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In order to resolve engineering problems that the performance of the traditional blind source separation (BSS) methods de-
teriorates or even becomes invalid when the unknown source signals are interfered by impulse noise with a low signal-to-noise
ratio (SNR), a more effective and robust BSS method is proposed. Based on dual-parameter variable tailing (DPVT) trans-
formation function, moving average filtering (MAF), and median filtering (MF), a filtering system that can achieve noise
suppression in an impulse noise environment is proposed, noted as MAF-DPVT-MF. A hybrid optimization objective function is
designed based on the two independence criteria to achieve more effective and robust BSS. Meanwhile, combining quantum
computation theory with slime mould algorithm (SMA), quantum slime mould algorithm (QSMA) is proposed and QSMA is used
to solve the hybrid optimization objective function. )e proposed method is called BSS based on QSMA (QSMA-BSS). )e
simulation results show that QSMA-BSS is superior to the traditional methods. Compared with previous BSS methods, QSMA-
BSS has a wider applications range, more stable performance, and higher precision.

1. Introduction

BSS is a signal processing method that extracts or restores
each component of the source signal only through the
received observation signals without any prior knowledge
of the source signals and the transmission channels. BSS
has gradually become a research hotspot and has been
successfully applied in various fields, such as image and
voice signal processing, biomedical signal analysis and
processing, or antenna array signal processing [1–3].
However, the current BSS methods still have many
shortcomings.

Firstly, when these traditional BSS methods are imple-
mented, they involve the selection of nonlinear functions for
separation operations according to the probability density
properties and kurtosis values of the source signal, which
contradicts the unknown nature of the source signal and
channel. Moreover, these algorithms are difficult to jump out
of the local optimum, and the convergence speed is slow,
which affects the separation effect [4–6]. )e swarm

intelligent algorithms do not require any source signal or
channel information as prior knowledge and do not need to
select nonlinear functions. Moreover, the swarm intelligence
algorithms have faster convergence speed, and it is easier to
jump out of the local optimum and achieve higher accuracy.
Although the swarm intelligent algorithms, such as particle
swarm algorithm (PSO) [7], genetic algorithm (GA) [8],
bacterial foraging algorithm (BFA) [9], slime mould algo-
rithm (SAM) [10], artificial bee colony (ABC) algorithm
[11], whale optimization algorithm (WOA) [12], grey wolf
optimization (GWO) algorithm [13], crow search algorithm
(CSA) [14], and bat algorithm (BA) [15], make up the de-
ficiency of the traditional methods to some extent, the
swarm intelligent algorithms containing many parameters
need to be improved in terms of convergence speed, con-
vergence accuracy, and stability. Improper parameter ad-
justment can easily degrade performance. In 2020, a new
intelligent algorithm named slime mould algorithm (SMA)
[10] is proposed, and this algorithm has fewer parameters
setting and lower complexity.
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In addition, the classical BSS algorithms often design the
objective function based on a single independence criterion
such as maximum kurtosis (MK), maximum negative en-
tropy (MNE), minimum mutual information, or maximum
likelihood criterion of the separated signals [16, 17].
However, using a single independence criterion may cause
that the selected criterion is not the best criterion of the
algorithm, which leads to the inability to obtain the best
result. )e best criterion for different algorithms may also be
different. Shih-Hsiung and Yang [18] proposed a new al-
gorithm named independent component analysis based on
gravitational particle swarm optimization (GPSO-ICA), and
the performance of this algorithm based on three different
criteria is compared. Ebrahimzadeh and Mavaddati [19]
compared the performance of the artificial bee colony (ABC)
algorithm based on the different efficient cost functions.
Kumar and Jayanthi [20] compared the performance of the
three different independence criteria for the fast indepen-
dent component analysis (FAST-ICA).

In recent years, the BSS in impulse noise has made great
progress [21–23]. However, on the one hand, these tradi-
tional BSS methods in impulse noise are often only suitable
for weak impulse noise and high SNR. However, under the
strong impulse noise or the low SNR, the performance of
these methods deteriorates or even becomes invalid. On the
other hand, most of the existing research rarely applies
filtering methods to BSS under impulse noise because tra-
ditional impulse noise suppression methods often require
information from the source signals or noise as prior
knowledge in order to achieve good performance. A dual-
parameter variable tailing (DPVT) transformation function
based on exponential function is designed by Luo et al. [24],
which needs to adjust the threshold according to source
signals and noise situation. Arce and Gonzalez [25] pro-
posed the weighted myriad filtering method that needs the
ideal signals as prior knowledge. A minimum mean square
error (MMSE) without any prior knowledge is proposed by
Moon and Weissman [26], but the performance of this
method will deteriorate in impulse noise. A transformation
function named Gaussian-tailed zero-memory nonlinearity
(GZMNL) is optimized by Luo et al. [27], and this method
still requires the standard deviation of the dispersion co-
efficient as prior knowledge.

Aiming at the above shortcomings, the following are the
main contributions of this paper:

(1) Aiming at the above shortcomings of these existing
algorithms, we design a new intelligent algorithm
named QSMA based on quantum coding, quantum-
simulated rotation gate, and slime mould algorithm
(SMA) [10] to obtain the optimal solution. )e
quantum rotation angle is designed, and the simu-
lated quantum rotation gate is introduced to update
the quantum positions. And the simulated quantum
rotation gate further improves the search accuracy.
Due to the parallel nature of quantum computing,
quantum evolutionary algorithms have many ad-
vantages, such as the small population size does not
affect the performance of the algorithm; the number

of iterations is small, but the global optimization
ability is strong, and the past historical information
of the individual is effectively used in the evolution
process [28, 29]. Compared with previous algorithms
used to solve other engineering problems, QSMA
achieves better convergence performance and fewer
parameters setting.

(2) A new hybrid optimization objective function based
on two different independence criteria, MK and
MNE, is designed. Corresponding weight coefficients
are assigned to the two criteria, and the best criterion
of the algorithm is judged according to the change of
the performance evaluation index with the weight
coefficient, so as to get a more accurate result.

