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Abstract Many geological phenomena are regularly measured over time to follow

developments and changes. For many of these phenomena, the absolute values are not

of interest, but rather the relative information, which means that the data are compo-

sitional time series. Thus, the serial nature and the compositional geometry should be

considered when analyzing the data. Multivariate time series are already challenging,

especially if they are higher dimensional, and latent variable models are a popular way

to deal with this kind of data. Blind source separation techniques are well-established

latent factor models for time series, with many variants covering quite different time

series models. Here, several such methods and their assumptions are reviewed, and it is

shown how they can be applied to high-dimensional compositional time series. Also,

a novel blind source separation method is suggested which is quite flexible regarding

the assumptions of the latent time series. The methodology is illustrated using simu-

lations and in an application to light absorbance data from water samples taken from

a small stream in Lower Austria.
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1 Introduction

There is an increasing awareness that many multivariate data sets are of a compo-

sitional nature. This means that the main interest is not in the absolute values as

they are reported, but in relative information, for instance in terms of (log-)ratios

of the values between the variables. In that way, the total sum of an observation is

no longer important, and in many applications, the total is just an arbitrary value

used for normalizing the data, such as 1 or 100%. When working with (log-)ratios,

such a total sum normalization would also not change the (log-)ratio, and hence the

analysis is independent of a normalization. Thus, for instance, the analysis of employ-

ment data reported from different sectors would be the same if they where treated

in absolute numbers or as percentages. Textbooks about compositional data are, for

example, Aitchison (2003) or Filzmoser et al. (2018) which give a general treat-

ment of such data. The same problem occurs naturally when such compositions are

observed over time. Compositional time series (CTS) analysis is a topic which has

begun receiving more attention recently, see for example Bergman and Holmquist

(2014), Dawson et al. (2014), Kynclova et al. (2015), Snyder et al. (2017), AL-Dhurafi

et al. (2018).

In a recent CTS review paper, Larrosa (2017) gives a general overview and mentions

as example applications socioeconomic time series, industrial production time series,

polls data and epidemiologic time series. As Larrosa (2017) mentions, the original

CTS must first be expressed in the usual Euclidean geometry, before standard time

series methods can be applied. It is also pointed out that in the literature, more attention

is paid to CTS from the Bayesian point of view.

Compositional data are by definition multivariate, and fitting sophisticated time

series models in more than three dimensions can be quite demanding, as pointed

out, for example, in Chang et al. (2018). Therefore, it is tempting to assume

latent components which allow individual univariate modeling. This is the approach

followed in this paper. The idea is to first represent the CTS in the Euclidean

space, and then assume in that space a blind source separation (BSS) model.

Different ways to approach the estimation of the latent components in BSS will

be outlined, and how to yield then again the multivariate CTS in the original

space.

The structure of the paper is as follows. Section 2 provides general details of

compositional data analysis, and explains how the data can be presented in the

standard Euclidean geometry. In Sect. 3, several BSS methods for time series are

reviewed; they are based on different assumptions of the underlying stochastic pro-

cesses. Also, a new BSS method is suggested which is compared to the existing

ones in a simulation study. Section 4 gives a recommendation of how to perform

BSS for compositional time series. The methodology is illustrated in Sect. 5 with

an example where light absorption data from water samples in a small stream in

Lower Austria are observed over time. Finally, general conclusions are provided in

Sect. 6.
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2 Compositional Time Series and Coordinate Representations

Let xt = (x1,t , . . . , x p,t )
⊤ be a compositional time series, observed at time points

t = 1, . . . , T . For the analysis of compositional data, the interest is not in the absolute

information expressed directly by the values in xt , but rather in the relative information

in terms of the (log-)ratios between the components of xt (Filzmoser et al. 2018). For

example, considering all pairwise log-ratios with x1,t results in

ln
x1,t

x1,t

= 0, ln
x1,t

x2,t

, . . . , ln
x1,t

x p,t

,

and they can be aggregated as

xclr
1,t = 1

p

(

ln
x1,t

x2,t

+ · · · + ln
x1,t

x p,t

)

= ln
x1,t

p

√

∏p

i=1 xi,t

, (1)

with the geometric mean in the denominator. xclr
1,t is called the centered log-ratio (clr)

coefficient for x1,t , and similarly one can also express the other components in terms

of clr coefficients (Aitchison 2003)

xclr
t = (xclr

1,t , . . . , xclr
p,t )

⊤ =

⎛

⎝ln
x1,t

p

√
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, . . . , ln
x p,t

p

√

∏p

i=1 xi,t

⎞

⎠

⊤

. (2)

Thus, xclr
t contains all relative information in terms of aggregated pairwise log-ratios.

