
m is obtained by finding ann ×

m, (with m ≥ n), full rank separating (transformation) matrixW such that the output signal vectory(k) =
[y1(k), y2(k), . . . , yn(k)]T (components) estimated by

y(k) = W x(k), (44)

are as independent as possible evaluated by an information-theoretic cost function such as minima of Kullback-
Leibler divergence or maximization of cumulants [78, 38, 24, 59].

Independence of random variables is a more general concept than decorrelation. Roughly speaking, we
say that random variablesyi andyj are statistically independent if knowledge of the values ofyi provides no
information about the values ofyj . Mathematically, the independence ofyi and yj can be expressed by the
relationship

p(yi, yj) = p(yi)p(yj), (45)

wherep(y) denotes the probability density function (pdf) of the random variabley. In other words, signals are
independent if their joint pdf can be factorized.

If independent signals are zero-mean, then the generalized covariance matrix off(yi) andg(yj), wheref(y)
andg(y) are different, odd nonlinear activation functions (e.g.,f(y) = tanh(y) andg(y) = y for super-Gaussian
sources) is a non-singular diagonal matrix:

Rf g = E{f(y)gT (y)} =




E{f(y1)g(y1)} 0
. . .

0 E{f(yn)g(yn)}


 ,

(46)

i.e., the covariancesE{f(yi)g(yj)} are all zero. It should be noted that for oddf(y) andg(y), if the probability
density function of each zero-mean source signal is even, then the terms of the formE{f(yi)}E{g(yi)} equal zero.
The true general condition for statistical independence of signals is the vanishing of high-order cross-cumulants
[53, 52, 43].

The above diagonalization principle can be expressed as

R−1
fg = Λ−1, (47)

whereΛ is any diagonal positive definite matrix (typically,Λ = I, By pre-multiplying the above equation by
separating matrixW andΛ, we obtain:

ΛR−1
fg W = W , (48)

which suggest the following iterative multiplicative learning algorithm [64]

W̃ (l + 1) = ΛR−1
fg W (l), (49)

W (l + 1) = W̃ (l + 1)
[
W̃

T
(l + 1)W̃ (l + 1)

]−1/2

, (50)
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where the last equation represents the symmetric orthogonalization to keep algorithm stable. The above algorithm
is simple and fast but need prewhitening the data.

In fact, a wide class of algorithms for ICA can be expressed in general form as (see Table 1) [40]

∇W (l) = W (l + 1) − W (l) = ηF (y)W (l), (51)

wherey(k) = W (l)x(k) and the matrixF (y) can take different forms, for exampleF (y) = Λn − f(y)gT (y)
with suitably chosen nonlinearitiesf(y) = [f(y1), ..., f(yn)] andg(y) = [g(y1), ..., g(yn)] [53, 57, 40, 64].

Assuming prior knowledge of the source distributionspi(yi), we can estimateW using maximum likelihood
(ML):

J(W , y) = −
1

2
log |det(WW T )| −

n∑

i=1

log(pi(yi) (52)

Using natural gradient descent to increase likelihood we get:

W (l + 1) = η
[
I − f(y)yT

]
W (l), (53)

wheref(y) = [f1(y1), f2(y2), . . . , fn(yn)]T is an entry-wise nonlinear score function defined by:

fi(yi) = −
p′i(yi)

pi(yi)
= −

d log(pi(yi)

d(yi)
(54)

Alternatively, for signals corrupted by additive Gaussian noise, we can use higher order matrix cumulants. As
illustrative example, let us consider the following cost function which is measure of independence [57, 56]:

J(W , y) = −
1

2
log |det(WW T )| −

1

1 + q

n∑

i=1

|C1+q(yi)|, (55)

where we use the following notations:Cq(y1) denotes theq-order cumulants of the signalyi andCp,q(y, y)
denotes the cross-cumulant matrix whose elements are[Cpq(y,y)]ij = Cum(yi, yi, . . . , yi︸ ︷︷ ︸

p

, yj , yj , . . . , yj︸ ︷︷ ︸
q

).

The first term in (55) assures that the determinant of the global matrix will not approach zero. By including
this term, we avoid the trivial solutionyi = 0, ∀i. The second terms force the output signals to be as far as possible
from Gaussianity, since the higher order cumulants are a natural measure of non-Gaussianity and they will vanish
for Gaussian signals. It can be shown that for such a cost function, we can derive the following equivariant and
robust in respect to Gaussian noise algorithm [57, 56, 58]

∆W(l) = W (l + 1) − W (l) = ηl [I − C1,q(y, y)Sq+1(y)]W (l), (56)

whereSq+1(y) = sign(diag(C1,q(y, y))) andF (y) = I − C1,q(y, y)Sq+1(y).
It should be noted that ICA can perform blind source separation, i.e., enable to estimate true sources only if

they are all statistically independent and non-Gaussian (except possibly of one) [40, 17].

4.1 Subband Decomposition – Independent Component Analysis (SD-ICA)

Despite the success of using standard ICA in many applications, the basic assumptions of ICA may not
hold for some kind of signals hence some caution should be taken when using standard ICA to analyze real world
problems, especially in biomedical signal processing. In fact, by definition, the standard ICA algorithms are not
able to estimate statistically dependent original sources, that is, when the independence assumption is violated.
In this section, we will present a natural extension and generalization of ICA called Subband Decomposition
ICA (SD-ICA) which relaxes considerably the assumption regarding mutual independence of primarily sources
[44, 135, 46]. The key idea in this approach is the assumption that the unknown wide-band source signals can
be dependent, however some their narrow band sub-components are independent. In other words, we assume that
each unknown source can be modelled or represented as a sum (or linear combinations) of narrow-band sub-signals
(sub-components):

si(k) = si1(k) + si2(k) + · · · + siK(k). (57)
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Table 1. Basic equivariant adaptive learning algorithms for ICA. Some of these algorithms require prewhitening.

No. Learning Algorithm References

1. ∆W = η
[
Λ − 〈f(y) gT (y)〉

]
W Cichocki, Unbehauen, Rummert (1994)

Λ is a diagonal matrix with non-negative elementsλii

W(l + 1) =
[
I ∓ η [I − 〈f(y) gT (y)〉]

]∓1

W(l) Cruces, Cichocki, Castedo (2000)

2. ∆W = η
[
Λ − 〈f(y) yT 〉

]
W , f(yi) = −p′(yi)/p(yi) Bell, Sejnowski (1995)

λii = 〈f(yi(k))yi(k)〉 or λii = 1, ∀i Amari, Cichocki, Yang (1995)

Choi, Cichocki, Amari (1999)

3. ∆W = η
[
I − 〈y yT 〉 − 〈f(y) yT 〉 + 〈y fT (y)〉

]
W Cardoso, Laheld, (1996)

4. ∆W = η
[
I − 〈y yT 〉 − 〈f(y) yT 〉 + 〈f(y) fT (y)〉

]
WKarhunen, Pajunen (1997)

5. W̃ = W + η
[
Λ − 〈f(y) yT 〉

]
W , λii = 〈f(yi) yi〉

Hyvärinen, Oja (1999)

ηii = [λii + 〈f ′(yi)〉]
−1; W = (W̃W̃

T
)−1/2 W̃

6. ∆W = η
[
I − Λ

−1〈y yT 〉
]
W Choi, Cichocki, Amari (2000)

λii(k) = 〈y2
i (k))〉 Amari, Cichocki (1998)

7. ∆W = η
[
I − C1,q(y, y) Sq+1(y)

]
W

Cruces, Castedo, Cichocki (2002)
C1,q(yi, yj) = Cum(yi, yj , . . . , yj︸ ︷︷ ︸

q

)

8. W(l + 1) = exp(η F [y]) W(l) Nishimori, Fiori(1999,2003)

F (y) = Λ − 〈y yT 〉 − 〈f(y) yT 〉 + 〈y fT (y)〉 Cichocki, Georgiev (2002)

9. W̃ = Λ R−1

fg W Fiori (2003)

W = (W̃ W̃
T

)−1/2W̃
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Figure 8. Bank of band-pass filters employed in preprocessing stage for SD-ICA with typical frequency bands. For
each sensor signal we employ the identical set of filters.

For example, in the simplest case, source signals can be modelled or decomposed into their low- and high-
frequency sub-components:

si(k) = siL(k) + siH(k) (i = 1, 2, . . . , n). (58)

In practice, the high-frequency sub-componentssiH(k) are often found to be mutually independent. In such a case,
we can use a High-Pass Filter (HPF) to extract high frequency sub-components and then apply any standard ICA
algorithm to such preprocessed sensor (observed) signals. We have implemented these concepts in our ICALAB
software and extensively tested for some experimental data [40, 41].

The basic concept in Subband Decomposition ICA is to divide the sensor signal spectra into their subspectra
or subbands, and then to treat those subspectra individually for the purpose at hand. The subband signals can be
ranked and processed independently. Let us assume that only a certain set of sub-components are independent.
Provided that for some of the frequency subbands (at least one) all sub-components, say{sij(k)}n

i=1, are mutually
independent or temporally decorrelated, then we can easily estimate the mixing or separating system under condi-
tion that these subbands can be identified by somea priori knowledge or detected by some self-adaptive process.
For this purpose, we simply apply any standard ICA algorithm, however not for all available raw sensor data but
only for suitably pre-processed (e.g., subband filtered) sensor signals.

Such explanation can be summarized as follows. The SD-ICA (Subband Decomposition ICA) can be for-
mulated as a task of estimation of the separating matrixW and/or the estimating mixing matrix̂A on the basis of
suitable subband decomposition of sensor signals and by applying a classical ICA (instead for raw sensor data) for
one or several preselected subbands for which source sub-components are independent.

By applying any standard ICA/BSS algorithm for specific subbands and raw sensor data, we obtain sequence
of separating matricesW 0, W 1, . . . ,W L, whereW 0 is the separating matrix from the original datax andW j is
the separating matrix from preprocessing sensor dataxj in j-th subband. In order to identify for which subbands
corresponding source sub-components are independent, we propose to compute the global (mixing-separating) ma-
tricesGjq = W jW

−1
q , ∀j 6= q, whereW q is estimating separating matrix forq-th subband. If sub-components

are mutually independent for at least two subbands, say for the subbandj and subbandq, then the global matrix
W jW

−1
q = P jq will be generalized permutation matrix with only one nonzero (or dominated) element in each

row and each column. This follows from the simple observation that in such case the both matricesW j and
W q represent inverses (form = n) of the same mixing matrixA (neglecting nonessential scaling and permu-
tation ambiguities). In this way, we can blindly identify essential information for which frequency subbands the
source sub-components are independent and we can easily identify correctly the mixing matrix. Furthermore, the
same concept can be used to estimate blindly the performance index and to compare performance of various ICA
algorithms, especially for large scale problems.