(3) In this paper, a filtering system named MAF-DPVT-
MF is proposed, and we introduce this filtering
system into the BSS model. Unlike the DPVT
transformation function, MAF-DPVT-MF adjusts
the threshold according to the observation signals
after filtering. )e combination with median filtering
[30] method enhances the ability to suppress noise.
MAF-DPVT-MF does not require any prior
knowledge and can achieve BSS in impulse noise.
Simulation results illustrate that this filtering system
is not only suitable for weak impulse noise envi-
ronment but also suitable for strong impulse noise
and low SNR noise environment.

)e rest of this paper is systemized as follows: )e BSS
model under source signals in impulse noise is presented in
the next section. In Section 3, QSMA is proposed and ap-
plied in BSS; moreover, its convergence is further analyzed.
Simulation results and conclusions are presented in Sections
4 and 5, respectively.

2. BSS Model under Source Signals in
Impulse Noise

2.1. α-Stable Distribution. α Stable distribution is used for
impulse noise modeling [31] and is usually defined by
characteristic function, as shown in the following equation:

φ(ι) �

exp jμι − c|ι|α 1 + jβsgn(ι)tan
απ

2
( )[ ]{ }, α≠ 1,

exp jμι − c|ι|α 1 + jβsgn(ι)
2

π
log|ι|[ ]{ }, α � 1,


(1)

where j denotes the imaginary unit. α (0< α≤ 2) denotes
characteristic exponent, and the smaller the α is, the greater
the impulse degree of distribution is; the larger α is, the
smaller impulse degree of distribution is. β (− 1≤ β≤ 1)
represents symmetry parameter, and α stable distribution is
called standard SαS distribution when β � 0. When
β � 0, α � 2, the SαS distribution becomes Gaussian distri-
bution, and the noise generated is Gaussian noise. When
β � 0, 1≤ α< 2, the noise generated is weak impulse noise.
When β � 0, α< 1, the noise generated is strong impulse
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noise. c (c> 0) denotes the dispersion of impulse noise and
is also called scale parameter. μ (− ∞< μ< +∞) represents
location parameter. sgn denotes the sign function. Since the
SαS distribution does not have a second moment, the mixed
signal-to-noise ratio (MSNR) is defined as follows:

MSNR � 10lg ∑N
t�1

ε2t
(Nc)

 , (2)

where ε2
t

represents the power of the tth signal and
t � 1, 2, . . . , N.

We can generate impulse noise obeying the standard SαS
distribution (0< α< 2, β � 0, c � 1, μ � 0) through the

algorithm obtained by the conversion formula in [32]. )e
specific content of this algorithm is as follows:

Step 1 A random variable U∗ obeying a uniform dis-
tribution on [− (π/2), (π/2)] is generated.

Step 2 Another exponentially distributed random vari-
able W∗ with a mean of 1 is generated.

Step 3 A random variable X obeying the standard SαS
distribution is obtained according to the fol-
lowing formula:

X �

S ×
sin α U∗ − B( )( )

cos U∗( )(1/α) ×
cos U∗ − α U∗ − B( )( )

W∗
( )((1− α)/α), α≠ 1,

2

π

π

2
+ βU∗( )U∗ − β log

W∗ cos U∗

(π/2) + βU∗
( )[ ], α � 1,


(3)

where

B �
arctan(β tan(πα/2))

α
, (3a)

S � 1 + β2tan2πα

2
( )(1/2α). (3b)

From the above process, the impulse noise of
each sampling point is as follows:

n �

�������������
∑N
t�1

ε2t
10(MSNR/10)( )

√√
×X. (4)

Figure 1 illustrates the discrete realization of the
Gaussian process when α � 2 and the standard
SαS process when α � 1.9, α � 1.5, and α � 0.9.

Figure 1 illustrates that as α decreases, the im-
pulse of noise continues to increase. When
β � 0, α � 2, the standard SαS distribution be-
comes Gaussian distribution, and the noise
generated is Gaussian noise. When β � 0, α � 1.9,
and β � 0, α � 1.5, the SαS distribution is still the
standard SαS distribution, and the noise gener-
ated is weak impulse noise. When β � 0, α � 0.9,
the SαS distribution is still the standard SαS
distribution, and the noise generated is strong
impulse noise. )e MSNR is set as 10 dB.

2.2. Construction of the Filtering System

2.2.1. DPVT Transformation Function. )e dual-parameter
variable tailing (DPVT) [24] is a new nonlinear transfor-
mation function proposed in 2019. One parameter controls
the linear region threshold, and the other parameter controls

the tail decay speed. )e nonlinear function with expo-
nential function as the tail is designed as follows:

G(g,Λ, c) �
g, |g|≤Λ,
Λc|g|− Λ · sgn(g), |g|>Λ,

 (5)

where c ∈ (0, 1]. By adjusting the value of c, the nonlinear
function can achieve different degrees of suppression for
large-value samples. Λ denotes the linear region threshold. g
denotes the signal to be processed. However, since the noise
situation is unknown in the BSS, improper threshold setting
may cause the deterioration of performance. Consequently,
we need to design a filter system that can adjust the threshold
according to the noise situation.

2.2.2. MAF-DPVT-MF. s(t) � [s1(t), s2(t), . . . , sD(t)]
T are

D independent source signals and t � 1, 2, . . . , N. t denotes
the number of sampling points, and N denotes the total
number of sampling points. n(t) � [n1(t), n2(t), . . . ,
nD(t)]

T are impulse noises superimposed on s(t),
s̃(t) � s(t) + n(t). A is D ×D unknown hybrid system
matrix. x̃(t) � As̃(t) � [x̃1(t), x̃2(t), . . . , x̃D(t)]

T denote
observation signals. Because of impulse noises’ covering, we
cannot directly see the peak of x̃(t) to determine the Λ.
Consequently, we have to use a moving average filter (MAF)
[33] that can reduce the amplitude of impulse noise to obtain
the x̂(t) � [x̂1(t), x̂2(t), . . . , x̂D(t)]

T.
By this way, we can determine the DPVT’s threshold as

follows:

Λ �∑D
i�1

max x̂i(t){ }
t�1,2,...,N

. (6)

)rough a lot of simulation experiments, this threshold
setting method is proved to be effective and stable. )e
observation signals after passing DPVT enter the median
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filter to further suppress the noise. Finally, we can acquire
the filtered observation signals x(t).