It is not difficult to see that xclr
1,t + · · · + xclr

p,t = 0, and thus it can be inconvenient to

work with clr coefficients if full-rank matrices are necessary. As a way out, isometric

log-ratio (ilr) coordinates have been proposed, which refer to a family of coordinates

building an orthonormal basis in the (p − 1)-dimensional hyperplane formed by clr

coefficients (Egozcue et al. 2003). Among the infinitely many possibilities to define

such an orthonormal basis system, one particular choice are so-called pivot coordi-

nates, defined as (Filzmoser et al. 2018)

x ilr
i,t =

√

p − i

p − i + 1
ln

xi,t

p−i

√

∏p

j=i+1 x j,t

for i = 1, . . . , p − 1, (3)

with the inverse relationship

x1,t = exp

(
√

p − 1

p
x ilr

1,t

)

,

xi,t = exp

⎛

⎝−
i−1
∑

j=1

x ilr
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(p − j + 1)(p − j)
+

√

p − i

p − i + 1
x ilr
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⎞

⎠ , i = 2, . . . , p − 1,
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x p,t = exp

⎛

⎝−
p−1
∑

j=1

x ilr
j,t√

(p − j + 1)(p − j)

⎞

⎠ .

Since x ilr
1,t =

√

p
p−1

xclr
1,t , this coordinate system allows for a specific interpretation of

the first component, because it summarizes all relative information about x1,t in terms

of averaged log-ratios.

In fact, the sample space of compositional data xt is the p-dimensional simplex

(Aitchison 2003), and ilr coordinates xilr
t =

(

x ilr
1,t , . . . , x ilr

p−1,t

)⊤
are one possibility

for expressing the compositions in the (p−1)-dimensional real Euclidean space. More

details on geometrical properties are provided, for example, in Pawlowsky-Glahn et al.

(2015). Moreover, different (orthonormal) ilr coordinate systems are just orthonormal

rotations of each other, so they are obtained by a multiplication e.g. of xilr
t with an

orthonormal matrix of dimension p−1 (Egozcue et al. 2003). It will be important later

on to show that the results of CTS analysis are invariant with respect to the specific

choice of the ilr coordinates. Finally, there is also a link between clr coefficients and

the ilr coordinates from Eq. (3),

xclr
t = Vxilr

t and xilr
t = V⊤xclr

t , (4)

with a matrix V of dimension p × (p − 1), with columns

v j =
√

p − j

p − j + 1

(

0, . . . , 0, 1,− 1

p − j
, . . . ,− 1

p − j

)⊤
, (5)

for j = 1, . . . , p − 1, with j − 1 zero entries (Egozcue et al. 2003). Of course, a

similar relationship holds for other choices of ilr coordinates.

3 Blind Source Separation for Time Series

Blind source separation (BSS) is a popular multivariate approach for decomposing

multivariate data into uncorrelated components which are useful for dimension reduc-

tion, and intended for an easier interpretation or easier modeling of the data (for

overviews see, for example, Comon and Jutten 2010; Nordhausen and Oja 2018). BSS

is quite popular for biomedical signal analysis or financial time series decomposition,

and in many other fields as well.

The basic BSS model assumes that the observable p-variate time series x =
(xt )t=0,±1,±2,... satisfies

xt = µ + Ωzt , t = 0,±1,±2, . . . ,

where µ ∈ R
p is a p-variate location vector, Ω ∈ R

p×p is a full-rank mixing matrix

and z = (zt )t=0,±1,±2,... is a p-variate latent time series having E(zt ) = 0. The goal in
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BSS is to estimate zt . The location vector µ is usually considered a nuisance parameter,

which is set in the following to zero for simplicity.

Clearly, zt cannot be estimated without further assumptions, and there are differ-

ent BSS methods which differ in the assumptions that are made. The most popular

BSS method is independent component analysis (ICA), which assumes that zt has

independent non-Gaussian components. However, most ICA methods are developed

for iid data and are therefore not of interest in this paper. Here, the focus is on BSS

approaches specific for time series which make use of the serial information in the

data.