In the preprocessing stage we can use any linear transforms, especially, more sophisticated methods, such as
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Figure 9. Example 1: (a) Observed overlapped images. (b) Reconstructed original images using SD-ICA with
subband decomposition preprocessing.

block transforms, multirate subband filter bank or wavelet transforms, can be applied. We can extend and general-
ize further this concept by performing the decomposition of sensor signals in a composite time-frequency domain
rather than in frequency subbands as such. This naturally leads to the concept of wavelets packets (subband hier-
archical trees) and to block transform packets [40, 151, 13]. Such preprocessing techniques has been implemented
in ICALAB [41].

Simulation illustrative example: In this experiment 6 human faces of three persons are mixed by using
the random generated ill-conditioned mixing matrixA (assumed to be unknown). The mixing images shown in
Figure 9(b) are linear superposition of strongly correlated faces, thus any classical ICA algorithm failed to separate
them. In order to reconstruct original images we applied in the preprocessing stage 10 subbands filters for the
observed images. Using the method described above, we have identified 3 subbands for which the sub-components
are completely independent. For such preprocessed mixed images we have applied the standard natural gradient
ICA learning algorithm [40]. The estimated original images are shown in Figure 9 (c). It is interesting to note
that original images are reconstructed almost perfectly although some of them are strongly dependent. The same
principle can be applied for any real world EEG/MEG fMRI signals.
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Figure 10. Bank of filters employed in preprocessing stage for investigating validity and reliability of any ICA/BSS
algorithms. The subbands can be overlapped or not and have more complex subbands forms. Furthermore, the
coefficients of transfer functions FIR filters can be suitably designed or even randomly chosen.

5. Validity of ICA-based BSS Algorithms for Real World Data

One of the fundamental question in BSS is problem whether the obtained results of the specific BSS/ICA
algorithm is reliable and represent inherent properties of the model and data or it is just a random, purely math-
ematical, decomposition of data without physical meaning. In fact, since most of BSS algorithms are stochastic
in nature, their results may be could be somewhat different in different runs even for the same algorithm. Thus,
the results obtained in a single run or for single set of data of any BSS algorithm should be interpreted with re-
serve and reliability of estimated sources should be analyzed by investigating the spread of the obtained estimates
for many runs [75]. Such an analysis can performed, for example, by using resampling or bootstrapping method
in which the available data is randomly changed by producing surrogate data sets from the original data [104].
The specific ICA/BSS algorithm is then run many times with bootstrapped samples that are somewhat different
from each other. Alternative approach called ICASSO has been developed by [75] which is based on running
the specific BSS algorithm many times for various different initial conditions and parameters and visualizing the
clustering structure of the estimated sources (components) in the signal subspace. In order to estimate algorithmic
reliability it was suggested to run the BSS algorithm many times using different initial conditions and assessing
which of the components are found in almost all run. For this purpose the estimated components are clustered and
classified. The reliable components corresponds to small and well separated clusters from the rest of components,
while unreliable components usually do not belong to any cluster [75, 104].

It is worth to note that the concept of MSD-ICA described in the previous section can be extended easily to
more general and flexible multi-dimensional models for checking validity and reliability of ICA (or more generally
BSS) algorithms with the number sensors equal to or larger than the number of unknown sources (see Figure 10).
In this model we can use a bank of stable filters with transfer functionsHi(z), for example, set of FIR (finite
impulse response filters). The parameters (coefficients) of such FIR filters can be randomly generated. In this case
the proposed method has some similarity with resampling or bootstrap approach proposed by [104]. Similarly
to MSD-ICA, we run any BSS algorithm for sufficiently large number of filters and generate set of separating
matrices:{W 0, W 1, . . . ,W L} or alternatively set of estimated mix matrices:{Â0, Â1, . . . , ÂL}.4 In the next
step we estimate the global mixing-separating matricesGpq = W pW

+
q for anyp 6= q.

The performance of blind separation can be characterized by one single performance index (sometimes
referred as Amari’s performance index) which we refer as blind performance index (since we do not know true
mixing matrix)

BPIi =
1

n

n∑

j=1

(∑n
i=1 |gij |

2

maxi |gij |2
− 1

)
+

1

n

n∑

i=1

(∑n
j=1 |gij |2

maxj |gij |2
− 1

)
, (59)

wheregij is ij-th element of the matrixGpq. In many cases, we are not able to achieve perfect separation for some

4The set of matrices can be further extended if data will be bootstrapped and/or initial conditions will be changed for each run.
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sources or we are able to extract only some sources (not of all them). In such cases instead of using one global
performance index we can define local performance index as

BPIi =

(∑n
j=1 |gij |2

maxj |gij |2
− 1

)
(60)

Alternatively, we can use the following performance index for each componenti [104]

ei = arccos


 gii√∑n

j=1 |gij |2


 (61)

If the performance indexBPIi or ei for specific indexi and bandsp, q is close to zero this means that with high
probability this component is successfully extracted. In order to asses significant components the all estimated
components should be clustered according their mutual similarities. These similarities can be searched in time
domain or frequency domain. The natural measure of similarity between of the estimated components can be
absolute value of their mutual correlation coefficients|rij | for i 6= j which are elements of the similarity matrix
[75]

R = W Rxx W
T
, (62)

whereW = [W 0, W 1, . . . , W l] andRxx = E{xxT } = ARssA
T is covariance matrix of observations under

assumption that the covariance matrix of sourcesRss = E{ssT } is a diagonal matrix and separating matrices
W p are normalized (e.g., to unit length vectors).

ICA decompostion,X = AS, has inherently duality. Considering the data matrixX ∈ R
m×N where its

each row is assumed to be a time course of an attribute, ICA decomposition producesn independent time courses.
On the other hand, regarding the data matrix in the form ofXT , ICA decomposition leads ton independent
patterns (for instance, images in fMRI or arrays in DNA microarray data).

The standard ICA (whereX is considered) is treated astemporal ICA (tICA). Its dual decomposition (re-
gardingXT ) is known asspatial ICA (sICA). Combining these two ideas, leads tospatio-temporal ICA (stICA).
These variations of ICA, were first investigated in [133]. Spatial ICA or spatio-temporal ICA were shown to be
useful in fMRI image analysis [133] and gene expression data analysis [103, 86].

Suppose that the singular value decomposition (SVD) ofX is given by

X = UDV T =
(
UD1/2

)(
V D1/2

)T

= Ũ Ṽ
T
, (63)

whereU ∈ R
m×n, D ∈ R

n×n, andV ∈ R
N×n for n ≤ min(m,N).

Temporal ICA Temporal ICA finds a set of independent time courses and a corresponding set of dual uncon-

strained spatial patterns. It embodies the assumption that each row vector inṼ
T

consists of a linear combination

of n independent sequences, i.e.,Ṽ
T

= ÃT ST , whereST ∈ R
n×N has a set ofn independent temporal se-

quences of lengthN andÃT ∈ R
n×n is an associated mixing matrix.

Unmixing byY T = W T Ṽ
T

whereW T = PÃ
−1

T , leads us to recover then dual patternsAT associated
with then independent time courses, by calculatingAT = ŨW−1

T , which is a consequence of̃X = AT Y T =

Ũ Ṽ
T

= ŨW−1
T Y T .

Spatial ICA

Spatial ICA seeks a set of independent spatial patternsSS and a corresponding set of dual unconstrained

time coursesAS . It embodies the assumption that each row vector inŨ
T

is composed of a linear combination

of n independent spatial patterns, i.e.,Ũ
T

= ÃSSS , whereSS ∈ R
n×m contains a set ofn independentm-

dimensional patterns and̃AS ∈ R
n×n is an encoding variable matrix (mixing matrix).
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DefineY S = W SŨ
T

whereW S is a permuted version of̃A
−1

S . With this definition, then dual time

coursesAS ∈ R
N×n associated with then independent patterns, is computed byAS = Ṽ W−1

S , sinceX̃
T

=

ASY S = Ũ Ṽ
T

= Ṽ W−1
S Y S . Each column vector ofAS corresponds to a temporal mode.

Spatio-Temporal ICA

In linear decomposition, sICA enforces independence constraints over space, to find a set of independent
spatial patterns, whereas tICA embodies independence constraints over time, to seek a set of independent time
courses. Spatio-temporal ICA finds a linear decomposition, by maximizing the degree of independence over space
as well as over time, without necessarily producing independence in either space or time. In fact it allows a
trade-off between the independence of arrays and the independence of time courses.

GivenX̃ = Ũ Ṽ
T

, stICA finds the following decomposition:

X̃ = ST
SΛST , (64)

whereSS ∈ R
n×m contains a set ofn independentm-dimensional patterns,ST ∈ R

n×N has a set ofn indepen-
dent temporal sequences of lengthN , andΛ is a diagonal scaling matrix. There exist twon × n mixing matrices,

W S andW T such thatSS = W SŨ
T

andST = W T Ṽ
T

. The following relation

X̃ = ST
SΛST

= ŨW T
SΛW T Ṽ

T

= Ũ Ṽ
T
, (65)

implies thatW T
SΛW T = I, which leads to

W T = W−T
S Λ−1. (66)

Linear transforms,W S andW T , are found by jointly optimizing objective functions associated with sICA
and tICA. That is, the objective function for stICA has the form

JstICA = αJsICA + (1 − α)JtICA, (67)

whereJsICA andJtICA could be infomax criteria or log-likelihood functions andα defines the relative weighting
for spatial independence and temporal independence. More details on stICA can be found in [133].

6. Sparse Component Analysis and Sparse Signal Representations

Sparse Component Analysis (SCA) and sparse signals representations (SSR) arise in many scientific prob-
lems, especially, where we wish to represent signals of interest by using a small (or sparse) number of basis signals
from a much larger set of signals, often called dictionary. Such problems arise also in many applications such
as electro-magnetic and biomagnetic inverse problems (EEG/MEG), feature extraction, filtering, wavelet denois-
ing, time-frequency representation, neural and speech coding, spectral estimation, direction of arrival estimation,
failure diagnosis and speed-up processing [40, 102, 101].

In opposite to ICA where the mixing matrix and source signals are estimated simultaneously the SCA is
usually a multi stage procedure. In first stage we need to find a suitable linear transformation which guarantee that
sources in the transformed domain are sufficiently sparse. Typically, we represent the observed data in the time-
frequency domain using wavelets package [101]. In the next step, we estimate the columnsai of the mixing matrix
A using a sophisticated hierarchical clustering technique. This step is the most difficult and challenging task since
it requires to identify precisely intersections of all hyperplanes on which observed data are located [66, 136]. In
the last step, we estimate sparse sources using, for example, a modified robust linear programming (LP), quadratic
programming (QP) or semi-definite programming (SDP) optimization. The big advantage of SCA is its ability
to reconstruct of original sources even if the number of observations (sensors) is smaller than number of sources
under certain weak conditions [101, 46, 65].