2.2.3. Hybrid Optimization Objective Function.
Preprocessing includes two steps that are centralization and
whitening. )e process of centralization is described as ei-
ther x(t) � x(t) − E(x(t)) or

xi(t) � xi(t) −
1

N
∑N
t�1

xi(t), (7)

where i � 1, 2, . . . , D, t � 1, 2, . . . , N, and E denotes math-
ematical expectation. We can acquire
x(t) � [x1(t), x2(t), . . . , xD(t)]

T that are zero-mean ob-
servation signals through centralization. Whitening x(t),
that is, performing a linear transformation on x(t) obtains
z(t) � Vx(t), E(z(t)z(t)T) � I. z(t) named whitened signal
is x(t) preprocessed. V is called whitening matrix, and I
denotes the identity matrix. )e covariance matrix
R � E[x(t), x(t)T] is calculated according to x(t) and

performs eigenvalue decomposition on R to obtain
R � QHQT. )e orthogonal matrix Q is composed of ei-
genvectors of R, and the diagonal matrix H is composed of
eigenvalues corresponding to the eigenvectors. In summary,
we can get the whitening matrix, that is, V � QH− (1/2)QT

and E(z(t)z(t)T) � E(Vx(t), x (t)TVT) � QH− (1/2)QT

QHQTQH− (1/2)QT � I. )e objective function is optimized
by the algorithm to obtain the separation matrix
W. y(t) �Wz(t) � [y1(t), y2(t), . . . , yD(t)]

T are both the
separated signals and the estimated signals of s(t). Since the
characteristics of the source signals and the transmission
channel are unknown, y(t) has randomness in amplitude
and arrangement order, which is called the ambiguity of BSS.
y(t) can also be further processed by the median filter to
obtain ŷ(t) (Figure 2). Preprocessing is also required for
y(t) �Wz(t), and y(t) �Wz(t) � [y1(t), y2(t), . . . , yD
(t)]T can be acquired after preprocessing. W is the sepa-
ration matrix corresponding to y(t). z(t) is the whitened
signal corresponding to y(t). )e absolute value of kurtosis
is calculated by
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Figure 1: Discrete realization of the Gaussian process (α � 2) and the standard SαS process (α � 1.9, 1.5, 0.9): (a) α � 2, (b) α � 1.9,
(c) α � 1.5, and (d) α � 0.9.
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K(W) � K∗(y(t))

� K∗(Wz(t))

�∑D
i�1

K∗ yi(t)( )∣∣∣∣ ∣∣∣∣

�∑D
i�1

E y4
i (t)[ ] − 3 E2 y2

i (t)( )( )∣∣∣∣∣ ∣∣∣∣∣,

(8)

E y4
i (t)[ ] � 1

N
∑N
t�1

y4
i (t), (8a)

E y2
i (t)[ ] � 1

N
∑N
t�1

y2
i (t). (8b)

And the negative entropy is calculated by

J(W) � J∗(y(t)) � J∗(Wz(t)) �∑D
i�1

1

χ
K∗2 yi(t)( ), (9)

where χ denotes negative entropy function coefficient. So
hybrid optimization objective function can be denoted as
follows:

C(W) � aK(W) + bJ(W), (10)
where a and b are both numbers between [0,1] and a + b � 1.
K∗(y(t)) and J∗(y(t)) are the calculation formula for the
absolute value of kurtosis and the negative entropy with y(t)
as the independent variable, respectively. K(W) and J(W)

are the calculation formula for the absolute value of kurtosis
and the negative entropy with W as the independent vari-
ables, respectively.

Figure 2 shows the BSS model after introducing MAF-
DPVT-MF, which is also BSS model under source signals in
impulse noise (Figure 2). Figure 2 describes the following
process:

Step 1 )e source signals s̃(t) � s(t) + n(t) suppressed
by impulse noise enter the system to obtain the
observation signals x̃(t).

Step 2 x̃(t) enters the DPVT; meanwhile, it also enters
the MAF to obtain x̂(t), and the threshold Λ can
be determined according to x̂(t). )is is the first
parallel structure. After the signals are filtered by
DPVT, x(t) can be obtained after entering the
MF. MAF-DPVT-MF consists of the above
process.

Step 3 z(t) can be obtained after x(t) is preprocessed.

Hybrid system
A

DPVT

Median filtering

Preprocessing

Separation
system W

x̂ (t)

x (t)

z (t)

y (t) = Wz (t)

ŷ (t)

Λ

s
~ 

(t) = s (t) + n (t)

x
~ 

(t) = As
~ 

(t) = A (s (t) + n (t))

MAF-DPVT-MF

QSMA

Moving average
filtering

t=1,2,...N
Λ = ∑ max{x̂i(t)}

i=1
D

Figure 2: BSS model under source signals in impulse noise.
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Step 4 )e hybrid optimization objective function is
established according to z(t), and QSMA is used
to find the optimal solution of the objective
function; consequently, the separation system W
is determined. After z(t) passing through W, the
final separation signals y(t) can be obtained. )is
is the second parallel structure.

Step 5 y(t) can also be further processed by the MF to
obtain ŷ(t).

3. QSMA-BSS

3.1. 8e Proposed QSMA. Quantum slime mould algorithm
(QSMA) is an intelligent novel optimization algorithm based
on the oscillation mode of slime moulds in nature [10] and
the quantum behavior metaphor of slime moulds. )e

population of quantum slime moulds is M, and the maxi-
mum number of iterations for the entire population is G∗. ε
denotes iterations, and d denotes the spatial dimension of
each quantum slime mould. )e quantum position of the kth
quantum slime mould is randomly initialize as
mε
k � [m

ε
k1, m

ε
k2, . . . , m

ε
k d], k � 1, 2, . . . ,M, 0≤mε

kr ≤ 1, and
r � 1, 2, . . . , d. )e quantum position of quantum slime
mould is mapped to the position of quantum slime mould
mε
k � [m

ε
k1, m

ε
k2, . . . , m

ε
k d]. )e mapping rule is

mε
kr � m

min
r +mε

kr(m
max
r − mmin

r ), where mmin
r ≤mε

kr ≤mmax
r .

mmax
r and mmin

r are the upper and lower limit of the r-th
dimensional variable for the quantum slime mould’s posi-
tion, respectively.