3.1 Second-Order Source Separation

The most established BSS approach for time series assumes the second-order

source separation (SOS) model, where the sources are p-variate time series z =
(zt )t=0,±1,±2,... which satisfy the assumptions

(SOS1) E(zt ) = 0 and E(z⊤
t zt ) = Ip, and

(SOS2) E(zt z
⊤
t+τ ) = Dτ is diagonal for all τ = 1, 2, . . .

These two assumptions imply that the components of z are weakly stationary and

uncorrelated time series where, however, often for convenience, the stronger assump-

tion of independence is made. In the following, two classical SOS methods are

described.

Definition 1 The AMUSE [algorithm for multiple unknown signals extraction (Tong

et al. 1990)] method simultaneously diagonalizes the following two matrices

COV(x) and Sτ (x) = E[(xt − E(xt ))(xt+τ − E(xt ))
⊤],

where COV denotes the regular covariance matrix and Sτ the autocovariance matrix

at lag τ . The AMUSE unmixing matrix Γ τ then satisfies

Γ τ COV(x)Γ ⊤
τ = Ip and Γ τ Sτ (x)Γ ⊤

τ = Dτ ,

where Dτ is a diagonal matrix with decreasing diagonal elements.

AMUSE can therefore be solved via a generalized eigenvector decomposition, and

thus Γ τ contains the eigenvectors of COV(x)−1Sτ (x), and Dτ the corresponding

eigenvalues. This also means that in order to work, AMUSE requires distinct eigen-

values, which implies that the autocorrelations with the chosen lag need to be different

for the source components. Statistical properties of AMUSE are given, for example,

in Miettinen et al. (2012), and it is well known that the choice of the lag has a huge

impact on the performance of AMUSE.

Belouchrani et al. (1997) suggested avoiding this dependency by not only diago-

nalizing two matrices, but adding more autocovariance matrices with different lags.

Definition 2 The SOBI (second-order blind identification) method first whitens the

observable time series using the covariance matrix COV(x). Then K autocovariance
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matrices for a set of distinct lags T = {τ1, . . . , τK } are computed for the whitened

time series xst
t , yielding

Sτ1(x
st
t ), . . . , SτK

(xst
t ).

The SOBI unmixing matrix Γ T is given by

Γ T = UCOV(xt )
−1/2,

where the orthogonal p × p matrix U = (u1, . . . , up)
⊤ maximizes

∑

τ∈T

p
∑

i=1

(u⊤
i Sτ (x

st
t )ui )

2.

Hence, SOBI can be seen as a method that first whitens the data and tries to make the

K autocovariance matrices as diagonal as possible. Many algorithms are available to

solve this problem which, however, give estimates with different statistical properties.

Some algorithms and the properties of the resulting estimators are discussed, for

example, in Miettinen et al. (2014), Illner et al. (2015), Miettinen et al. (2016). In

general, it is considered that in an SOS framework, SOBI is preferable over AMUSE.

SOS methods exploit second-order properties of the stochastic processes and there-

fore assume that the components have nontrivial autocovariance matrices which

differ in at least one lag. This means that SOS is working well when, for example,

autoregressive-moving-average (ARMA) modeling is natural. However, for stochastic

volatility processes which are popular in financial applications, for instance, SOS fails,

as there is no second-order information.

3.2 BSS for Time Series with Stochastic Volatility

In order to deal with stochastic volatility time series, Matilainen et al. (2015) considered

the stochastic volatility independent component model for time series models, which

will be denoted by SV. In the SV model it is assumed that

(SV1) E(zt ) = 0 and E(zt z
⊤
t ) = Ip, and

(SV2) each component of zt exhibits stochastic volatility features and has finite

fourth moments and cross-moments where no two components are identical

at all lags.

In the following, three methods will be introduced to estimate the sources in SV,

namely gFOBI, gJADE and vSOBI.

Definition 3 gFOBI (Matilainen et al. 2015) first whitens the time series to yield the

time series xst
t and subsequently finds an orthogonal matrix U ∈ R

p×p such that it

maximizes for a set of lags T = {τ1, . . . , τK }

∑

τ∈T

p
∑

i=1

(u⊤
i Bτ (x

st
t )ui )

2,
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where Bτ (x
st
t ) = E[xst

t+τ xst ⊤
t xst

t xst
t+τ

⊤] is the matrix of fourth-order cross-moments

at lag τ . The gFOBI unmixing matrix is then given by ΓT = UCOV(xt )
−1/2.

