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Blind Source Separation of More Sources Than
Mixtures Using Overcomplete Representations
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Abstract—Empirical results were obtained for the blind source
separation of more sources than mixtures using a recently pro-
posed framework for learning overcomplete representations. This
technique assumes a linear mixing model with additive noise and
involves two steps: 1) learning an overcomplete representation for
the observed data and 2) inferring sources given a sparse prior
on the coefficients. We demonstrate that three speech signals can
be separated with good fidelity given only two mixtures of the
three signals. Similar results were obtained with mixtures of two
speech signals and one music signal.

Index Terms—Blind source separation, independent component
analysis, overcomplete dictionary, overcomplete representation,
speech signal separation.

I. INTRODUCTION

RECENT advances in blind source separation by inde-
pendent component analysis (ICA) have many potential

applications including speech recognition systems, telecom-
munications, and medical signal processing. The goal of ICA
is to recover independent sources given only sensor obser-
vations that are unknown linear mixtures of the unobserved
independent source signals [3]–[5], [8].

The standard formulation of ICA requires at least as many
sensors as sources. Lewicki and Sejnowski [9], [11] have
proposed a generalized ICA method for learning overcomplete
representations of the data that allows for more basis vectors
than dimensions in the input. The goal of this method is
illustrated in Fig. 1. In a two-dimensional (2-D) data space,
the observations in Fig. 1(a) and (b) were generated by a
linear mixture of two independent random sparse sources. In
this space, Fig. 1(a) shows orthogonal basis vectors (principle
component analysis, PCA) and Fig. 1(b) shows independent
basis vectors. If the 2-D observed data are generated by three
sparse sources, as shown in Fig. 1(c) and (d), the complete ICA
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Fig. 1. Illustration of basis vectors in a 2-D data space with two sparse
sources (top) or three sparse sources (bottom). (a) PCA finds orthogonal
basis vectors. (b) ICA representation finds independent basis vectors. (c)
ICA cannot model the data distribution adequately with three sources, but
(d) the overcomplete ICA representation finds three basis vectors that match
the underlying data distribution (see [11]).

representation (c) cannot model the data adequately but the
overcomplete ICA representation (d) finds three basis vectors
that fit the underlying distribution of the data.

In this letter, the learning rules for overcomplete ICA
are briefly summarized in Section II, as derived by Lewicki
and Sejnowski [11]. In Section III, simulation results are
presented for speech signals and music signals. The discussion
in Section IV covers related work and future research issues.

II. L EARNING OVERCOMPLETE REPRESENTATIONS

The observed -dimensional data
may be modeled as a linear overcomplete mixing matrix,,
( )1 with additive noise.

(1)

1In most ICA formulations, the matrixA is restrictedM � N , which is
not imposed here.
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Fig. 2. Demonstration of the separation of three speech signals from two mixtures. Top row: time course of three speech signals. Middle row: two
observations of three mixed speech signals. Bottom row: inferred speech signals.

where are the sources andis assumed to
be a white Gaussian noise with variance so that

(2)

It is also assumed that the sourcesare mutually inde-
pendent, so that the joint probability distribution has the form

, and each source has a sparse distri-
bution, such as the Laplacian density .

Given the above model and assumptions, the goal is to infer
both the basis vectors and the sources given the mixtures

.

A. Inferring the Sources

Due to the additive noise and the rectangular mixing matrix
, the solution for cannot be found by the pseudo-inverse

. A probabilistic approach to estimating the sources
is based on finding the maximuma posteriorivalue of :

(3)

Given basis vectors , and observation, (3) can be optimized
by gradient ascent on the log posterior distribution [9], [11].

B. Learning the Basis Vectors

The objective for learning the basis vectors,, is to
maximize the probability of the data.

(4)

which assumes temporal independence of the samples. Compu-
tation of the likelihood requires marginalizing over all possible
sources

(5)

For general overcomplete bases, this integral is intractable. For
the special case of zero noise andinvertible (a complete
basis), the integral in (5) is solvable and leads to the standard
ICA learning algorithm [3], [4]. Lewicki and Sejnowski [11]
approximated (5) by fitting a multivariate Gaussian around.
The basis vectors were learned by performing gradient ascent
on the log of (4) using the approximation of (5). The learning
rule is

(6)

where is called the score function,
and is the identity matrix. The prefactor produces the
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Fig. 3. Left: Two-dimensional scatter plot of the two mixed signals. The three basis vectors were randomly initialized. Right: After convergence, the learned
basis functions are shown as arrows along the three speech signals. The learned basis vectors may be permutated and have a different sign.

natural gradient extension [1], [2] which speeds convergence.
The matrix in (6) is not restricted to be square and
thus works for overcomplete representation. The derivation
is described in Lewicki and Sejnowski [11]. Note that each
gradient step requires computation ofas in (3).