)e k-th quantum slime mould’s r-th dimensional
quantum rotation angle is updated as follows:

δε+1
kr �

v1 × w m
ε

k( )mε
ηr − m

ε
ξr( ), rk ≥pk,

v2 ×m
ε
kr + u

ε
kr m

ε
mean,r − m

ε
kr( ) + ûεkr mε

worst,r − m
ε
kr( ), rk <pk,

 (11)

where η and ξ represent two individuals’ numbers selected
from population and r � 1, 2, . . . , d. w(mε

k) represents the
weight of the k-th quantum slime mould. uεkr and ûεkr are
both uniform random numbers between 0 and 1. )e k-th
quantum slime mould’s quantum position will be selected to
be updated with the discovery probability pk, for which a
random number rk will be produced with uniform distri-
bution among [0, 1]. mε

mean � [m
ε
mean,1, m

ε
mean,2,

. . . , mε
mean,d] � (1/M)∑Mk�1 m

ε
k and mε

worst � [mε
worst,1,

mε
worst,2, . . . , m

ε
worst,d] denotes the worst quantum position. v1

is called oscillated weight coefficient with a range of [− λ, λ],
and λ is represented as follows:

λ � arctan h −
ε

G∗
( ) + 1( ). (12)

v2 is called the inertia weight coefficient and

v2 � v
max
2 − vmax

2 − vmin
2( ) × ε

G∗
, (13)

where vmax
2 and vmin

2 are the maximum value and the
minimum value of v2, respectively.

And the k-th quantum slime mould’s r-th dimensional
quantum position is updated as follows:

m
ε+1
kr �

m
ε
best,r cos δε+1

kr( ) −
�����������
1 − m

ε
best,r( )2

√
sin δε+1

kr( )∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣, rk ≥pk,

m
ε
kr cos δε+1

kr( ) − ���������
1 − m

ε
kr( )2√

sin δε+1
kr( )∣∣∣∣∣∣∣

∣∣∣∣∣∣∣, rk <pk,

 (14)

where mε+1
best � [m

ε+1
best,1, m

ε+1
best,2, . . . , m

ε+1
best,d] denotes the global

optimal quantum position.
QSMA can be used not only in BSS problems but also in

other optimization problems.

3.2. QSMA-BSS. )e separation matrix W is an orthogonal
matrix, which can be expressed as the product of a series of
rotation matrices using the Givens rotation transformation
[34] to reduce the amount of calculation. )e expression is as
follows:

W(θ) � ∏D− 1

i�1

T(D− i)D  ∏D− 2

i�1

T(D− 1− i)(D− 1)
 , . . . ,T12,

(15)

Tψl �

I(ψ− 1),(ψ− 1) 0 · · · 0

0 Δ ⋮
⋮ 0

0 · · · 0 I(D− 1),(D− 1)


, (16)
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Δ �

cos θτ( ) 0 · · · 0 − sin θτ( )
0 0

⋮ I(l− ψ− 1),(l− ψ− 1) ⋮
0 0

sin θτ( ) 0 · · · 0 cos θτ( )




, (16a)

where Tψl denotes the D ×D rotation matrix. I(ψ− 1),(ψ− 1)

denotes the (ψ − 1) × (ψ − 1) identity matrix. I(D− l),(D− l)
denotes the (D − l) × (D − l) identity matrix. I(l− ψ− 1),(l− ψ− 1)

denotes the (l − ψ − 1) × (l − ψ − 1) identity matrix, and
1≤ψ < l≤D. Δ denotes a (l − ψ + 1) × (l − ψ + 1) matrix. D
is the largest dimension of the separation matrix, and ψ, l
represent the number of row and column of the element
containing the rotation angle in the rotation matrix, re-
spectively. τ represents the sequence number of the rotation
matrix arranged from left to right at the right end of the
equal sign of equation (15). So θτ represents the rotation
angle of the τ-th rotation matrix arranged from left to right
at the right end of the equal sign, where θ � [θ1, θ2, . . . , θd]
and τ � 1, 2, . . . , d. Based on the mε

k and equation (15), we
can obtain the separation matrix W(mε

k) corresponding to

the k-th quantum slime mould’s position using the rotation
angle of the rotation matrix as position information of the
quantum slime mould. Preprocessing the separated signals
obtained from W(mε

k) can get W(mε
k).

Fitness function can be constructed based on the hybrid
optimization objective function and the process above.
Fitness value for the k-th quantum slime mould’s position
can be calculated by the fitness function, that is,

F m
ε

k( ) � C W m
ε

k( )[ ]. (17)
According to the fitness function, the fitness value of

each quantum slime mould’s position is calculated, and the
fitness values are sorted. )en we can find the quantum
position with the largest fitness value and the quantum
position with the smallest fitness value in the population up
to the current generation. Finally, the global optimal
quantum position, that is,
mε

best � [m
ε
best,1, m

ε
best,2, . . . , m

ε
best,d] and the worst quantum

position, that is, mε
worst � [m

ε
worst,1, m

ε
worst,2, . . . , m

ε
worst,d] can

be determined. mε
best and mε

worst can be mapped to get mε
best

andmε
worst. )e formula ofw(mε

k) in equation (11) is listed as
follows:

w m
ε

I(q)( ) �
1 + uε

I(q)
× log

F m
ε

best( ) − F m
ε

I(q)( )
F m

ε

best( ) − F m
ε

worst( ) + 1
 , q � 1, 2, . . . ,

M

2
,

1 − uε
I(q)

× log
F m

ε

best( ) − F m
ε

I(q)( )
F m

ε

best( ) − F m
ε

worst( ) + 1
 , q �

M

2
+ 1,

M

2
+ 2, . . . ,M,


(18)

where I(q) denotes the q-th element in the label sequence
vector I, and according to the fitness values, the individual
labels of these quantum slime moulds are sorted (in
descending order) to obtain I. uε

I(q)
denotes a uniform

random number within [0,1].
And, the discovery probability pk is calculated by

pk � tanh F m
ε

k( ) − F m
ε

best( )∣∣∣∣ ∣∣∣∣. (19)
)e newly generated quantum position mε+1

k can be
mapped as mε+1

k , and the fitness value of the mε+1
k can be

calculated according to F(mε+1
k ). )en the quantum posi-

tions are selected by the greedy selection strategy. If
F(mε+1

k )<F(mε
k), then mε+1

k � mε
k and F(mε+1

k ) � F(mε
k).

