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Abstract 

We consider a problem of blind source separation from a set of instan

taneous linear mixtures, where the mixing matrix is unknown. It was 

discovered recently, that exploiting the sparsity of sources in an appro

priate representation according to some signal dictionary, dramatically 

improves the quality of separation. In this work we use the property of 

multi scale transforms, such as wavelet or wavelet packets, to decompose 

signals into sets of local features with various degrees of sparsity. We 

use this intrinsic property for selecting the best (most sparse) subsets of 

features for further separation. The performance of the algorithm is ver

ified on noise-free and noisy data. Experiments with simulated signals, 

musical sounds and images demonstrate significant improvement of sep

aration quality over previously reported results. 

1 Introduction 

In the blind source separation problem an N-channel sensor signal x( ~ ) is generated by 

M unknown scalar source signals s rn(~) , linearly mixed together by an unknown N x M 
mixing, or crosstalk, matrix A , and possibly corrupted by additive noise n(~): 

x(~) = As(~) + n( ~ ). (1) 

The independent variable ~ is either time or spatial coordinates in the case of images. We 

wish to estimate the mixing matrix A and the M-dimensional source signal s(~). 

The assumption of statistical independence of the source components Srn(~) , m = 1, ... , M 
leads to the Independent Component Analysis (lCA) [1], [2]. A stronger assumption is the 
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sparsity of decomposition coefficients, when the sources are properly represented [3]. In 

particular, let each 8 m (~ ) have a sparse representation obtained by means of its decompo

sition coefficients Cmk according to a signal dictionary offunctions Y k ( ~ ): 

8m ( ~ ) = L Cm k Y k( ~ )' (2) 

k 

The functions Yk ( ~ ) are called atoms or elements of the dictionary. These elements do 

not have to be linearly independent, and instead may form an overcomplete dictionary, 

e.g. wavelet-related dictionaries (wavelet packets, stationary wavelets, etc., see for exam

ple [9]). Sparsity means that only a small number of coefficients Cmk differ significantly 

from zero. Then, unmixing of the sources is performed in the transform domain, i.e. in the 

domain of these coefficients Cmk. The property of sparsity often yields much better source 

separation than standard ICA, and can work well even with more sources than mixtures. In 

many cases there are distinct groups of coefficients, wherein sources have different sparsity 

properties. The key idea in this study is to select only a subset of features (coefficients) 

which is best suited for separation, with respect to the following criteria: (1) sparsity of 

coefficients (2) separability of sources' features. After this subset is formed, one uses it 

in the separation process, which can be accomplished by standard ICA algorithms or by 

clustering. The performance of our approach is verified on noise-free and noisy data. Our 

experiments with ID signals and images demonstrate that the proposed method further 

improves separation quality, as compared with result obtained by using sparsity of all de

composition coefficients. 

2 Two approaches to sparse source separation: InfoMax and 

Clustering 

Sparse sources can be separated by each one of several techniques, e.g. the Bell-Sejnowski 

Information Maximization (BS InfoMax) approach [1], or by approaches based on geo

metric considerations (see for example [8]). In the former case, the algorithm estimates the 

unmixing matrix W = A - I, while in the later case the output is the estimated mixing 

matrix. In both cases, these matrices can be estimated only up to a column permutation and 

a scaling factor [4]. 

InfoMax. Under the assumption of a noiseless system and a square mixing matrix in (1), 

the BS InfoMax is equivalent to the maximum likelihood (ML) formulation of the problem 

[4], which is used in this section. For the sake of simplicity of the presentation, let us 

consider the case where the dictionary of functions used in a source decomposition (2) is 

an orthonormal basis. (In this case, the corresponding coefficients Cmk =< 8m, 'Pk >, 
where < ', ' > denotes the inner product). From (1) and (2) the decomposition coefficients 

of the noiseless mixtures, according to the same signal dictionary of functions Y k (~ ) ' are: 

Ak= ACk, (3) 

where M -dimensional vector Ck forms the k-th column of the matrix C = { Cmk}. 

Let Y be thefeatures , or (new) data, matrix of dimension M x K , where K is the number of 

features. Its rows are either the samples of sensor signals (mixtures), or their decomposition 

coefficients. In the later case, the coefficients Ak'S form the columns ofY. (In the following 

discussion we assume this setting for Y , if not stated other). We are interested in the 

maximum likelihood estimate of A given the data Y. 