III. EXPERIMENTAL RESULTS

A. Blind Separation of Speech Signals

Speech signals with silent time segments are sparsely dis-
tributed and are approximated by a Laplacian model. Three
speech signals from the same speaker, sampled at 8 kHz with
8 bits per sample, were taken from the TIMIT database and
are shown in Fig. 2 (top). We mixed the three speech signals
into two mixtures:

(7)

Fig. 2 (middle) shows the time course of the two mixed
speech signals. The 2-D scatter plot (against ) in Fig. 3
(left) shows the three directions of the data. The three ba-
sis vectors of were initially chosen randomly and were
learned using (6). The learning process converged after 50
iterations. When more than three basis vectors were chosen,
the amplitude of the redundant basis vectors converged to zero.
The noise level was set to three bits out of eight, i.e., the
maximum amplitude of the noise signal was % of
the data range. Fig. 3 (right) shows the learned basis vectors.
The sources were inferred using (3) and were recovered up to
permutation and sign. Fig. 2 (bottom) shows the three inferred
speech signals after reordering and sign correction. The signal-
to-noise ratio (SNR) for the separation was 20, 17, and 21 dB,
respectively. Experiments with different speech signals and
different mixing matrices yielded similar results. Although the

Fig. 4. SNR as a function of noise levell. * = speech signal 1;+ = speech
signal 2, and o= speech signal 3.

temporal structure of the speech signal was not taken into
consideration in the model, the separation quality was good.2

The assumed noise level,, determines whether a data point
should be considered as noise or as signal. A high noise level
ignores a wide range of data points around zero and puts more
weight on outliers when finding the basis vectors and when
inferring the sources. This is significant in case of additive
noise, where we may adjust the appropriate noise level to infer
the sources. Fig. 4 shows the SNR as a function of the noise-
level . Reasonably good SNR results were obtained for noise
levels up to 6 b (a maximum of the noise amplitude of 25%)
and the performance degraded rapidly for a noise level of 7
or 8 b.

2The original, mixed, and inferred signals are available at
http//www.cnl.salk.edu/�tewon/Over.
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We also applied the method of Linet al. [12] (see
Section IV) to this dataset. They inferred the sources by
assuming that there was only one nonzero source at a given
time sample. Using this method, the SNR decreased by 4, 2,
and 7 dB, respectively.

B. Preliminary Results with Other Mixtures

We performed further speech mixing experiments with
varying number of sources and sensors. With two mixtures we
extracted up to four mixed speech signals but the algorithm
failed to find correct basis vectors when more than four sources
were mixed into two observations. However, five speech
signals were extracted from observations of three mixtures. We
were also able to separate one music and two speech signals
from two mixtures, although the Laplacian density model may
be less accurate.

Overcomplete representations can be extended to learn
structure in high-dimensional data space. For example,
Lewicki and Olshausen [10] used a two times overcomplete
representation to find 2 144 basis vectors for 12 12
patches of natural images.

The formulation used here may also be used to unmix
signals that were mixed with additive noise as assumed for
the model in (1). Preliminary results indicate that overcomplete
ICA can recover highly noisy mixtures and obtain a reasonable
SNR. For noise levels of 4 to 7 b, the ICA algorithm used here
recovered two mixed speech signals with additive Gaussian
noise with a 5 to 10 dB improvement in SNR compared to
the standard ICA [3].

IV. DISCUSSION

A. Comparison to Other Methods

The problem of separating more sources than observations
has been treated by several other methods. For the special case
of binary sources, Pajunen [13] used a maximum likelihood
approach to reduce the problem to finding clusters in
the mixture space, and Hermann and Yang [7] applied self-
organizing maps to find the clusters for binary sources. Lin
et al. [12] proposed a method for continuous signals by
employing image analysis tools to detect geometric structure of
the 2-D mixture data locating the extremal density directions
and thus finding the basis vectors. The sources were inferred
by assuming that there was only one nonzero output at a
given time, i.e., each data point was assigned to one source
with the closest basis vector and all other sources were set

to zero. In our experiments, this inference method gave poor
SNR for the speech separation example. The overcomplete
ICA approach can be applied to continuous signals and is
not restricted to binary sources. Furthermore, the probabilistic
framework allows more flexible models, which might lead
to more accurate inferences. Another approach to finding the
basis vectors is to use cumulants [6], which was not explored
here.

B. Conclusions

We have shown here that overcomplete representations can
be used for blind source separation when there are more
sources than mixtures. Reasonably good separations were
obtained for two mixtures of three speech signals and for
two mixtures of two speech signals and one music signal.
Overcomplete representations reduce to ICA when the number
of mixtures is equal to or greater than the number of sources.
We are currently investigating the use of overcomplete rep-
resentations of EEG data for artifact removal and for neural
signal detection from a small number of sensors.
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