)e quantum positions of the quantum slime moulds are
sorted after greedy selection according to fitness value to find
the quantum position with the largest fitness value and the
quantum position with the smallest fitness value. In this way,
we can record these quantum positions. mε+1

best � [m
ε+1
best,1,

mε+1
best,2, . . . , m

ε+1
best,d] denotes the recorded quantum position,

that is, the global optimal quantum position after update.
And, mε+1

worst � [m
ε+1
worst,1, m

ε+1
worst,2, . . . , m

ε+1
worst,d] denotes the

recorded quantum position, that is, the worst quantum
position after update.

According to the introduction and analysis above, the
description of QSMA-BSS in impulse noise is as follows:

Step 1 )e observational signals are received, and then
the proposed filtering system is constructed to
filter the observational signals.

Step 2 )e filtered observation signals are preprocessed,
and a hybrid optimization objective function is
constructed.

Step 3 )e quantum slime moulds’ fitness is constructed
and calculated; then the global optimal quantum
position and the worst quantum position are
determined.

Step 4 Each quantum slime mould’s quantum rotation
angle is updated by equation (11). )e quantum
position of each quantum slime mould is updated
using a simulated quantum rotation gate
according to equation (14).

Step 5 )e updated positions’ fitness values are calcu-
lated and evaluated by greedy selection to renew
the global optimal quantum position and the
worst quantum position.

Mathematical Problems in Engineering 7



Step 6 If ε≥G∗, output the global optimal position and
its corresponding separation matrix W(mε+1

best);
then we can obtain the separated signals
y(t) �W(mε+1

best)z(t); otherwise, set ε to ε + 1,
then return to Step 4.

3.3. Computational Complexity of QSMA. For the iterations
of the QSMA, each quantum position needs to be mapped to
position, and the computational complexity is O(Md),
whereM represents the population size and d represents the
dimension of each quantum position. )e quantum rotation
angle of each quantum position is calculated by equation
(11) with the computational complexity O(Md). Each
quantum position is updated by equation (14) with the
computational complexity O(Md). Besides, the fitness value
of each quantum slime mould is calculated, and the quantum
individuals are updated according to the greedy selection
strategy; then the global optimal quantum position is
updated. )e computational complexity is O(M). )e
weight of each quantum slime mould is calculated by
equation (18) with the computational complexity O(M).
And the discovery probability of each quantum slime mould
is calculated by equation (19) with the computational
complexity O(M).

Upon termination of the QSMA after ε iterations, the
computational complexity is O(ε(3M + 3Md)).

3.4.ConvergenceAnalysis ofQSMA. Mathematical analysis is
performed on the convergence performance of the con-
tinuous space optimization algorithm. By using the oscil-
lation operator and the greedy selection strategy of these
quantum slime moulds, a better large population can be
obtained approximately from a finite population. )en we
perform the convergence analysis from a probability per-
spective. )e oscillation operator, that is, a mutation op-
erator increases the population’s diversity, and the greedy
selection strategy can retain the optimal quantum position
until the current iteration in the evolution process. )e
combination of greedy selection strategy and oscillation
operator is able to search for the global optimum in mul-
tidimensional space with a sequence of populations. )e
oscillation equation is designed to ensure that the overall
convergence is close to the neighborhood of the optimal
point. Next, we will prove that after a sufficient number of
iterations, the overall probability density function should be
concentrated near the global optimal value of the objective
function value.

Let M � [m1,m2, . . . ,mM]
T. According to the contin-

uous optimization problem shown in equation (17), which is
also represented by maxF: M ⊂ R̂d, where F is called the
objective function, M ⊂ R̂d denotes the feasible region, d is
the dimension of M, and R̂ is the set of the real numbers.
)en some common assumptions are formulated about M
and F:

(i) F has finite global optimal points in the feasible
region M, and the maximum is called F∗

(ii) 0<Fmin ≤F(m)≤Fmax <∞,∀m ∈ M, where Fmax

and Fmin mean the maximum and minimum of the
objective function value, respectively

(iii) vol(M)> 0, where vol denotes the d-dimensional
Lebesgue measure of a set

(iv) ∀σ > 0,Ω(σ) � m ∈ M, F(m)≥F∗ − σ{ } satisfies
vol(Ω(σ))> 0

Based on the above conditions, a lemma is given in the
following.

Lemma 1. For ∀σ > 0, the probability of the newly generated
position falling into the set Ω(σ) satisfies

P m
ε ∈ Ω(σ)( )≥ κ(ε)> 0, (20)

where κ(ε) is a number that may correspond to ε and P
represents the event probability of (). If ∑∞ε�1 κ(ε) diverges, the
algorithm is convergent, and the global optimal solution is
obtained. And it is irrelevant to the initialized population.

Proof. If the probability of the newly generated position
falling into the set Ω(σ) satisfies P(mε ∈ Ω(σ))≥ κ(ε)> 0 at
the ε-th iteration, the probability that this event will not
occur can be expressed as P(mε ∉ Ω(σ))≤ 1 − κ(ε). More-
over, the probability of the event that a position with ε
updates but never falls into the set Ω(σ) can be expressed as
follows:

Pno(ε) �∏ε
h�1

Phno m
h ∉ Ω(σ)( )≤∏ε

h�1

(1 − κ(h)). (21)

Since the greedy selection strategy can preserve the
optimal position, there is a possibility that a position falls
into the set Ω(σ). Consequently, for ∀σ > 0, we have the
following statement:

P F∗ − Fε
max > σ( )≤Pno(ε), (22)

where Fε
max is the maximal objective function value at the

ε-th iteration.
When ε in equation (21) tends to be infinite, the fol-

lowing equation holds:

lim
ε⟶∞

Pno(ε) �∏∞
ε�1

(1 − κ(ε)) � 0. (23)

From the statistics mathematical perspective, we can
derive that ∏∞ε�1 (1 − κ(ε)) � 0⟺∑∞ε�1 κ(ε) diverges,
where ⇔ represents equivalent in the equation.