Neural Information Processing - Letters and Reviews Vol.6, No.1, January 2005

23



We can state the subset selection sub-problem as follows: Find an optimal subset ofr << n columns from
the matrixA which we denote byAr ∈ R

m×r such thatArsr∗
∼= x, or equivalentlyAs∗ + er = x, whereer

represents some residual error vector which norm should below some threshold. The problem consists often not
only in estimating the sparse vectors∗ but also correct or optimal sparsity profile that is the sparsity indexr, that
is detection the number of sources.

Usually, we have interest in sparsest and unique representation, i.e., it is necessary to find solution having
the smallest possible number of nonzero-components. The problem can be reformulated as the following robust
optimization problem:

(Pρ) Jρ(s) = ‖s‖ρ =

n∑

j=1

ρ(sj) s. t. As = x, (68)

whereA ∈ R
m×n, (usually withn >> m) and‖s‖ρ suitably chosen function which measures the sparsity of

the vectors. It should be noted the sparsity measure does not need be necessary a norm, although we use such
notation. For example, we can apply Shannon, Gauss or Renyi entropy or normalized kurtosis as measure of the
sparsity [40, 88, 151]. In the standard form, we uselp-norm with0 ≤ p ≤ 1. Especially,l0 quasi-norm attract a lot
of attention since it ensures sparsest representation [61, 102, 101] . Unfortunately, such formulated problem (68)
for lp-norm withp < 1 is rather very difficult, especially forp = 0 it is NP-hard, so for a large scale problem it
is numerically untractable. For this reason, we often use Basis Pursuit (BP) or standard Linear Programming (LP)
for ‖s‖ρ = ‖s‖1, with ρ = p = 1.

In practice, due to noise and other uncertainty (e.g., measurement errors) the system of linear underdeter-
mined equations should not be satisfied precisely but with some prescribed tolerance (i.e.,As ∼= x in the sense
that‖x − A s‖q ≤ ε). From the practical point of view as well as from a statistical point of view, it is convenient
and quite natural to replace the exact constraintsx = As by the constraint‖x − As‖q ≤ ε, where choice of
lq-norm depends on distribution of noise and specific applications. For noisy and uncertain data we should to use
a more flexible and robust cost function (in comparison to the standard (Pρ) problem) which will be referred as
Extended Basis Pursuit Denoising (EBPD)[46]:

(EBPD) Jq,ρ(s) = ‖x − As‖q
q + α ‖s‖ρ, (69)

There are several possible basic choices forlq and sparsity criteria (‖s‖ρ = ‖s‖p) For example, for the uniform
(Laplacian) distributed noise we should choosel∞-Chebyshev norm (l1-norm). Some basic choices ofρ (for
lq = 2) areρ = 0 (minimum l0 quasi norm or atomic decomposition related with the matching pursuit (MP) and
FOCUSS algorithm),ρ = 1 (basis pursuit denoising) andρ = 2 (ridge regression) [88, 151, 61]. The optimal
choice ofρ norms depends on distribution of noise in sparse components. For example, for noisy components,
we can use robust norms such as Huber function defined as‖s‖ρH

=
∑

i ρH(si), whereρH(si) = s2
i /2 if

|si| ≤ β andρH(si) = β |si| − β2/2 if |si| > β, and/or epsilon norm defined as‖s‖ε =
∑

j |sj |ε where
|sj |ε = max{0, (|sj | − ε)}.

The practical importance of theEBPD approach in comparison to the standard LP or BP approach is that
theEPBD allows for treating the presence of noise or errors due to mismodeling. Moreover, using theEBPD
approach, we have possibility to adjust the sparsity profile (i.e., adjust the number of nonzero components) by
tuning the parameterα. In contrast, by using the LP approach we do not have such option. Furthermore, the
method can be applied both for undercomplete and/or overcomplete models (i.e., when the number of sources is
larger or less than the number of sensors.

The practical importance of the extended quadratic programming approach in contrast to the linear program-
ming or standard Basis Pursuit approach is that the(QP ) allows for treating the presence of noise or errors due to
mismodeling. In practice, in the presence of noise the true model is:x(k) = As(k) + v(k).

7. Non-negative Matrix Factorization and Sparse Coding with Non-negativity
Constraints

7.1 Blind Separation of Independent Sources with Non-negativity Constraints

In many applications such as computer tomography and biomedical image processing non-negative con-
straints are imposed for entries (aij ≥ 0) of the mixing matrixA and/or estimated source signals (sj(k) ≥ 0)
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(2)) [40, 118, 76]. Moreover, recently several authors suggested that a decomposition of a observationX = AS

into non-negative factors or Non-negative Matrix Factorization (NMF), is able to produce useful and meaningful
representation of real- world data, especially in image analysis, hyperspectral data processing, biological modeling
and sparse coding [118, 90, 123, 76].

In this section, we present very simple and practical technique for estimation of non-negative independent
sources and entries of the mixing matrixA using standard ICA approach and suitable postprocessing. In other
words, we will show that by simple modifications of existing ICA or BSS algorithms, we are able to satisfy non-
negativity constraints of sources and simultaneously impose they are sparse or independent as possible. Without
loss of generality, we assume that all sources are non-negative, i.e.,sj(k) = s̃j(k) + cj ≥ 0 ∀j, k. Moreover, we
assume that zero mean sub-components̃j(k) are mutually statistically independent5.

Furthermore, we may assume if necessary that the entries of nonsingular mixing matrixA are also non-
negative i.e,aij ≥ 0 ∀i, j and optionally that columns of the mixing matrix are normalized vectors to have
1-norm equals unity [118, 40].

We propose two stage procedure. In the first stage, we can apply any standard ICA or BSS algorithm for
zero-mean (pre-processed) sensor signals without any constraints in order to estimate the separating matrixW up
to an arbitrary scaling and permutation and estimate waveforms of original sources by projecting (nonzero mean)
raw sensor signalssj(k) via the estimated separating matrix(ŝ(k) = Wx(k)).

It should be noted that since the global mixing-unmixing matrix defined asG = WA after successful
extraction of sources is a generalized permutation matrix containing only one nonzero (negative or positive) ele-
ment in each row and each column, thus the each estimated source in the first stage will be either non-negative or
non-positive for every time instant.

In the second stage in order to recover original waveform of sources with correct sign all estimated non
positive sources should be inverted, i.e. multiplied by−1. It should be noted that this procedure is valid for an
arbitrary nonsingular mixing matrix with both positive and negative elements.

If the original mixing matrixA has non-negative entries then in order to identify it the corresponding vectors
of the estimating matrix̂A = W−1 should be multiplied by the factor−1. In this way, we can estimate original
sources and blindly identify the mixing matrix satisfying non-negativity constraints. Furthermore, if necessary, we
can redefinêA and ŝ as follows: ̂̄akj = âkj/

∑n
i=1 âij and̂̄sj = ŝj(

∑n
i=1 âij). After such transformation, the

new estimated mixing matrix̂̄A has column sums equal to one and the vectorx = ̂̄A ̂̄s is unchanged.
There are several known procedures which are not biased by white or Gaussian noise. In the second stage we

can easily identify the mixing matrix̂A = W−1 It should be noted that since the global mixing-umnixing matrix
G = WA is generalized matrix containing only one nonzero (negative or positive) element in each row and each
column so the estimated sources

Summarizing, from this simple explanation it follows that it is not necessary to develop any special kind of
algorithms for BSS with non-negativity constraints (see for example, [90, 123, 118]). Any standard ICA algorithm
(batch or on-line) can be applied first for zero-mean signals and waveforms of original sources and desired mixing
matrix with non-negativity constraints can be estimated exploiting basic properties of the assumed model, however,
under rather strong assumption that original sources are mutually independent.

7.2 Non-negative Matrix Factorization Using Multiplicative Algorithms

The method based on standard ICA approach presented in the previous section enables to estimate the mixing
matrix A and non-negative componentssj(k) = sjk ≥ 0 (∀j, k only under assumption that original sources are
independent.

The NMF (Non-negative Matrix Factorization) introduced by Lee and Seung [90], sometimes called also
PMF (Positive Matrix Factorization) which was first introduced by Paatero does not assume explicitly or implicitly
sparseness or the mutual statistical independence of components however usually provides sparse decomposition.
The NMF found wide applications in spectroscopy, chemometrics and environmental science where the matrices
have clear physical meanings and some normalization are imposed to them (for example, the matrixA has columns
normalized to unit length).

5It should be noted that non negative sourcessj(k) = s̃j(k) + cj are non independent, even zero mean sub-componentss̃j(k) are
independent, since dc (constant) sub-componentscj are dependent. Due to this reason we refer the problem as non-negative blind source
separation rather non-negative ICA [123].
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NMF decomposes the data matrixX as a product of two matricesA and S having only non-negative
elements. This results in reduced representation of the original data. In the reduced data set, each feature is a linear
combination of the original attribute set. The NMF has low computational cost and the ability to deal with both
dense and sparse data sets.

The NMF method is designed to capture alternative structures inherent in the data and, possibly to provide
more biological insight. Lee and Seung introduced NMF in its modern formulation as a method to decompose
images. For example, in this context, NMF yielded a decomposition of human faces into parts reminiscent of
features such as lips eyes, nose, etc. By contrast to other factorization methods, such as ICA or PCA, to image
data yielded components with no obvious visual interpretation. When applied to text, NMF gave some interesting
evidence of differentiating meanings of the same word depending on context (semantic polysemy). Here, we
attempt to employ NMF to extract hidden interesting components from spectra and/or spectrograms of EEG data.

NMF does not allow negative entries in the matrix factorsA andS in the modelX = AS. Unlike the other
matrix factorization these non-negativity constraints permit the combination of multiple basis signals to represent
original signals. But only additive combinations are allowed, because the nonzero elements ofA andS are all
positive. Thus in such decomposition no subtractions can occur. For these reasons, the non-negativity constraints
are compatible with the intuitive notion of combining components to form a whole signal or image, which is how
NMF learns a parts-based representation [90].

Whereas the original application of NMF focused on grouping elements of images into parts (using the
matrix A), we take the dual viewpoint by focusing primarily on grouping samples into components representing
by the matrixS.

In this section, we overview several adaptive algorithms for the NMF.
Let us consider the following cost function (which is optimal for Gaussian distributed noise):

J1(A, S) = ‖X − AS‖2 =
∑

i,k

|[X] ik − [AS] ik|
2

s. t. aij ≥ 0, sj(k) = sjk ≥ 0 ∀ i, j, k, (70)

where the mixing matrixA ∈ R
m×n is unknown corresponding to the basis matrix in previous sections, the matrix

S ∈ R
n×N is composed of then unknown non-negative sources, the only observableX ∈ R

m×N is a data matrix
with its rows being mixtures of sources. We assume that matricesX, A andS are non-negative. Based only on the
observable mixture matrixX, we will estimates unknown matricesA andS by using the optimization approach.