For gJADE, the cross-cumulant matrices at lag τ are defined as

C jk
τ (xt ) = E[xt+τ x⊤

t E jkxt x
⊤
t+τ ] − Sτ (xt )(E

jk + Ek j )Sτ (xt )
⊤ − trace(E jk)Ip,

where E jk = e j e
⊤
k , j, k = 1, . . . , p with ei denotes a unit vector with 1 at entry i .

Definition 4 gJADE (Matilainen et al. 2015) again first whitens the time series and

then searches the orthogonal matrix U ∈ R
p×p which maximizes

∑

τ∈T

p
∑

i=1

p
∑

j=1

p
∑

k=1

(u⊤
i C jk

τ (xst
t )ui )

2,

given the set of lags T = {τ1, . . . , τK }. Accordingly, the gJADE unmixing matrix is

given by ΓT = UCOV(xt )
−1/2.

Both methods, gFOBI and gJADE, are generalizations of the iid ICA method FOBI

[fourth-order blind identification (Cardoso 1989)] and JADE [joint approximate diag-

onalization of eigenmatrices (Cardoso and Souloumiac 1993)] and are here obtained

simply by setting T = {0}.
A variant of SOBI for the SV case was proposed in Matilainen et al. (2017).

Definition 5 vSOBI uses the covariance matrix to whiten the time series, and for a

fixed set of lags T = {τ1, . . . , τK } it finds the orthogonal matrix U ∈ R
p×p which

maximizes

∑

τ∈T

p
∑

i=1

(E[G(u⊤
i xst

t )G(u⊤
i xst

t+τ )] − E[G(u⊤
i xst

t )]2)2,

where G can be any twice continuously differentiable function. The vSOBI unmixing

matrix is then Γ T = UCOV(xt )
−1/2.

Popular choices for G are G(y) = y2 and G(y) = log(cosh(y)). For comparisons

of gFOBI, gJADE and vSOBI, see Matilainen et al. (2017).

Both the SOS model and the SV model assume stationarity of the time series. There

is, however, also a BSS model for nonstationary time series.

3.3 Nonstationary Source Separation

The nonstationary source separation (NSS) relaxes the assumption of stationarity.

The NSS model makes the following assumptions:

(NSS1) E(zt ) = 0 for all t ,

(NSS2) E(zt z
⊤
t ) is positive definite and diagonal for all t ,
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(NSS3) E(zt z
⊤
t+τ ) is diagonal for all t and τ .

Again, (NSS2) implies only uncorrelatedness, but in practice often indepen-

dence is assumed. Hence, in the NSS model, the source components are uncorre-

lated/independent and they have a constant mean. However, the variances are allowed

to change over time as well as the autocovariance matrices. A special case here is, for

example, a block-stationary model, where the time series can be divided into blocks

so that an SOS model holds for each block.

Three approaches for NSS are considered here, namely NSS-SD, NSS-JD and NSS-

TD-JD (Choi and Cichocki 2000a, b), which are methods that take the nonstationarity

of the variances into account. The third method is specifically intended for a block-

stationary model. For the description of all three methods, the following local scatter

matrices are required

ST,τ (x) = 1

|T | − τ

∑

t∈T

E[(xt − E(xt ))(xt+τ − E(xt ))
⊤],

where T is a finite time interval and τ ∈ {0, 1, . . .}.

Definition 6 The NSS-SD unmixing matrix simultaneously diagonalizes ST1,0(Fx )

and ST2,0(Fx ), where T1, T2 are separate time intervals. T1 and T2 should be chosen

so that ST1,0(x) and ST2,0(x) are as different as possible. As with AMUSE, it is obtained

via a generalized eigenvector decomposition.

NSS-SD suffers from the same drawback as AMUSE: the choice of how to divide

the time range into the two intervals has a great impact on the separation performance.

In order to depend less on this choice, NSS-JD divides the time range into more than

two intervals.

Definition 7 NSS-JD whitens the time series using the covariance matrix S[1,n],0(x)

computed from all the observations. The time range is then divided into K nonover-

lapping intervals T = {T1, . . . , TK }. The NSS-JD unmixing matrix is then Γ T =
US[1,n],0(x)−1/2, where the orthogonal matrix U ∈ R

p×p maximizes

∑

T

p
∑

i=1

(u⊤
i ST j ,0(x

st
t )ui )

2.