Substitute (23) into (22), and we get

lim
ε⟶∞

P F∗ − Fε
max > σ( ) � 0, (24)

and ∑∞ε�1 κ(ε) diverges.
)en the algorithm converges. It is obvious that the

convergence performance is irrelevant to the initialized
population.

During the oscillation process, the slime moulds are
generated in two methods to increase the diversity of its
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population, which can be expressed by oscillation equations
(11) and (14). QSMA is constantly evolving toward the
optimal solution by continuously updating the quantum
position, and the quantum position can be linearly mapped
to the position. )e main generating equation of the
quantum rotation angle is equation (11). Consequently, we
mainly analyze equations (11) and (14).

When rk ≥pk, because equation (12) and
limε⟶G∗λ � limε⟶G∗(arctan h(− (ε/G

∗) + 1))⟶ 0, the
value range of v1 starts to decrease from [− ∞,∞], that is,

v1 ∈ [− λ, λ]⟶ 0 and δε+1
kr ⟶ 0; finally, we have

mε+1
kr ⟶ mε

best,r, where ⟶ represents infinite approach.
)e newly generated quantum position in each iteration is
constantly approaching the optimal quantum position in the
previous iteration. Meanwhile, QSMA introduces a greedy
selection strategy to retain the optimal solution and the
rotation characteristics of the quantum rotation gate can
make the quantum position evolve to the optimal quantum
position.

When rk <pk, because

uεkr m
ε
mean,r − m

ε
kr( ) + ûεkr mε

worst,r − m
ε
kr( ) � uεkrmε

mean,r + û
ε
krm

ε
worst,r − uεkr + û

ε
kr( )mε

kr. (25)

We can obtain ((uεkrm
ε
mean,r + û

ε
krm

ε
worst,r)/(u

ε
kr + û

ε
kr)) − m

ε
kr

from the above equation (25) by dividing both sides of the
equation by uεkr + û

ε
kr at the same time. Equations (11) and

(12) can be thought that the current quantum position is
attracted by the quantum position ρε, that is, composed of
the mε

mean � [m
ε
mean,1, m

ε
mean,2, . . . , m

ε
mean,d] � (1/M)∑Mk�1

mε
k and mε

worst � [m
ε
worst,1, m

ε
worst,2, . . . , m

ε
worst,d]. )e quan-

tum position ρε is constantly updated that can be linearly
mapped to position ρε. And the r-th dimension of quantum
position ρε can be described as ((uεkrm

ε
mean,r + û

ε
krm

ε
worst,r)

/(uεkr + û
ε
kr)) [35]. Both uεkr and ûεkr are known to be random

numbers with uniform distribution between 0 and 1. )e
effect of the quantum rotation gate operator is slight in the
quantum area [0,1]; therefore, we can assume that the
quantum rotation gate does not affect the current probability
distribution. )en it can be considered that the quantum
positions, and their mapping positions are updated toward
the quantum position ρε and the position ρε with uniform

random distribution. All the dimensions of
m � [m1, m2, . . . , md] are independent identically distrib-
uted, which follow uniform random distribution
U(mmin

r , mmax
r ), where r � 1, 2, . . . , d. )e probability den-

sity function can be defined as follows:

fu(m) �

1

∏d
r�1 m

max
r − mmin

r( ), m ∈ M,

0, otherwise.

 (26)

Owing to the rotation characteristics of quantum rota-
tion gate, the quantum positions are led to evolve towards
the optimal quantum position; meanwhile, the positions
have a high probability of falling into the set Ω(σ), which is
more than the probability generated by the uniform random
density function. )us, for ∀m ∈ M generated by equations
(11) and (12), we have

P( m ∈ Ω(σ){ })≫∫
Ω(σ)

fu(m)dm � vol(Ω(σ))
1∏d

r�1 m
max
r − mmin

r( )> 0. (27)

Based on the proof of Lemma 1, it can be concluded that
QSMA can converge to the optimal solution through these
equations. What needs attention is how the oscillation operator
and the greedy selection strategy work. )e oscillation operator
expands the distribution and guides the solution to converge to
the optimal solution. )e greedy selection strategy retains the
optimal solution to avoid falling into the local optimum. )is
means that QSMA will eventually converge to the global op-
timal value, and its convergence performance is irrelevant to
the initial population. □

3.5. Limitation Analysis. Just like other BSS methods, al-
though QSMA-BSS achieves superior performance, this
method is only suitable for BSS when the source signal is
interfered by impulse noise. When the observation signal is
interfered by impulse noise, the performance of the method
decreases. Besides, when QSMA is applied to solve the
superdimensional optimization problem, the performance
may be reduced.

4. Simulation Results

)e simulation software used is MATLAB R2018a. )e
hardware details are as follows: Inter (R) Core (TM) i5-
10300H CPU (2.50 GHz), which processes 16 GB of RAM on
Microsoft Windows 10.

4.1. Implementation of the Proposed Method. In the experi-
ment, three different basic communication signals are used
as source signals. s1(t) � sgn(cos(2∗ π ∗ 155∗ t)) is a bi-
nary signal. s2(t) � sin(2∗ π ∗ 90∗ t) is a low-frequency
sinusoidal signal. s3(t) � sin(2∗ π ∗ 9∗ t)∗ sin (2∗ π ∗
300∗ t) is an amplitude modulation signal. )ree source
signals (D � 3) are sampled at a frequency of 10 kHz, and
the number of sampling points is 4,000 (N � 4000). Strong
impulse noise (α � 0.9) is added to s2(t). MSNR of impulse
noise is set as 10 dB. Figures 3(a)–3(f) show the complete
process of BSS in impulse noise.