For any rankn, the NMF algorithms group the available data into classes or clusters of components. The
key open issue is to find whether a given rankn decomposes the data into ”meaningful” components. Typically
n is chosen so that(m + N)n < mN . In general, the NMF algorithms may or may not converge to the same
meaningful solutions on each run, depending on the random initial conditions and the kind of the algorithm we use.
If a clustering inton classes is strong, we would expect that sample assignment to clusters would vary little from
run to run. Although NMF is pure algebraic factorization, it was shown that as the rankn increases the method
may uncover some structure or substructures, whose robustness can be evaluated by ran algorithm for gradually
increasingn. In fact, NMF may reveal hierarchical structure when it exists but does not force such structure on
the data like SCA or ICA does. Thus, NMF may have some advantages in exposing meaningful components and
discover fine substructures.

Using the gradient descent approach for this cost function in respect of elementsaij of A, we obtain

∆aij(l + 1) = aij(l + 1) − aij(l) (71)

= −ηij
∂J1

∂aij
= −ηij

(
[X ST ] ij − [AS ST ] ij

)
.

Analogously, assuming that elementsaij are fixed, we obtain additive update rule for elementssjk of S

∆sjk = sjk(l + 1) − sjk(l) (72)

= η̃jk
∂J

∂sjk
= −η̃jk

(
[AXT ] jk − [AT AS] jk

)
,

wheresjk = sj() andxik = xi(k). The above additive learning rules do not ensure automatically non-negativity
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constraints, however, if use the so-called Exponential Gradient (EO) :

sj ← sj exp

(
−η

∂J

∂sj

)
(73)

then non-negativity constraints are automatically preserved, because the elements of exponential gradients are
always positive. Multiplicative learning rules such as EO typically lead to faster convergence than additive updates
if the solution of the optimization is sparse, containing a large number of zero elements.

Lee and Seung proposed to choose in (71)-(72) specific learning rates [90, 126]

ηij =
aij

[ASST ]ij
(74)

and

η̃ij =
sjk

[AT AS] jk

(75)

what leads to simple multiplicative update rules:

aij ← aij
[X ST ] ij

[A S ST ] ij

(76)

sjk ← sjk
[AT X] jk

[AT AS] jk

(77)

that guarantee the positivity constraints assuming initial conditions are positive6 and local convergence.
The above learning rules provides usually sparse non-negative representation of data, although they do not

guarantee the sparsest possible solution (i.e. not necessary representation which contain the highest possible num-
ber of zero elements ofS and/orA). Moreover, solutions are not unique and algorithms may stuck in local minima.
Usually, the better performance (in the sense that it have less probability that it stuck in local minima) has algorithm
(84)-(86).

Although standard NMF (without any auxiliary constraints) provides sparseness of its component, we can
achieve some control this sparsity by imposing additional constraints to natural non-negativity constraints. In fact,
as we already mentioned, we can incorporate sparsity constraints in several ways. For example, in order to ensure
a sparse non-negative solution for the cost function (70) it can be modified in quite general form as follows:

Jα(A,S) = ‖X − AS‖2 + αA

∑

ij

f(aij) + αS

∑

jk

f(sjk) (78)

s. t. aij ≥ 0, sj() = sjk ≥ 0 ∀ i, j, k,

whereαA ≥ 0 and αS ≥ 0 are regularization parameters which control tradeoff between sparsity ofA and
S, respectively and accuracy on the NMF (X ≈ AS) andf(·) is suitably chosen function which is measure
of sparsity. In order to achieve sparse representation we usually chosef(s) = |s| or simply f(sj) = sj or
f(sj) = sj log(sj) with constraintssj ≥ 0. Note, that we treat both matricesA andS in symmetric way. By
using the gradient descent approach with 1-norm constraints the multiplicative learning rules (76) -(77) can be
modified as follows:

aij ← aij

[
[X ST ] ij − αA

]
+

[AS ST ] ij

(79)

sjk ← sjk

[
[AT X] jk − αs

]
+

[AT AS] jk

, (80)

6Note that the multiplicative learning rules can not set the some values ofaij andsjk exactly zero, therefore in practice we enforce by
introducing a threshold constraints, e.g.,sik equals zero or very small positive valueδ if a actual value ofsik ≤ εt where the thresholdεt

determines the noise floor.
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where nonlinear operator[x]+ = max{0, x} is introduced to ensure non-negativity constraints.
Alternative modification has bee proposed by Hoyer [76], which can be expressed in somewhat more general

form as

aij ← aij
[X ST ] ij

[AS ST ] ij + αA

(81)

sjk ← sjk
[AT X] jk

[AT AS] jk + αS

(82)

The sparse NMF procedure can be implemented as follows.

Algorithm Outline: Non-negative Matrix Factorization with Sparsity Constraints

1. Initialize elements ofA(0) andS(0) to random non-negative values. For example, choose randomS and
constrained non-negative least squares (NLS) forA. Normalize each column ofA(0) to unit 2-norm. Set
l = 0.

2. Update matrixA using the multiplicative learning rule, e.g. (79).

Alternatively, if no sparseness constraints are imposed onA, we can use [76]

Ã = A(l) − η (A(l)S(l) − X) ST (l).

Force small values ofA to be approximately zero, i.e., any values ofA smaller thanε are set to zero or very
small valueδ. Normalize each column ofA to the unit norm (A(l + 1) = Ã).

3. Update matrixS using modified multiplicative learning rule, e.g. (80). Force small values ofS to be
approximately zero.

4. Iterate (back to Step 2) till convergence is achieved.

Alternative cost function which intrinsically ensures non-negativity constraints and it is related the Poisson
likelihood is a functional based on Kullback-Leibler divergence [90, 126]:

J2(A, S) = D(X || [AS]) (83)

=
∑

i,k

(
xij log

xik

[AS] ik
− xik + [AS] ik

)
+ αA

∑

ij

aij + αS

∑

ik

sik,

where two optional additional terms are introduced in order to impose sparseness of the components. The non-
negative coefficientsαA ≥ 0 andαS ≥ 0 control the sparsity profiles of the matrixA andS, respectively. The
minimization of this cost function leads to multiplicative learning rules:

ãij ← aij

∑N
k=1 sjk (xik/[AS] ik)

(1 + αA)
∑N

p=1 sjp

, (84)

sjk ← sjk

∑m
i=1 aij (xik/[AS]ik)

(1 + αS)
∑m

q=1 aqj
, (85)

aij ←
ãij∑
i ãij

(86)

During the above updates, we should update the matricesA andS alternatively. However, it should be noted
that we do not need to update the whole matrices. Instead, after updating one row ofA, we need to update
the corresponding column ofS and so on, since we only need one row (or column) of corresponding matrices
occurring in the learning rules. Due to some physical constraints and also in order to achieve a unique solution it
is necessary usually to normalize in each iteration the columns ofA or rows ofS to unity or fixed norm.
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Above NMF multiplicative algorithm is closely related to the SMART (Simultaneous Multiplicative Alge-
braic Reconstruction Technique) developed and analyzed by Byrne in 1997 [40]

sjk ← sjk exp

(
m∑

i=1

āij log(
xik

āT
i s(k)

)

)

= sjk

m∏

i=1

(
xik

āT
i s(k)

)aij

, (87)

whereāi is thei-th row of the normalized matrixA to unity 1-norm of columns.

7.3 Local NMF Algorithm

The standard NMF models does not impose any constraints on the described above is not able reveal local
features in the dataX. In order to learn more local features the alternative cost function has been proposed [102]:

J3(A, S) =
∑

i,k

(
xij log

xik

[AS] ik
− xik + [AS] ik + βA uik

)
− βS

∑

i

vii,

whereU = [uik] = AT A andV = [vik] = SST andβA, βS are some non-negative coefficients. In the above
cost two additional terms have been introduced in order impose the following constraints:

• To make basis vectorsaj as orthogonal as possible in order to minimize redundancies. This is accomplished
by minimizing the terms

∑
i 6=k uik

• To minimize the number of basis components (columnaj of A) required to representX. In other words,
we wish that the basis vectors contains as many nonzero elements as possible. This is accomplished by
minimizing

∑
i uii.

• To retain the components that give the most (information) variance. This is equivalent to maximizing
∑

i vii.

The multiplicative update rules for local NMF take the following form:

sjk ←

√√√√sjk

m∑

i=1

aij
xik

[A S]ik
, (88)

ãij ← aij

∑N
k=1 sjk (xik/[AS] ik)

∑N
p=1 sjp

, (89)

aij ←
ãij∑
i ãij

(90)

It should be noted that for all multiplicative learning rules ensures non-negativity of matrices if initial ma-
trices was also non-negative. Usually we start form arbitrary non-negative matrices (for example, elements of
matrices are uniformly distributed from 0 to1). Iteration should be continued until the RMS error change will be
negligible small (say, less than 0.01%). Since all presented algorithms are based on gradient descent approach they
only guarantee to achieve only local minima. To address this limitation, we can repeat the procedure several times
starting form different initial matrices. The NMF factorizations leading to lowest RMS error should be used in
further analysis.

An essential feature of the NMF approach is that it reduces the data set from its full data space to lower
dimensional NMF space determined by rankn (typically, n < (mN)/(m + N)).

The utility of NMF for estimating latent (hidden) components and their clusters or classes from EEG data
(represented in the frequency or time frequency domain) stems from its non-negativity constraints, which facilitates
the detection of sharp boundaries among classes. These components are typically sparse, localized, and relatively
independent, which makes a natural signals decomposition suitable for flexible and promising interpretation. De-
spite its promising features, NMF has the limitation due to of non-uniqueness of solutions and difficulties chose
optimal dimensions of matricesA andS, as well as interpretation of some components.
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In summary, NMF is a powerful technique for extracting, clustering and classifying of latent components.
Recently NMF was generalized to a multilayer generative network, which leads tomultiplicative up-propagation

learning [2]. However, the challenge that still remains is to provide a meaningful physiological interpretation to
some of NMF discovered latent components or classes of components when the structures of the true sources are
completely unknown.