Both NSS-SD and NSS-JD ignore serial dependence but can also be applied when

the observations are not equidistant. If, however, the SOS model holds approximately

within the interval, information coming from the autocovariance matrices within the

intervals can be exploited as well, as done by the NSS-TD-JD method.

Definition 8 NSS-JD-TD again whitens the time series using the covariance matrix

S[1,n],0(x). The time range is again divided into K nonoverlapping intervals T =
{T1, . . . , TK }, and a set of L lags T = {τ1, . . . , τL} is chosen. The NSS-JD-TD
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unmixing matrix is hence Γ T,T = US[1,n],0(x)−1/2, where the orthogonal matrix

U ∈ R
p×p maximizes

∑

T

∑

T

p
∑

i=1

(u⊤
i STk ,τ j

(xst
t )ui )

2.

3.4 Common Properties of all the BSS Methods

All the BSS methods mentioned above specify a specific BSS model by making differ-

ent additional assumptions about the latent components. Note, however, that all these

BSS models are ill-defined. In all models, the signs of the components and their order

are not fixed. In addition, in the NSS model, the scales of the components are also not

fixed. However, in practical applications this is usually not a problem, and it should

be considered just when comparing different estimators.

A property of all the above mentioned methods is that they are affine equivariant

in the sense that

Γ (x)x = JPΓ (x∗)x∗,

where x∗ = Ax for any full-rank matrix A ∈ R
p×p, where J is a sign change matrix

(a diagonal matrix with ±1 on the diagonal) and P a permutation matrix. This means

that the mixing matrix has no impact on the performance of each method, and at most

the order and the signs of the components can change. This also holds if x does not

follow a BSS model.

This affine equivariance property will be important later when BSS is applied in

the CTS context.

3.5 A New BSS Method

Basically, for all BSS methods above (except vSOBI), the defined matrices are diag-

onal for the latent components, and the unmixing matrix is found as the matrix which

jointly diagonalizes two or more such matrices. Depending on which kind of gener-

ating processes are assumed for the latent components, the appropriate BSS method

should be chosen. Often this choice is based on subject matter knowledge and visual

inspection.

A novel approach is suggested here, a new combination of the methods above,

which is inspired by NSS-JD-TD. NSS-JD-TD basically combines the SOS model

and the NSS model but ignores the SV model. Therefore, the idea is to also include

in the joint diagonalization process matrices targeting the SV model. The suggestion

is therefore to also include the matrices defined for gFOBI.

The new BSS method is thus defined as:

Definition 9 NSS-SOBI-gFOBI again whitens the time series using the covariance

matrix S[1,n],0(x). The time range is afterwards divided into K nonoverlapping inter-

vals T = {T1, . . . , TK }, and two sets of L1 and L2 lags T1 = {τ1,1, . . . , τ1,L1} and
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T2 = {τ2,1, . . . , τ2,L2} are chosen and combined as

T
∗ = {τ1,1, . . . , τ1,L1 , τ2,1, . . . , τ2,L2} = {τ ∗

1 , . . . , τ ∗
L1+L2

}.

Define for a given interval Ti the L1 + L2 matrices

VTi , j =
{

STi ,τ
∗
j
(xst

t ) for j ∈ 1, . . . , L1

BTi ,τ
∗
j
(xst

t ) for j ∈ L1 + 1, . . . , L1 + L2.

The matrix BTi ,τ
∗
j
(xst

t ) is the fourth-order cross-moments matrix at lag τ ∗
j for time

interval Ti .

The NSS-SOBI-gFOBI unmixing matrix is defined as Γ T,T ∗ = US[1,n],0(x)−1/2,

where the orthogonal matrix U ∈ R
p×p maximizes

∑

T

∑

T ∗

p
∑

i=1

(u⊤
i α j VTk ,τ

∗
j
(xst

t )ui )
2.

where α j is the weight for matrix VTk ,τ
∗
j
.

Note that for all previous methods, the matrices to be jointly diagonalized come

from the same family, and therefore they were directly comparable and it was natural

to give them all the same weight. Now, however, the matrices STi ,τ
∗
j

and BTi ,τ
∗
j

are

of a different nature, and it can be assumed that choosing α j = 1 for all j gives

more weight to the information contained in the B matrices. Often for B0, which is

known as the scatter matrix of fourth moments, α = 1/(p + 2) is chosen, as then the

scatter matrix is a consistent estimate for the covariance matrix at a multivariate normal

model (Nordhausen et al. 2011). Another option is to use α j = 1/ max |V j [k, l]| if

max |V j [k, l]| > 1, and otherwise α j = 1. The motivation here is that there might be

zero matrices which should not be up-weighted, but at the same time matrices with

larger entries should be down-weighted a bit. Here, max |V j [k, l]| denotes the element

of matrix V j with the largest absolute value.