Mathematical Problems in Engineering 9
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Figure 3: )e process of BSS in impulse noise: (a) waveform graph of s(t), (b) waveform graph of s̃(t), (c) waveform graph of x̃(t),
(d) waveform graph of x̂(t), (e) waveform graph of x(t), and (f) waveform graph of ŷ(t).
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)e waveform graph of s(t) is shown in Figure 3(a). )e
waveform graph of s̃(t) is shown in Figure 3(b). Figure 3(b)
illustrates that s2(t) is completely covered by strong impulse
noise.

)e hybrid system matrix A is set as
0.5 0.8 1
− 0.5 − 0.1 0.5
0.5 0.5 0.8

 .
Because we cannot get any information about source

signals, we have to observe the x̃(t) � As̃(t) to determine Λ.
)e waveform graph of x̃(t) is shown in Figure 3(c), and this
figure demonstrates that it is impossible for us to determine Λ
by observing x̃(t) due to the large amplitude of x̃(t). After a
lot of experimentation, we find that it is easy to cause noise
suppression ability to decrease or the signal waveform after
filtering is distorted if a fixed Λ is randomly determined.
Figure 3(c) demonstrates that the observation signals have
been completely covered by impulse noise. Consequently, it is
necessary to filter the x̃(t) if we want to determine Λ. )e
neighborhood window size of moving average filter is set to 50.

)e waveform graph of x̂(t) is shown in Figure 3(d), and
this figure demonstrates that the amplitude of impulse noise
is reduced through moving average filtering. Consequently,
we can determine Λ by equation (6).

And x̃(t) are filtered through the MAF-DPVT-MF to
obtain x(t). )e waveform graph of x(t) is shown in
Figure 3(e), and this figure demonstrates that impulse noise
is suppressed.

DPVT’s function coefficient c is set to 0.8, and the
neighborhood window size of the median filter is set to 10.
)e parameter setting of c refers to literature [27].

)e negative entropy function coefficient χ is set as 48.
Parameters setting for the proposed QSMA is as follows:

M � 30, G∗ � 40, d � 3, mmax
r � 2π, mmin

r � 0, vmax
2 � 1, and

vmin
2 � 0. It is known that the convergence performance is

irrelevant to the initialized population size from the con-
vergence analysis of QSMA. d is related to the dimension of
the optimization problem. Consequently, the performance
of QSMA is not limited to parameters setting.

After many experiments, these parameters are found to
be suitable, so good simulation results can be achieved.

)e separated signals acquired are shown in Figure 3(f).
)e simulation result illustrates that the proposed method
can achieve BSS when source signals are interfered by strong
impulse and low MSNR noise. Meanwhile, the proposed
method can also recover the source signals covered by noise
to a certain extent.

Next, instead of filtering the signals through MAF to
determine the threshold value, we delete the MAF and
randomly set Λ to fixed value to observe the effect of signal
separation (Figure 4).

If Λ is set to a fixed value, Figure 4 demonstrates that the
performance of the method will deteriorate. )e fixed
threshold value may cause the threshold value to be too small
for the observation signal covered by noise. While the noise is
suppressed, the signal is also suppressed, resulting in the
distortion of the signal waveform.

4.2. Performance of QSMA Based on Hybrid Optimization
Objective Function. To testify the superiority of the pro-
posed method, the other nine intelligent algorithms that are
GA, PSO, BFA, SMA, WOA, ABC, GWO, CSA, and BA are
used in the following simulations as comparisons.

)e number of population individuals for all algorithms
is set to 30, and the iterations’ maximum number for all
algorithms is set as 500. )e simulation result is the mean of
100 simulations. Other parameters setting for QSMA re-
mains unchanged.

In PSO, the inertia weight coefficient is linearly de-
creased from 0.9 to 0.1 over the course of iterations. )e two
acceleration constants are both equal to 2.0, and the max-
imum speed is set as 0.1 [7]. GA’s crossover rate is set as 0.8;
then the mutation rate is set as 0.1; and other parameters
setting refers to [8]. BFA’s mutation rate is set as 0.5, and
other parameters setting refers to [9]. SMA’s parameters
setting is derived from original literature [10]. In ABC, the
percentage of onlooker bees is 50% of the colony. )e
percentage of employed bees is 50% of the colony, and the
number of scout bees is selected as 1 [11]. In WOA, the
constant for defining the shape of the logarithmic spiral is set
to 1, and other parameters setting refers to [12]. In GWO, the
inertia weight coefficient is linearly decreased from 2 to 0
over the course of iterations [13]. In CSA, the flight step is set
as 2, and crow’s perception probability is set as 0.1 [14]. In
BA, the initial loudness is set to 1 and the initial pulse
frequency is set to 0.5. )en the two constants affecting the
above two parameters are both set to 0.9, and other pa-
rameters setting refers to [15].

)e characteristic index of impulse noise is 0.9 (α � 0.9),
and the MSNR is set as 10 dB.

Figure 5 demonstrates algorithm test results of the hy-
brid optimization objective function under different weight
coefficients.

When a � 1, b � 0, based on the MK, the objective
function is constructed. )e test result shows that QSMA can
achieve the best convergence performance. When
a � 0.5, b � 0.5, based on the MK and MNE, the objective
function is constructed. )e test result shows that QSMA’s
convergence performance gradually deteriorates. When
a � 0, b � 1, based on the MNE, the objective function is
constructed. )e test result shows that other algorithms’
convergence performance is gradually better than QSMA.

Figure 5 demonstrates that different algorithms
correspond to different optimal independence criteria.
PSO and WOA can obviously show better convergence
performance when the objective function is designed
based on MNE. QSMA and SMA can obviously show
better convergence performance when the objective
function is designed based on MK. In addition, the
change of the independence criterion has little effect on
the performance of some algorithms. In summary, it is
significant to design the hybrid optimization objective
function.
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Figure 4: Waveform graph of ŷ(t) without MAF: (a) Λ � 10 and (b) Λ � 20.
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Figure 5: Continued.