7.4 Application of NMF to PET Image Analysis

An interesting application of NMF to dynamic PET image analysis, appeared in [94, 93].
In [94, 93], they performedH15

2 O PET scans on seven dogs at rest and after pharmacological stress us-
ing Adnenosine or Dipyridamole. All the scans were acquired with an ECAT EXACT 47 scanner (Simens-CTI,
Knoxville, USA) which has an intrinsic resolution of 5.2 mm FWHM (full width at half maximum) and images
47 contiguous planes with thickness of 3.4 mm simultaneously for a longitudinal field of view of 16.2 cm. Before
H15

2 O administration, transmission scanning was performed using three Ge-68 rod sources for attenuation correc-
tion. Dynamic emission scans ( 5 sec×12, 10 sec×9, 30 sec×3) were initiated simultaneously with the injection
of 555-740 MBqH15

2 O. Transaxial images were reconstructed by means of a filtered back-projection algorithms
as128 × 128 × 47 matrices with a size of2.1 × 2.1 × 3.4 mm

The initial eighteen frames (two minutes) of PET images were used for analysis. The dynamic PET images
were re-oriented to short axis and were re-sampled to produce 1-cm-thick slices in order to increase the signal to
noise ratio. Only the cardiac regions were then masked to remove extra cardiac components and to reduce the
quantity of data and hence the burden of computation. The resulting masked images with dimension of32 × 32 ×
6 × 18 (pixel× pixel× plane× frame) were reformulated to18 × 6144 (frame× pixel) data matrixX = AS.

Each row of the matrixS corresponds to basis image which represent cardiac component. Figure 11 shows
the basis images obtained using NMF. Three cardiac components (right ventricle, left ventricle, myocardium) were
successfully extracted. Each column vector of the matrixA represent the time activity curve (TAC) which is useful
to calculate blood flow estimation [91]. Figure 11 (b) shows the TAC, where two peaks at each of right ventricle
and left ventricle, more dispersion in left ventricle and mycardium.
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Figure 11. Basis images (a) and time activity curves (b), computed by NMF, are shown.

7.5 EEG/MEG Applications and Open Problems

A great challenge in neurophysiology is to non-invasively asses the physiological changes occurring in
different parts of the brain. These activations can be modelled and measured often as neuronal brain source signals
that indicate the function or malfunction of various physiological sub-systems. To extract the relevant information
for diagnosis and therapy, expert knowledge not only in medicine and neuroscience but also in statistical signal
processing are required.

To understand human neurophysiology, we currently rely on several types of non-invasive neuroimag-
ing techniques. These techniques include electroencephalography (EEG) and magnetoencephalography (MEG)
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[106, 80]. Brain source signals are extremely weak, non-stationary signals and distorted by noise, interference and
on-going activity of the brain. Moreover, they are mutually superimposed and low-passed filtered by EEG/MEG
recording systems (see Figure 1 (b)). Besides classical signal analysis tools (such as adaptive supervised filtering,
parametric or non-parametric spectral estimation, time-frequency analysis, and higher-order statistics), intelligent
blind signal processing techniques (IBSP) can be used for preprocessing, noise and artifact reduction, enhance-
ment, detection and estimation of neuronal brain source signals.

In recent years, a great interest has been in applying high density array EEG systems to analyze patterns
and imaging of the human brain, where EEG has desirable property of excellent time resolution. This property
combined with other systems such as eye tracking and EMG (electromyography) systems with relatively low cost
of instrumentations makes it attractive for investigating the higher cognitive mechanisms in the brain and opens a
unique window to investigate the dynamics of human brain functions as they are able to follow changes in neural
activity on a millisecond time-scale. In comparison, the other functional imaging modalities (positrontomography
(PET) and functional magnetic resonance imaging (fMRI)) are limited in temporal resolution to time scales on the
order of, at best, one second by physiological and signal-to-noise considerations.

Determining active regions of the brain, given EEG/MEG measurements on the scalp is an important prob-
lem. A more accurate and reliable solution to such a problem can give information about higher brain functions
and patient-specific cortical activity. However, estimating the location and distribution of electric current sources
within the brain from EEG/MEG recording is an ill-posed problem, since there is no unique solution and the solu-
tion does not depend continuously on the data. The ill-posedness of the problem and distortion of sensor signals
by large noise sources makes finding a correct solution a challenging analytic and computational problem.

If one knows the positions and orientations of the sources in the brain, one can calculate the patterns of
electric potentials or magnetic fields on the surface of the head. This is called the forward problem. If otherwise
one has only the patterns of electric potential or magnetic fields on the scalp level, then one needs to calculate
the locations and orientations of the sources. This is called the inverse problem. Inverse problems are notoriously
more difficult to solve than forward problems. In this case, given only the electric potentials and magnetic fields
on the scalp surface, there is no unique solution to the problem. The only hope is that there is some additional
information available that can be used to constrain the infinite set of possible solutions to a single unique solution.
This is where intelligent blind source separation can be used [39].

Every EEG electrode montage acts as a some kind of spatial filters of cortical brain activity and the BSS
procedure can be considered also as spatial filter which attempt to cancel the effect of superposition of various
brain activities, and estimated components represent physiologically different processes [106, 105, 60].

BSS and its related methods like PARAFAC or SPCA are promising approaches for the elimination of
artifacts and noise from EEG/MEG data and enhancement of neuronal brain sources. In fact, for these applications,
ICA/BSS techniques have been successfully applied to remove artifacts and noise including background brain
activity, electrical activity of the heart, eye-blink and other muscle activity, and environmental noise efficiently
[84, 83, 54, 141, 80, 108]. However, most of the methods require manual detection, classification of interference
components and the estimation of the cross-correlation between independent components and the reference signals
corresponding to specific artifacts [84, 105, 54].

One important problem is how to automatically detect, extract and eliminate noise and artifacts. Another
relevant problem is how to enhance extract and classify the “brain sources”.

A conceptual model for the elimination of noise and other undesirable components from multi-sensory data
is depicted in Figure 12. First, BSS is performed using suitably chosen robust (with respect to the noise) algorithm
by a linear transformation of sensory data asy(k) = Wx(k), where the vectory(k) represents the specific
components (e.g., sparse, smooth, spatio-temporally decorrelated or statistically independent components). Then,
the projection of interesting or useful components (e.g., spatio-temporal decorrelated or independent activation
maps)ỹj(k) back onto the sensors (electrodes). The corrected or “cleaned” sensor signals are obtained by linear
transformation̂x(k) = W+ỹ(k), whereW+ is some pseudo-inverse of the unmixing matrixW and ỹ(k) is
the vector obtained from the vectory(k) after removal of all the undesirable components (i.e., by replacing them
with zeros). The entries of estimated attenuation matrixÂ = W + indicate how strongly each electrode picks up
each individual component. Back projection of some significant componentsx̂(k) = W+ỹ(k) allows us not only
remove some artifacts and noise but also to enhance EEG data. In many cases the estimated components must be at
first filtered or smoothed in order to identify all significant components. In addition to the denoising and artifacts
removal, BSS techniques can be used to decompose EEG/MEG data into individual components, each representing

Neural Information Processing - Letters and Reviews Vol.6, No.1, January 2005

31



1x

W
n

y
MM

m
x̂

m
x

2x

1y

2y 2x̂

1x̂

+

W

Sensor
Signals

Demixing
System

BSS/ICA

Inverse
System

Reconstructed
Sensors
Signals

Expert
Decision

M

Hard
switches

0 or 1

(a)

1
x

W
n

y MM
m

x̂
m

x

2
x

1
y

2
y

2
x̂

1
x̂

1
ŷ
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Figure 12. Basic models for removing undesirable components like noise and artifacts and enhancing multi-sensory
(e.g., EEG/MEG) data: (a) Using expert decision and hard switches, (b) using auxiliary nonlinear adaptive filters to
smooth the components and hard switches. Often the estimated components are also normalized, ranked, ordered
and clustered in order to identify significant and physiological meaningful sources or artifacts.
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Figure 13. Conceptual model of sequential blind sources extraction. In each stage different criterion can be used.

a physiologically distinct process or brain source. The main idea here is to apply localization and imaging methods
to each of these components in turn. The decomposition is usually based on the underlying assumption of sparsity
and/or statistical independence between the activation of different cell assemblies involved. An alternative criteria
for the decomposition are spatio-temporal decorrelation, temporal predictability or smoothness of components.

The BSS or more general BSP approaches are promising methods for the blind extraction of useful signals
from the EEG/MEG data. The EEG/MEG data can be first decomposed into useful signal and noise subspaces using
standard techniques PCA, SPCA or Factor Analysis (FA) and standard filtering. Next, we apply BSS algorithms
to decompose the observed signals (signal subspace) into specific components. The BSS approaches enable us to
project each component (localized “brain source”) onto an activation map at the skull level. For each activation
map, we can apply an EEG/MEG source localization procedure, looking only for a single dipole (or brain source)
per map. By localizing multiple sources independently, we can dramatically reduce the computational complexity
and increase the likelihood of efficiently converging to the correct and reliable solution.

One of the biggest strength of BSS approach is that it offers a variety of powerful and efficient algorithms
that are able to estimate various kind of sources (sparse, independent, spatio-temporally decorrelated, smooth
etc.). Some of the algorithms, e.g., AMUSE or TICA [40, 48, 58, 59, 34], are able to automatically rank and
order the component according to their complexity or sparseness measures. Some algorithms are very robust in
respect to noise (e.g., SOBI or SONS) [36, 37, 35, 45, 68]. In some cases, it is recommended to use algorithms in
cascade (multiple) or parallel mode in order to extract components with various features and statistical properties
[40]. In real world scenario latent (hidden) components (e.g., brain sources) have various complex properties and
features. In other words, true unknown sources are seldom all sparse or only all statistically independent, or all
spatio-temporally decorrelated. Thus, if we apply only one single technique like ICA or SCA or STD we usually
fail to extract all hidden components. We need rather to apply fusion strategy or combination of several criteria
and associated algorithms to extract all desired sources. We may apply here two possible approaches. The most
promising approach is a sequential blind extraction (see Figure 13) in which we extract components one by one in
each stage applying different criterion (e.g., statistical independence, sparseness. smoothness etc). In this way, we
can extract sequentially different components with various properties.

In alternative approach, after suitable preprocessing, we perform simultaneously (in parallel way ) several
BSS methods (ICA, SCA, STD, TFCA). Next the estimated components are normalized, ranked, clustered and
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Figure 14. Parallel model employing fusion strategy of BSS algorithms for estimation of physiologically mean-
ingful event-related brain sources. The reliability of estimated sources or components should be analyzed by
investigating the spread of the obtained components for many trials and possibly many subjects. Usually, the use-
ful and significant components corresponds to small and well separated clusters from the rest of components, while
unreliable components usually do not belong to any cluster.

compared to each other using some similarity measures (see Figure 14). Furthermore, the components are back
projected to scalp level and brain sources are localized on basis of clusters of sub-components. In this way, on basis
of a priori knowledge (e.g., information about external stimuli for event related brain sources), we can identify
components with some electrophysiological meaning and specific localizations.