4 BSS for CTS

CTS are by nature multivariate processes, which makes them challenging to model.

BSS methods are a convenient tool for decomposing multivariate processes into

uncorrelated or independent processes, which then allows dimension reduction and

univariate modeling. For BSS, however, full-rank data are required, making it neces-

sary to express the CTS in isometric log-ratio coordinates. BSS for CTS consists of

the following steps:

1. Represent xt by xilr
t .

2. Apply the BSS method of interest to xilr
t , yielding the latent uncorrelated / inde-

pendent processes zt = Γ̂ xilr
t .
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3. Use zt or components of it for modeling, prediction or for whatever the purpose

of the analysis is.

4. If needed, re-express for example the predictions in the ilr space using Γ̂
−1

, and

in the original sample space by inverting the inverse ilr mapping.

If, for example, interpretations of the latent series in zt are required, this would

often be easier when referring to the clr coefficients. Therefore, one can exploit the

relationship between ilr and clr and interpret Γ V⊤ as loading matrix.

Also note that as all the BSS methods discussed in this paper are affine equivariant,

the choice of the ilr basis does not matter, and if another basis is preferred, the inde-

pendent components would at most change in their order and their signs, which is not

of practical relevance.

Recall that the assumptions on the BSS components are made in the ilr space, and

accordingly the appropriate BSS method should be chosen. For example, for geochem-

ical time series such as the composition of gas, water or sediments, such assumptions

are difficult to make, and therefore it is recommended that general methods be used

in order to be on the safe side. This will be demonstrated in the following simulation

study, comparing some of the previous BSS approaches in different settings.

In the simulation study, the three different weights for NSS-SOBI-gFOBI are

demonstrated and compared with the individual estimators. Thus, SOBI is used with

T = {1, . . . , 6}, gFOBI with T = {0, . . . , 6}, and NSS-JD with K = 6 and then NSS-

SOBI-gFOBI with K = 6, T1 = {0, . . . , 6}, T2 = {0, . . . , 6}, and then three choices

for selecting the weights – in NSS-SOBI-gFOBI-1 all matrices get the same weight; in

NSS-SOBI-gFOBI-2 all B matrices are divided by p + 2, and in NSS-SOBI-gFOBI-3

they are standardized as described so that the maximal elements of matrices are below

1 or above −1.

Three different scenarios for the latent ilr components are considered:

LP: All p ilr components are linear processes.

SV: All p ilr components are processes with stochastic volatility.

LP & SV: p/2 of the ilr components are linear processes and the other half are

stochastic volatility processes.

For each scenario, three different settings are considered. Both Setting 1 and Setting

2 have p = 4, and the difference is that in Setting 1 all innovations are Gaussian, and

in Setting 2 the innovations all have heavy tails coming from a logistic distribution

having finite fourth moments. In Setting 3, the innovations are Gaussian and p = 8.

In all settings, due to the affine equivariance of all the methods, the mixing matrix is

set without loss of generality to Ω = Ip. For visualization purposes, however, Fig. 1

presents an example of Setting 3 for T = 2000, where the independent components in

the ilr space are shown when mixed with a matrix containing random N (0, 1) elements

and then the resulting p + 1-dimensional CTS.

It can be seen from Fig. 1 that it is quite difficult to guess the nature of the underlying

processes when considering xt or xilr
t . The latent components zilr

t often show a clearer

structure, but still it would be difficult to say what would be the best BSS method to

choose. This motivates the use of methods which are valid in many different scenarios.
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Fig. 1 Example times series from Setting 3 with a random mixing matrix with T = 2000
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Table 1 Average MD index values in Setting 1 for sample sizes 1,000, 2,000 and 10,000 based on 2,000

repetitions. COMB-1, COMB-2 and COMB-3 denote NSS-SOBI-gFOBI-1, NSS-SOBI-gFOBI-2 and NSS-