12 Mathematical Problems in Engineering



4.3.PerformanceofQSMA-BSSBasedonHybridOptimization
Objective Function. )e crosstalk error is used as the per-
formance evaluation index, and the crosstalk error is cal-
culated by the following formula:

P �
1

D(D − 1)
∑D
i�1

∑D
i�1

Gii
∣∣∣∣ ∣∣∣∣

max
l
G
il

∣∣∣∣ ∣∣∣∣ − 1( ) + ∑D
i�1

Gii
∣∣∣∣ ∣∣∣∣

max
l
G
li

∣∣∣∣ ∣∣∣∣ − 1  ,
(28)

where G denotes the system matrix and G �WVA. |Gii|
denotes the i-th row and the i-th column element of |G|.
max

l
|G

il
| denotes the largest element in the i-th row of |G|,

and this element is located in the l-th column. |Gii| denotes
the i-th row and the i-th column element of |G|. max

l
|G

il
|

denotes the largest element in the l-th row of |G|, and this
element is located in the i-th column. )e separation ac-
curacy of the signal increases with the decrease of P.

)e number of population individuals for all algorithms
is set to 30, and the iterations’ maximum number for all
algorithms is set as 40. Each experiment runs 100 times in
the same MSNR, and the result is the mean of 100 simu-
lations. )e other parameters setting for all algorithms re-
mains unchanged.

)e BSS methods based on nine algorithms, named PSO-
BSS, SMA-BSS, GA-BSS, BFA-BSS, WOA-BSS, ABC-BSS,
GWO-BSS, CSA-BSS, and BA-BSS, are shown in Figure 6.

Figure 6 demonstrates the algorithm test results of the
hybrid optimization objective function under different weight
coefficients; meanwhile, we conduct experiments under strong
impulse noise and weak impulse noise environment, respec-
tively. When a � 1, b � 0, Figure 6 demonstrates that QSMA-
BSS has higher accuracy compared with the other algorithms.
When a � 0, b � 1, Figure 6 demonstrates that the perfor-
mance of QSMA-BSS has become worse.

Firstly, the proposed method can achieve BSS no matter
under strong impulse noise or weak impulse noise. Besides,
it can be known from the simulation results that the average
of crosstalk error is still less than 0.3 when MSNR is 0 dB,
which indicates that the performance of this method is still
very superior under low MSNR. Finally, in addition to
QSMA, other algorithms can also be applied to the method
proposed in this paper.

)e BSS method based on MK and QSMA is named
QSMA-MK-BSS. )e BSS method based on MNE and PSO
is named PSO-MNE-BSS. )erefore, the other comparison
methods are named ABC-MNE-BSS, WOA-MNE-BSS,
GWO-MNE-BSS, CAS-MNE-BSS, and BA-MNE-BSS ac-
cordingly (Figure 7).

Figure 7(a) shows that the performance of the QSMA-
MK-BSS is still better than other algorithms designing
objective functions based on MNE. Consequently, the
proposed QSMA is still significant and useful. Meanwhile,
it is necessary for BSS to design hybrid optimization
objective function. By the designed function, we can
choose different optimal independence criteria for dif-
ferent algorithms and then design the objective function
based on the optimal independence criterion of the al-
gorithm. Figure 7(b) shows that as the coefficient a con-
tinues to increase, the performance of QSMA-BSS gets
better and better. In summary, the optimal independence
criterion for QSMA is MK, and it can achieve higher
precision when the objective function is designed based on
the optimal independence criterion.

Fractional low-order moments (FLOM) are introduced
into FAST-ICA in [23]. Consequently, we can also introduce
fractional low-order covariance (FLOC) [36] into FAST-
ICA. Two methods are achieved as comparisons to show the
superiority of the proposed method. Two methods are
named FLOM-FAST-ICA and FLOC-FAST-ICA (Figure 8).
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Figure 5: Comparison of convergence curves for hybrid optimization objective function: (a) a � 1, b � 0, (b) a � 0.5, b � 0.5, and (c)
a � 0, b � 1.
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Figure 6: Comparison of signal separation effect: (a) a � 1, b � 0, α � 0.9, (b) a � 0, b � 1, α � 0.9, (c) a � 1, b � 0, α � 1.5, and (d)
a � 0, b � 1, α � 1.5.
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To testify the superiority of the proposed method, the
probability of successful signal separation is calculated.
When the crosstalk error is less than 0.3, the experiment is
successful. During the simulation, each experiment runs 100
times in the same MSNR.

Figure 8 shows that the performance of the traditional
methods deteriorates in strong impulse and low MSNR noise
environment, but the QSMA-BSS is still effective and robust.

5. Conclusions

In this paper, a filter system named MAF-DPVT-MF is
designed. MAF-DPVT-MF does not require any informa-
tion from source signals or environmental noise as prior
knowledge and can effectively suppress impulse noise,
thereby eliminating the influence of noise interference on
BSS. )e hybrid optimization objective function is designed
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Figure 7: Comparison of signal separation effect (a) between QSMA-MK-BSS and other methods(α � 1.5) and (b) for QSMA-BSS under
different weight coefficients (α � 0.9).
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Figure 8: Comparison of signal separation effect between QSMA-BSS and previous methods.
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based on two different independence criteria. )en a new
intelligent algorithm named QSMA is proposed to search for
the optimal solution of hybrid optimization objective
function and its corresponding separation matrix within the
search range. According to the change of the performance
evaluation index with the weight coefficient, QSMA’s op-
timal independence criterion is determined to get more
accurate results. And simulation results illustrate that the
designed method is robust and effective when the unknown
source signals are interfered by impulse noise with low
MSNR. Compared with some traditional methods, the
performance of the proposed method is superior. Except
these algorithms mentioned in this paper, some of the most
representative computational intelligence algorithms can be
used to solve the problem, such as monarch butterfly op-
timization (MBO), earthworm optimization algorithm
(EWA), elephant herding optimization (EHO), moth search
(MS) algorithm, and Harris hawks optimization (HHO).

In future research, firstly, the proposed filtering system
can be applied to other engineering problems to suppress
noise. Secondly, the proposed QSMA can also be used to
solve other optimization problems. Finally, the work in this
paper can be considered a stepping stone to more com-
plicated future research in BSS, such as underdetermined
BSS in impulse noise and BSS when the observation signal is
interfered by impulse noise.
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