In summary, blind source separation and generalized component analysis (BSS/GCA) algorithms allows
[39, 67, 105]:

1. Extract and remove artifacts and noise from raw EEG/MEG data.

2. Recover neuronal brain sources activated in cortex (especially, in auditory, visual, somatosensory, motoric
and olfactory cortex).

3. Improve the signal-to-noise ratio (SNR) of evoked potentials (EP’s), especially AEP, VEP and SEP.

4. Improve spatial resolution of EEG and reduce level of subjectivity involved in the brain source localization.

5. Extract features and hidden brain patterns and classify them.

Applications of BSS show special promise in the areas of non-invasive human brain imaging techniques to
delineate the neural processes that underlie human cognition and sensoro-motor functions. These approaches lead
to interesting and exciting new ways of investigating and analyzing brain data and develop new hypotheses how the
neural assemblies communicate and process information. This is actually an extensive and potentially promising
research area. However, these techniques and methods still remain to be validated at least experimentally to obtain
full gain of the presented approach.

The fundamental problems here are: What are the system’s real properties and how can we get information
about them? What is valuable information in the observed data and what is only noise or interference? How can
the observed (sensor) data be transformed into features characterizing the brain sources in a reasonable way?

8. Feature Extraction from Speech Signals

ICA can be used for finding statistically efficient representations of speech and natural sounds [92, 100]. ICA
finds a linear transform of multivariate data which minimizes mutual information among the data. Therefore, ICA
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Figure 15. Contour lines of Wigner-Ville distributions for 160 learned basis vectors. Each contour line represents
the locus of a half o f the maximum peak amplitude of WVD.

can function as a computational algorithm for sensory information processing such that the redundancy among
the input signals is reduced. In addition, to learn efficient representations, they set sparseness constraint on the
distribution [92]. Since a sparse distribution has a small percentage of informative values (nonzero values) in the
tails and most of the values are around zero, one can encode and decode the data with a small number of the
coefficients. The learned speech features (basis vectors) are localized in both time and frequency. Time-frequency
analysis of basis vectors shows the property similar with the critical bandwidth of human auditory system as shown
in Figure 15.

In order to obtain more complex speech features, an ICA-based computational model also has been devel-
oped [87]. After generating speech features at the inner-hair-cells by the existing model of cochlea, they applied an
ICA algorithm with topology-preserving mapping. Figure 16 shows the learned speech features, and the features
represent complex signal characteristics at the auditory cortex such as onset/offset and frequency modulation in
time.

9. Convolutive Source Separation: Problem Formulation

In this section, we formulate a more general model where mixing involves convolution and time-delays.
Let us consider a set of unknown independent components,s(k) = [s1(k), s2(k), · · · , sn(k)]T , such that the
componentssi(k) are zero-mean and mutually independent. The independent components are transmitted through
channels and mixed to give observationsxi(k). Therefore, the mixtures are linear combinations of delayed and
filtered versions of the independent components. One of them can be expressed as

xi(k) =

n∑

j=1

Lm−1∑

p=0

aij(p)sj(k − p), (91)

whereaij(p) denotes a mixing filter coefficient.
The task is to estimate the independent components from the observations without resort toa priori knowl-

edge about the mixing system. As in ICA of instantaneous mixtures, ICA of convolutive mixtures also needs cer-
tain assumptions about the independent components such as approximate distributions and statistics. Furthermore,
since ICA of convolutive mixtures has indeterminacy of the estimated independent components up to permutation
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Figure 16. Spectra for 144 learned complex speech features.
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Figure 18. A 2×2 feedback network for ICA of convolutive mixtures.

and arbitrary filtering, some algorithms attempt to make the estimated signals temporally whitened. The whitening
may degrade outputs in many applications such as separation of natural signals and can be avoided by forcing some
constraints [139] or post-processing [73]. In order to perform ICA for convolutive mixtures, most methods try to
apply their algorithms to the mixtures in the time domain [139, 112, 6] and the frequency domain [130, 115, 12].
In addition, some papers have recently proposed the methods which use filter banks or subbands [117, 116, 77, 62].

10. Time-Domain Methods

10.1 Architectures: Feedforward vs. Feedback

To obtain the independent components from observations, one can consider two types of networks in the
time domain. One of them is a feedforward architecture which can be expressed as

yi(k) =

m∑

j=1

La∑

p=0

wij(p)xj(k − p), (92)

where adaptive filterswij(p) force outputsyi(k) to reproduce the original independent componentssi(k) [139].
Figure 17 illustrates a 2×2 feedforward network.

On the other hand, a feedback architecture can be constructed for the inverse system and expressed as [139]

yi(k) =

La∑

p=0

wii(p)xi(k − p) +

n∑

j=1,j 6=i

La∑

p=1

wij(p)yj(k − p). (93)

The architecture consists of three different filter coefficients: zero-delay weights in direct filterswii(0), other
weights in direct filterswii(p), p 6= 0, and weights in feedback cross-filterswij(p), i 6= j. A 2×2 feedback
network is shown in Figure 18.

Advantage of the feedforward system is that it can learn a more general inverse system since it can approx-
imate a solution for ICA of nonminimum-phase mixing systems [96, 97, 74]. A nonminimum-phase filter can be
expressed as a product of a minimum-phase filter with an all-pass filter. The minimum-phase filter has all of its
poles and zeros inside the unit circle, and the all-pass filter represents the time-delay of the nonminimum-phase fil-
ter with a unit frequency magnitude response. Thus, the inverse of the nonminimum-phase filter is a product of the
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inverse of a minimum-phase filter, which is a stable causal filter, with the inverse of an all-pass filter, which is time-
advance. The resulting filter is a non-causal stable filter. By imposing an appropriate time-delay, a feedforward
system can be realized and used for inverting a nonminimum-phase mixing system.

The distortion of the estimated independent components should also be considered. Let us model a situation
in thez-transform domain such that two independent components are mixed to give two observations as follows:

X1(z) = A11(z)S1(z) + A12(z)S2(z),

X2(z) = A21(z)S1(z) + A22(z)S2(z), (94)

where the upper cases denote thez-transforms of the corresponding lower cases in (91). Since ICA of convolutive
mixtures has indeterminacy up to arbitrary filtering, the estimated independent components will be distorted by
filtering depending on the ICA algorithm used. If the original independent components are i.i.d. signals,S1(z)
andS2(z) can be recovered by temporal whitening.

However, many independent components including natural signals are not i.i.d. In this case, several methods
first estimate the innovation processes of the independent components and then build a post-processing filter which
will try to artificially color the signal [140]. One of the desired results may beA11(z)S1(z) andA22(z)S2(z),
which is what each observation would obtain in the absence of the interfering source, because the result is not
affected by any other distortion except mixing process. By including whitening filters in a separating structure, a
method has been proposed which directly extracted colored components in one step [1]. If the feedback architecture
is used, the result can be obtained by forcing direct filterswii(p) to scaling factors [139]. Here, note that ICA can
be achieved whenA11(z) andA22(z), in addition to the mixing system, have stable inverses.

10.2 Basic Algorithms ICA algorithms for convolutive mixtures in the time domain are not as various as those for

instantaneous mixtures because of the complexity of architectures to perform ICA. In this paper, we go through
two major algorithms: infomax algorithm and decorrelation algorithm.

Let us pass outputs of the architectures through bounded nonlinear functions, which approximate the cu-
mulative density functions (cdfs) of the original independent components, to givec(yi(k)). If outputsyi(k) are
desired independent components,c(yi(k)) follow a uniform density which has the largest entropy among distribu-
tions of bounded variables. Infomax algorithm performs ICA for convolutive mixtures by maximizing the entropy
of yi(k) [139, 17].

For a feedforward architecture, infomax algorithm provides learning rules of the adaptive filter coefficients
as follows [139]:

∆W (0) ∝ [W T (0)]−1 − f(y(k))xT (k),

∆wij(p) ∝ −fi(yi(k))xj(k − p), p 6= 0, fi(yi(k)) = −

∂pi(yi(k))
∂yi(k)

pi(yi(k))
, (95)

whereW (0) is the matrix composed by zero-delay weights, andy(k) andx(k) denote a set of estimated indepen-
dent components and the observation vector, respectively. In addition,fi(·) is called a score function andpi(yi)
denotes the pdf ofyi. Learning rules for a feedback architecture are [139]

∆wii(0) ∝ 1/wii(0) − fi(yi(k))xi(k),

∆wii(p) ∝ −fi(yi(k))xi(k − p), p 6= 0,

∆wij(p) ∝ −fi(yi(k))yj(k − p), i 6= j. (96)

On the other hand, the second-order statistics can be used for ICA of convolutive mixtures if the original
signals are non-stationary. A non-negative cost function can be given as [112]

Q =
1

2B

B∑

b=1

(
log det

〈
diag(y(k)y(k)T )

〉
b
− log det

〈
y(k)y(k)T

〉
b

)
, (97)

where〈·〉b denotes the time-averaging operator for thebth local analysis block, andB is the number of the local
analysis blocks. Note that the cost function takes the minimum value only when the second-order cross-correlation
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becomes zero. A gradient learning rule can be obtained by minimizing the cost function with respect to the adaptive
parameters.

10.3 Applying the Natural Gradient to ICA Networks

The ordinary gradient has provided most of the popular learning algorithms in various optimization frame-
works [73]. However, the parameter space is not Euclidean in many cases. In those cases, the steepest direction
of a function is not given by the ordinary gradient, but by the natural gradient [5, 3]. Therefore, it is commonly
known that the natural gradient improves convergence speed significantly [3].

By applying the natural gradient to the infomax algorithm, a learning rule for a feedforward architecture can
be derived as [6, 31]

∆W (p) ∝ W (p) − f(y(k))rT (p), fi(yi(k)) = −

∂pi(yi(k))
∂yi(k)

pi(yi(k))
, (98)

whereW (p) is the matrix composed by thepth delay filter coefficients, andr(p) =
∑La

l=0 W T (l)y(k − p + l).
Unfortunately, the natural gradient learning rule shows that the update ofW (p) depends on future outputsy(k−p+
l), p−l < 0, throughr(p). In addition, it involves very intensive computation to compute allr(p), p = 0, · · · , La,
at each time step. Practically, the algorithm is modified by imposing aLa sample delay to remove the non-causal
terms and reusing past results. With this modification, the algorithm is approximated as

∆W (p) ∝ W (p) − f(y(k − La))rT (k − p), (99)

wherer(k) =
∑La

l=0 W T (La − l)y(k − l).
More generally, the natural gradient can be given in thez-transform domain by [3]

▽̃Q = ▽Q(z)W T (z−1)W (z), (100)

where▽Q denotes the ordinary gradient. In addition, the natural gradient can be applied to a feedback architec-
ture [30].