SOBI-gFOBI-3, respectively

Method LP SV SV & LP

1,000 2,000 10,000 1,000 2,000 10,000 1,000 2,000 10,000

SOBI 0.306 0.273 0.150 0.589 0.571 0.539 0.231 0.205 0.177

gFOBI 0.589 0.500 0.306 0.289 0.205 0.091 0.330 0.267 0.116

NSS.JD 0.679 0.675 0.680 0.232 0.201 0.170 0.388 0.367 0.349

COMB-1 0.651 0.613 0.419 0.255 0.194 0.095 0.363 0.297 0.154

COMB-2 0.371 0.333 0.263 0.249 0.190 0.095 0.190 0.130 0.061

COMB-3 0.396 0.346 0.275 0.248 0.186 0.090 0.181 0.120 0.054

Table 2 Average MD index values in Setting 2 for sample sizes 1,000, 2,000 and 10,000 based on 2,000

repetitions. COMB-1, COMB-2 and COMB-3 denote NSS-SOBI-gFOBI-1, NSS-SOBI-gFOBI-2 and NSS-

SOBI-gFOBI-3, respectively

Method LP SV SV & LP

1,000 2,000 10,000 1,000 2,000 10,000 1,000 2,000 10,000

SOBI 0.312 0.279 0.148 0.565 0.532 0.460 0.213 0.188 0.139

gFOBI 0.505 0.413 0.226 0.230 0.178 0.088 0.276 0.240 0.129

NSS.JD 0.617 0.608 0.607 0.179 0.151 0.106 0.312 0.296 0.267

COMB-1 0.579 0.523 0.332 0.187 0.148 0.077 0.283 0.244 0.142

COMB-2 0.339 0.280 0.213 0.185 0.147 0.077 0.180 0.127 0.060

COMB-3 0.356 0.293 0.220 0.174 0.134 0.069 0.156 0.106 0.047

Recall that in a pure LP scenario, the autocovariance matrices contain the most

information, whereas in an SV scenario they are all close to zero, and the matrices

with the fourth cross-moments are the informative ones.

As a performance measure in the simulation study, the minimum distance index

(MD) (Ilmonen et al. 2010) is used, which is defined as

MD(Γ̂ ,Ω) = 1√
p − 1

inf
C∈C

∥

∥

∥
CΓ̂ Ω − Ip

∥

∥

∥
,

where Γ̂ is the estimated unmixing matrix, Ω the true mixing matrix, and C is the set of

matrices all having in each row and column exactly one nonzero element and therefore

taking into consideration the model indeterminacies. ‖·‖ denotes the usual Frobenius

norm, and thus this index takes values between 0 and 1, where zero corresponds to

perfect separation.

Tables 1, 2 and 3 show the average MD indices for sample sizes 1,000, 2,000

and 10,000 based on 2,000 repetitions. For space reasons, NSS-SOBI-gFOBI-1, NSS-

SOBI-gFOBI-2 and NSS-SOBI-gFOBI-3 are denoted in the tables COMB-1, COMB-2

and COMB-3, respectively. For the simulations, the R packages JADE (Miettinen et al.
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Table 3 Average MD index values in Setting 3 for sample sizes 1000, 2000 and 10,000 based on 2000

repetitions. COMB-1, COMB-2 and COMB-3 denote NSS-SOBI-gFOBI-1, NSS-SOBI-gFOBI-2 and NSS-

SOBI-gFOBI-3, respectively

Method LP SV LP & SV

1,000 2,000 10,000 1,000 2,000 10,000 1,000 2,000 10,000

SOBI 0.341 0.266 0.134 0.759 0.752 0.738 0.419 0.390 0.352

gFOBI 0.778 0.735 0.488 0.511 0.399 0.208 0.563 0.471 0.274

NSS.JD 0.799 0.798 0.799 0.405 0.378 0.339 0.592 0.576 0.556

COMB-1 0.800 0.794 0.753 0.464 0.399 0.237 0.597 0.547 0.397

COMB-2 0.609 0.467 0.232 0.456 0.393 0.238 0.363 0.251 0.100

COMB-3 0.614 0.481 0.242 0.471 0.408 0.265 0.334 0.232 0.093

2016), tsBSS (Matilainen et al. 2019), fGarch (Wuertz et al. 2019), stochvol (Kastner

2016) and lattice (Sarkar 2008) were used within R 3.6.1 (R Core Team 2019).

The results confirm the above expectations. In the LP processes, SOBI is optimal,

and the next best methods are the newly suggested combinations where the fourth-order

cross-moment matrices are down-weighted. As soon as there is useful information

available for the separation in these matrices, as in the SV and LP & SV scenarios,

the combination methods are clearly superior. So, if there is doubt about the nature of

the underlying processes, the combination methods are a safe choice.

5 Example

As an illustrative example, a time series of light absorbance coefficients in water taken

at a small stream near Petzenkirchen in Lower Austria is considered. The catchment

region of the stream is shown in Fig. 2. The data were collected every 10 min from Jan-

uary 14, 2014, 2:20 p.m., until December 31, 2014, 11:50 p.m. Light at wavelengths of

200 nm, 202.5 nm, …, 597.5 nm, 600 nm was emitted in a device through which stream

water was channeled, and the amount of light absorbed was recorded. Depending on

the water quality and on the possible presence of organic matter in the water, different

wavelengths are absorbed to a varying degree. The absolute absorbance values are not

of importance, only the relations of these values among the wavelengths under consid-

eration. This means that the CTS is of length T = 50,620 with dimension p = 161.

However, due to maintenance breaks and other problems such as measurement errors

leading to nonpositive values, only 42,784 time points remain after some data cleaning

and manipulation. A detailed description of the data and the background is available

in Fischer (2020).

Figure 3 shows a random selection of 2,000 absorption coefficient curves together

with the mean curve in the original scale, while Fig. 4 shows the same observations

expressed in ilr coordinates. The time series of the absorption coefficient at a wave-

length of 200 nm is shown in Fig. 5, and the first ilr component in Fig. 6.

For analysis of the time series, the data are first expressed in ilr coordinates, and then

principal component analysis (PCA) is performed. It turns out that four components
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Fig. 2 Petzenkirchen (Austria) catchment region. Reprinted with permission from Hoesl and Eder, appeared

first in Eder et al. (2010)
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Fig. 3 A selection of 2,000 observed absorption curves together with the mean curve
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Fig. 4 A selection of 2,000 absorption curves expressed in ilr coordinates, together with the mean curve
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Fig. 5 Absorption values at a wavelength of 200 nm over the study period
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Fig. 6 The first ilr component over the study period
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Fig. 7 Estimated sources of NSS-SOBI-gFOBI-3

together explain 99.91% of the variation. Thus, as the complete data are close to

singularity, BSS is used with only these first four principal components. To account

for the missing time points when performing BSS, only those pairs of observations

are considered in the computation of the autocovariance matrices which correspond

to the correct lag.

Figure 7 shows the recovered sources based on NSS-SOBI-gFOBI with weights

α j = 1/ max |V j [k, l]|, where the lags considered are T1 = {6, 12, . . . , 72}, corre-

sponding to hourly serial dependence from 1 to 12 h and T2 = {78, 84, . . . , 144}. The

second source could be seen as a general mean component, as most values are rather

the same, while the first source emphasizes July and August, having the largest values

there. Similarly, the third component has mostly large values from mid-January to

April and could therefore be a spring component. The last component seems to focus

on the transition from spring to summer in the months of April and May.

Figure 8 visualizes the clr loadings when also taking the PCA transformation into

account. All four loading curves show the weights given to different wavelengths,

referring to the different time periods of the four sources. The wavelength range

around 220 nm seems to be the most important, but there are also clear patterns which

may be interpreted by a subject matter expert. The loadings of source 3 are somewhat

different from the other sources, and they could be related to the impact from farming,

which would typically be visible during of March and April.

Note that most other BSS methods described above were also applied to the data,

as well as other lag sets. In general, the components and loadings were fairly stable

for all considered methods, and thus these results are not shown here. This can be seen

as an indication of meaningful latent components which all contain features needed

for the different methods to be able to recover them.
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Fig. 8 Clr loadings of NSS-SOBI-gFOBI-3 taking PCA into account

6 Conclusions

CTS appear in many different contexts. In this paper it was shown how to perform BSS

for CTS. BSS is well established for time series with different methods for different

time series models. Usually, subject knowledge is available to guide the selection of

the appropriate BSS methods, but there are methods available which cover several

different models. In this spirit, a new combined method has been introduced here

which yielded good results in simulation studies, and thus it was also applied on an

environmental time series. BSS is often considered useful for multivariate time series,

as it may help in modeling, prediction, dimension reduction and interpretation. The

results here are in line with the findings published in Nordhausen et al. (2015); Bachoc

et al. (2019), where spatial BSS methods proved useful for spatial compositional data.
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