11. Frequency-Domain Methods

11.1 Overall Flow

When a mixing environment is quite complex, filters of the ICA network may require thousands of taps
to appropriately invert the mixing. In such cases, the time domain methods have a large computational load to
compute convolution of long filters and amounts to update filter coefficients. The methods can be implemented in
the frequency domain using FFT in order to decrease the computational load because the convolution operation in
the time domain can be performed by element-wise multiplication in the frequency domain.

Learning rules can be simply formulated in the frequency domain by the FIR polynominal matrix algebra
which extends the algebra of scalar matrices to the algebra of matrices of filters or polynomials [89]. For example,
the natural gradient infomax rule for a feedforward architecture can be expressed as

∆W ∝ [I − fft(f(y)){fft(y)}H ]W , (101)

whereW denotes a matrix composed of filters of the feedforward architecture in the frequency domain. A fast
implementation of the adaptive filters in the frequency domain can be achieved by employing the overlap and save
block technique [96, 114, 63].

However, the learning rule is just the efficient implementation using FFT of the time domain algorithm.
In a more real sense, the frequency domain method means performing ICA for instantaneous mixtures in every
frequency bins. Note that the convolutive mixtures can be expressed as

x(f, k) = A(f)s(f, k), ∀f. (102)

Here,x(f, k) ands(f, k) are vectors, which are the frequency components of mixtures and the independent com-
ponents at frequencyf , respectively.A(f) denotes a matrix containing elements of the frequency transforms of
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Figure 19. A frequency domain method for ICA of convolutive mixtures.

mixing filters at frequencyf . From (102), one can reason that convolutive mixtures can be represented by a set of
instantaneous mixtures in the frequency domain. Thus, the independent components can be recovered by applying
ICA for instantaneous mixtures at each frequency bin and transforming the results in the time domain as shown in
Figure 19. In this figure,W (f) denotes an unmixing matrix at frequencyf .

11.2 Basic Algorithms

Various ICA algorithms for instantaneous mixtures can be applied to ICA for convolutive mixtures in the
frequency domain. Among these algorithms, we go through several popular algorithms for ICA of convolutive
mixtures. Most of the algorithms can be traditionally categorized into two groups. One takes some aspects of
higher order statistics into account explicitly [26], and the other does it implicitly through nonlinear functions of
outputs [96, 17].

As one of the most prevailing methods for the latter group, infomax algorithm can be considered. The
algorithm can be derived by the same manner as explained in the time domain method. Applying the natural
gradient [5, 25], infomax learning rule at each frequency bin is

∆W (f) ∝ [I − f(y(f, k))yH(f, k)]W (f). (103)

Contrary to the time domain method, the input signalsx(f, k) are complex numbers. In order to deal with complex-
valued data, score functionf(·) should also be changed [128, 131]. It is worth noting that the infomax algorithm
provides almost same formulation as maximum likelihood estimation [120, 24], negentropy maximization [70],
Bussgang algorithm [98], and minimizing mutual information [5, 59].

In order to perform ICA by computing higher order statistics explicitly, the fourth order cross-cumulants are
usually considered. For zero-mean random variablesxi, xj , xk, xl, the cross-cumulant is defined as [78]

cum(xi, xj , xk, xl) = E[xixjxkxl] − E[xixj ]E[xkxl]

−E[xixk]E[xjxl] − E[xixl]E[xjxk]. (104)

Since the cross-cumulants of independent signals are zero, one can obtain desired independent components by
minimizing a cost function using the fourth order cross-cumulants or jointly diagonalizing eigenmatrices of the
cross-cumulant tensor [26, 78].

It is already known that the diagonalization of the simple cross-covariance matrix provides just the decorre-
lated components and does not contain sufficient information to estimate the independent components. Therefore,
most of the ICA algorithms consider mutual information or higher order statistics. However, ICA can also be
performed with the second-order statistics only by adding covariances with time-lags if the original independent
components have time-dependencies.

As a simple method, the time-delayed decorrelation algorithm is as follows: The covariance matrixRxx(k, k−
p) of x(k) with time-lagp is

Rxx(k, k − p) = E[x(k)xH(k − p)] = AΛ(k, k − p)AH , (105)
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whereA denotes the mixing matrix andΛ(k, k − p) = E[s(k)sH(k − p)] is a diagonal matrix. Using the
covariance matrices with no time-lagp = 0 and a given time-lag, one can construct an eigenvalue problem as

Rxx(k)Rxx
−1(k, k − p)A = AΛ(k)Λ−1(k, k − p), (106)

whereRxx(k) = Rxx(k, k) for simplicity. Therefore, independent components can be obtained by diagonal-
izing the covariance matrices at the same time [62, 109, 111, 99]. In addition, the number of used covariance
matrices can be increased [19].

In addition, non-stationarity of independent components also allows to perform ICA with the second-order
statistics. If the independent components are non-stationary,Λ(k) 6= Λ(k + K) for K 6= 0. Therefore, multiple
different equations for the covariance matrices such as (105) can be obtained for different choices ofK to provide
successful estimation of the independent components [119, 142].

Beamforming may be combined with the frequency domain ICA to improve the performance [127]. The
proposed system integrated the frequency domain ICA and null beamforming based on the estimated direction-of-
arrival (DOA) information.

11.3 Resolving Indeterminacy of Frequency-Domain ICA Algorithms

Using the short-time Fourier transform, frequency domain ICA algorithms regard convolutive mixtures as
a set of instantaneous mixtures. Even though an ICA algorithm for instantaneous mixtures precisely estimates an
unmixing matrix at each frequency bin, the algorithm will still have indeterminacy of scaling and permutation at
each frequency bin. This indeterminacy may deteriorate the performance of the ICA algorithm. Therefore, the
permutation and scaling problem should be resolved to reconstruct the desired independent components.

One of the algorithms to solve the permutation and scaling problem makes use of the envelopes of fre-
quency spectra assuming that the independent components have time-varying statistical properties [111, 9]. In this
algorithm, first, decomposition of frequency spectra is performed by

v(f, k; i) = W (f)−1




0
...

yi(f, k)
...
0




, (107)

whereyi(f, k) denotes theith element ofy(f, k). Then, the permutation problem is solved with the envelopes of
frequency spectra, each of which is

ξ[v(f, k; i)] =
1

2T + 1

k+K∑

k′=k−K

n∑

j=1

|vj(f, k′; i)|, (108)

whereK is a positive constant andvj(f, k; i) denotes thejth element ofv(f, k; i). With the definition of similarity
given by

sim(f) ≡
∑

i6=j

r{ξ[v(f, k; i)], ξ[v(f, k; j)]}, (109)

this algorithm sorts frequency bins in order of weakness of similarity among the independent components, so that

sim(f1) ≤ sim(f2) ≤ · · · ≤ sim(fF ). (110)

Here,F is the number of frequency bins andr denotes a normalized correlation estimated as

r{α(k), β(k)} =
1

Lk

∑
k α(k)β(k)

√
1

Lk

∑
k α2(k) · 1

Lk

∑
k β2(k)

, (111)

whereLk denotes the length ofα(k) andβ(k). For the frequency binf1, which has the smallest correlation, its
independent components are assigned to specific outputsy′(f1, k; i) = v(f1, k; i). Then, for the frequency bins
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{fl, l = 2, · · · , F} sorted in the increasing order of the correlation, the independent components are assigned to
outputs that have more correlation between the envelopes of the frequency bins. That is,

y′(fl, k; i) = v(fl, k;σ(i)), (112)

where the permutation is given as

σ(i) = arg max
σ(i)

n∑

i=1

r{ξ[v(fl, k; σ(i))],

l−1∑

j=1

ξ[y′(fj , k; i)]}. (113)

The process is repeated in turns until all the frequency bins are covered.
Another well-known algorithm to fix arbitrary permutations is to limit effective length of the unmixing filters

after estimating unmixing matrices at sufficiently many frequency bins [119, 146]. The constraint on the effec-
tive length links the frequencies and provides a solution for the permutation problem by restricting the unmixing
matrices to be continuous or smooth in the frequency domain.

Also, DOA estimation can be used for solving the permutation problem. Assuming linearly arranged and
closely spaced sensors and a plain wavefront with no reverberation, the frequency response of a mixing filterajl(p)
is approximated as

Ajl(f) = exp(j2πf
dj cos θl

c
), (114)

wherec, dj , andθl denote the propagation velocity, the position of sensorxj , and the direction of sourcesl,
respectively. Thus, the frequency response of the overall system can be expressed as

T ik(f) =

n∑

j=1

W ij(f)Ajk(f) =

n∑

j=1

W ij(f) exp(j2πf
dj cos θl

c
). (115)

Regardingθl as a variableθ provides a directivity pattern, and the directivity patterns can estimate source directions
to align permutations [79].

In the method using the envelopes of frequency spectra, a misalignment at a frequency bin may cause con-
secutive misalignments. However, the DOA method fixes the permutations of a frequency bin regardless of other
frequency bins. Since the DOA is computed by an approximation of a mixing system, the DOA method is not
precise. In order to exploit the advantages of the two methods, a method fixed the permutations at some frequency
bins where the confidence of the DOA method was sufficiently high, and then decided the permutations for the
remaining frequency bins by the envelopes of frequency spectra [129].

12. Filter Bank Methods

12.1 Overall Flow

Time domain methods regard convolutive mixtures as results of a big and complicated system and try to
estimate an unmixing network all at once which often requires a great many parameters. On the other hand,
frequency domain methods decompose the convolutive mixtures so minutely that the decomposed mixtures can be
modelled as instantaneous mixtures rather than convolutive mixtures.

For heavily reverberant environments, the performances of the frequency domain ICA methods are seriously
degraded because of insufficiency of data to learn the unmixing matrices with a large number of frequency bins.
On the other hand, the time domain ICA methods should adapt very long unmixing filters and usually show slow
convergence especially for colored inputs. Therefore, the results from a frequency domain ICA method can be
regarded as the inputs for a time domain ICA method in order for the time domain ICA to remove the residual
components of the frequency domain ICA [112, 113].

Instead of combining the two ICA methods, one can make a compromise between the two extreme cases to
give filter bank methods [?, 116, 77, 10]. Figure 20 shows a 2×2 network for a filter bank method to perform ICA.
In the filter bank methods, the input mixtures are splitted into subband signals by analysis filters. The resulting
subband signal is band-limited and can be subsampled. Although the input mixtures are split into subband signals,
each subband still covers a somewhat broad frequency band. Moreover, when the subband signal is subsampled,
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Figure 20. A 2×2 network for a filter bank method to perform ICA.

the decimation factor is usually much smaller than the length of mixing filters. Therefore, the subsampled signals
are still convolutive mixtures, but their effective mixing filters decrease by the decimation factor. A typical ICA
algorithm for convolutive mixtures can be used to obtain the independent components from the subsampled signals
in each subband, and the unmixing filter length is much shorter than that of full-band time domain methods. Each
output signal from the unmixing network is expanded, and desired independent components can be reconstructed
from the subband output signals through synthesis filters after fixing permutation and scaling.

If critically sampled filter banks are used for analysis and synthesis filter banks, cross adaptive filters be-
tween adjacent bands are required to compensate for the distortion caused by aliasing [69], or spectral gaps are
required in order not to have aliasing [147]. However, the cross adaptive filters introduce additional adaptive pa-
rameters and may cause slow convergence speed and poor performance. On the other hand, the spectral gaps distort
reconstructed signals.

However, alias-free property and perfect reconstruction are very essential in order to use filter banks without
any side-effects because they limit the performance of the methods primarily apart from capability of ICA algo-
rithms in subbands. With oversampled filter banks, in which the decimation factor is smaller than the number of
analysis filters, aliasing can be neglected with each filter having a high stopband attenuation. An oversampled
filter bank can be implemented by a uniform complex-valued filter bank [72]. In the filter bank, analysis filters
hl(k) are obtained from a real-valued low-pass prototype filterq(k) by a generalized discrete Fourier transform
(GDFT) [55],

hl(k) = ej 2π
L

(l+1/2)(k−(Lq−1)/2) · q(k), l = 0, 1, · · · , L − 1, k = 0, 1, · · · , Lq − 1, (116)

whereLq is the length ofq(k). Complex-conjugate and time-reversed versions of the analysis filters are selected
for synthesis filters

fl(k) = h̃l(k) = h∗
l (Lq − k − 1). (117)

The prototype filter can be designed by iterative least-squares algorithm with a cost function that considers re-
constructiveness and stopband attenuation [72]. In addition, the filter bank can be efficiently implemented by
employing polyphase representation of the analysis and synthesis filters [145, 144].

12.2 Performing ICA in subbands and resolving indeterminacy of filter bank methods

When one performs ICA in the oversampled filter bank, adaptive filter coefficients in each subband can be
adjusted without any information of the other subbands because of the negligible aliasing of filter bank [145, 144,
143]. Since the subband signals are convolutive mixtures rather than instantaneous mixtures, the ICA algorithm
in each subband may be the basically same as time domain methods in Section??. To perform ICA with the
complex-valued filter banks, subband signals are complex-valued data, and the learning rules of the adaptive filter
coefficients are changed to deal with complex-valued data. Using the infomax algorithm for a feedback network
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in each subband, the learning rules are

∆wii(0) ∝ 1/w∗
ii(0) − fi(yi(k))x∗

i (k),

∆wii(p) ∝ −fi(yi(k))x∗
i (k − p), p 6= 0,

∆wij(p) ∝ −fi(yi(k))y∗
j (k − p), i 6= j. (118)

The second-order statistics can also be used for estimating unmixing networks [10]. As in the case of time domain
methods, forcing direct filters to scaling factors in each subband does not make the recovered outputs whitened.

Filter bank methods have an unmixing network in each subband and adapt filter coefficients of the network
independently of the other subbands. Therefore, the filter bank methods have the same permutation and scaling
problem as frequency domain methods. In order to fix this problem, the algorithm in [111] can be applied to the
filter bank methods after necessary modifications [116]. When the algorithm is used in the frequency domain, the
algorithm multiplies each recovered independent component by inversed unmixing matrix at each frequency bin
in order not to have an ambiguity of scaling as in (107). In the filter bank methods, however, the ambiguity of
scaling can be avoided by normalizing filters by the corresponding scaling factors used as the direct filters or fixing
the direct filters to specific scales in each subband. Other procedures follow the algorithm for frequency domain
methods in similar manner [111]. In addition, it is reported that using null beamformers as the initial value of an
unmixing system relaxes the permutation problem [10].

13. Comparison of Three Methods

If the length of unmixing filter is very long, time domain methods have a large computational load to compute
convolution of long filters and amounts to update filter coefficients. In addition, they show slow convergence speed,
especially for colored input signals such as speech signals.

The computational load can be reduced by frequency domain methods in which multiplication at each fre-
quency bin replaces convolution operation in the time domain. Since adaptation of an unmixing matrix does not
interfere with others, the frequency domain methods can improve convergence. However, a long frame size is
required to cover long mixing filters. To maintain computational efficiency and obtain data which are not much
overlapped with those from adjacent frames, the frame shift has to increase as the frame size increases. Therefore,
the number of data at each frequency bin decreases. Since this causes insufficiency of data to learn the unmixing
matrices, the performance will be degraded [12]. In addition to the performance of ICA algorithms at each fre-
quency bin, the permutation and scaling problem has to be settled to obtain desired outputs because the unmixing
matrix is adapted by ICA algorithms which have permutation and scaling indeterminacy.

Filter bank methods do not have performance limitation unlike frequency domain methods since ICA algo-
rithms in each subband are based on time domain methods. In addition, computational complexity is considerably
reduced for long adaptive filter length because a simplified ICA network can be used to process decimated input
signals at the subsampled rate in each subband. Filter bank methods are also appropriate for parallel processing
because each subband can independently compute subband output signals and adapt the filter coefficients of the
unmixing network without other subbands. Additionally, methods are able to choose the number of subbands re-
gardless of complexity of mixing environments, and they improve convergence of the adaptive filter coefficients
because they use subband input signals which are much more whitened by decimation than time domain methods.

If a mixing environment is complex, frequency domain methods require a great many frequency bins and
also very large frame shift. Thus, the envelope of each frequency spectrum can not be estimated exactly to fix
permutation. However, the number of subbands in filter bank methods is usually much smaller than the required
number of frequency bins in frequency domain methods. Therefore, one can resolve the permutation problem
much easily because each subband can have a sufficiently broad band to exactly estimate the envelope.

For example, we have compared the three methods through simulations on blind separation of speech mix-
tures. Two real-recorded speech data were used as the source signals. Each signal had 5 second length at 16kHz
sampling rate. For each category, we have chosen the infomax algorithm to learn adaptive parameters because of its
popularity and simplicity. It is known that speech signal approximately follows Laplacian distribution. Therefore,
sgn(·) was used as the score function. We have mixed the two speech data with 4 room impulse responses from 2
speakers to 2 microphones which had been measured in a normal office room as shown in Figure 21.

Experimental results were compared in terms of signal-to-interference ratio (SIR). For a2×2 mixing/unmixing
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Figure 21. Room impulse reponses of the mixing system

system, the SIR is defined as a ratio of the signal power to the interference power at the outputs,

SIR(dB) =
1

2
·

∣∣∣∣∣10 log

(〈
(y1,s1

(k))2
〉

〈(y1,s2
(k))2〉

·

〈
(y2,s2

(k))2
〉

〈(y2,s1
(k))2〉

)∣∣∣∣∣ . (119)

In (119),yj,si
(k) denotes thejth output of the cascaded mixing/unmixing system only whensi(k) is active.

In Figure 22, we have displayed learning curves of the three methods for the blind source separation problem.
To perform the time domain method, we have used a feedback network, where each filter length was 2048 taps.
In the frequency domain method, the frame size was 2048 samples, and the frame shift was a sixteenth of the
frame size. In addition, we have designed a filter bank in order to perform the filter bank method. Figure 23
shows frequency response of analysis filters of a uniform oversampled filter bank using GDFT. The filter bank was
designed for alias-free decimation by factor 10, and it was constructed from a prototype filter with 220 taps. For
the separation network in each subband, we have used a feedback network in which the number of taps of each
filter was 205.

SIRs of the frequency domain method were much smaller than those of the other two methods. It is because
the frequency domain method has a performance limitation which comes from the contradiction between the long
reverberation covering and the insufficient learning data. Moreover, the permutation problem severely degrades
the performances. The learning curves in Figure 22 show that the filter bank method had much faster convergence
speed than the time domain method since less colored signals by decimation were used in each subband for the
filter bank approach. Contrary to the frequency domain approach, the permutation problem was successfully fixed
in the filter bank approach.

14. Remarks on Underdetermined Problem

Some papers tackled the underdetermined case where the number of independent components are larger
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than that of mixtures [22, 148, 11]. The problem is very challenging, and most of the papers modelled mixtures as
delayed ones with attenuation.

In order to get more sparse signals, they employ linear transforms such as the short-time Fourier trans-
form (STFT), and they assume that only one independent component is dominant at any given point in the time-
frequency domain [148, 15, 124]. By obtaining 2 observations, the mixtures can be expressed as

x1(k) =

n∑

j=1

sj(k), (120)

x2(k) =

n∑

j=1

ajsj(k − dj). (121)

If only the jth source is nonzero for a given(f, k) in the time-frequency domain,
[

X1(f, k)
X2(f, k)

]
=

[
1

aj exp(−j2πfdj)

]
Sj(f, k). (122)

Therefore, the mixing parameters can be estimated by

â(f, k) =

∣∣∣∣
X2(f, k)

X1(f, k)

∣∣∣∣ , (123)

d̂(f, k) =
1

2πf
∠

(
X1(f, k)

X2(f, k)

)
. (124)

A two-dimensional histogram of amplitude-delay estimates can be used to determine the number of independent
components and the mixing parameters. An independent component can be estimated by applying the correspond-
ing time-frequency mask to the mixture [148, 124].

In the case where the number of dominant independent components is equal to the number of observations at
any given point, conventional ICA methods can be used to estimate desired independent components [11]. In ad-
dition, making additional assumptions on the statistical properties of the independent components or maximizing
the likelihood of a noisy mixing model can provide estimation of independent components or model parame-
ters [22, 15, 125].

15. Discussion and Conclusions

In this paper we have discussed briefly several extensions and modifications of blind source separation and
decomposition algorithms for spatio-temporal decorrelation, independent component analysis, sparse component
analysis and non-negative matrix factorization where various criteria and constraints are imposed such linear pre-
dictability, smoothness, mutual independence, sparsity and non-negativity of extracted components. Especially,
we described generalization and extension of ICA to SD-ICA which relaxes considerably the condition on inde-
pendence of original sources. Using these concepts in many cases, we are able to reconstruct (recover) the original
brain sources and to estimate mixing and separating matrices, even if the original sources are not independent
and in fact they are strongly correlated. Moreover, we propose a simple method for checking validity and true
performance of BSS separation by applying the bank of filers with various frequency characteristics.

We have also reviewed algorithms for ICA of convolved mixtures. The methods can be divided into three
categories: time domain methods, frequency domain methods, and filter bank methods. We have gone through
well-known algorithms for each category. In addition, we compared advantages and disadvantages among algo-
rithms from the three categories.
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