Let the corresponding coefficients Cmk be independent random variables with a probability 

density function (pdf) of an exponential type 

(4) 



where the scalar function v(·) is a smooth approximation of an absolute value function. 
Such kind of distribution is widely used for modeling sparsity [5]. In view of the indepen

dence of Cmk, and (4), the prior pdf of C is 

p(C) ex II exp{ - V(Cmk)}. (5) 

m,k 

Taking into account that Y = AC, the parametric model for the pdf of Y with respect to 

parameters A is 

(6) 

Let W = A -I be the unmixing matrix, to be estimated. Then, substituting C = WY, 

combining (6) with (5) and taking the logarithm we arrive at the log-likelihood function: 

M K 

Lw(Y) = Klog ldetWI- L LV((WY)mk). (7) 

m=l k = l 

Maximization of Lw(Y) with respect to W is equivalent to the BS InfoMax, and can 
be solved efficiently by the Natural Gradient algorithm [6]. We used this algorithm as 

implemented in the ICAlEEG Matlab toolbox [7]. 

Clustering. In the case of geometry based methods, separation of sparse sources can be 
achieved by clustering along orientations of data concentration in the N-dimensional space 

wherein each column Yk of the matrix Y represents a data point (N is the number of mix

tures). Let us consider a two-dimensional noiseless case, wherein two source signals, Sl(t) 
and S2(t), are mixed by a 2x2 matrix A, arriving at two mixtures Xl(t) and X2(t). (Here, 
the data matrix is constructed from these mixtures Xl (t) and xd t)). Typically, a scatter 

plot of two sparse mixtures X1(t) versus X2(t), looks like the rightmost plot in Figure 2. If 

only one source, say Sl (t), was present, the sensor signals would be Xl (t) = all Sl (t) 
and X2(t) = a21s1 (t) and the data points at the scatter diagram of Xl (t) versus X2(t) 

would belong to the straight line placed along the vector [ana21 ]T. The same thing hap
pens, when two sparse sources are present. In this sparse case, at each particular index 

where a sample of the first source is large, there is a high probability, that the correspond
ing sample of the second source is small, and the point at the scatter diagram still lies close 

to the mentioned straight line. The same arguments are valid for the second source. As a 
result, data points are concentrated around two dominant orientations, which are directly 
related to the columns of A. Source signals are rarely sparse in their original domain. In 
contrast, their decomposition coefficients (2) usually show high sparsity. Therefore, we 

construct the data matrix Y from the decomposition coefficients of mixtures (3), rather 

than from the mixtures themselves. 

In order to determine orientations of scattered data, we project the data points onto the 

surface of a unit sphere by normalizing corresponding vectors, and then apply a standard 
clustering algorithm. This clustering approach works efficiently even if the number of 

sources is greater than the number of sensors. Our clustering procedure can be summarized 

as follows: 

1. Form the feature matrix Y , by putting samples of the sensor signals or (subset of) their 

decomposition coefficients into the corresponding rows ofthe matrix; 

2. Normalize feature vectors (columns ofY): Yk = Yk /II Yk I12' in order to project data 
points onto the surface of a unit sphere, where 11 · 11 2 denotes the l2 norm. Before nonnal

ization, it is reasonable to remove data points with a very small norm, since these very likely to be 

crosstalk-corrupted by small coefficients from others' sources. 

3. Move data points to a half-sphere, e.g. by forcing the sign of the first coordinate yk to 

be positive: IF yk < 0 THEN Yk = - Yk. Without this operation each set oflineariy (i.e., along 

a line) clustered data points would yield two clusters on opposite sides of the sphere. 
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Figure 1: Random block signals (two upper) and their mixtures (two lower) 

4. Estimate cluster centers by using a clustering algorithm. The coordinates of these centers 

will form the columns of the estimated mixing matrix A. We used Fuzzy C-means (FCM) 

clustering algorithm as implemented in Matlab Fuzzy Logic Toolbox. 

Sources recovery. The estimated unmixing matrix A-I is obtained by either the BS 
InfoMax or the above clustering procedure, applied to either complete data set, or to some 
subsets of data (to be explained in the next section). Then, the sources are recovered in their 

original domain by s(t) = A - lX(t). We should stress here that if the clustering approach 
is used, the estimation of sources is not restricted to the case of square mixing matrices, 
although the sources recovery is more complicated in the rectangular cases (this topic is 
out of scope of this paper). 

3 Multinode based source separation 

Motivating example: sparsity of random blocks in the Haar basis. To provide intuitive 
insight into the practical implications of our main idea, we first use ID block functions, 
that are piecewise constant, with random amplitude and duration of each constant piece 
(Figure 1). It is known, that the Haar wavelet basis provides compact representation of such 
functions. Let us take a close look at the Haar wavelet coefficients at different resolution 
levels j =O, 1, ... ,1. Wavelet basis functions at the finest resolution level j =J are obtained 
by translation of the Haar mother wavelet: <p(t) = {I , ift E [0, 1) ; - I , ift E [1, 2) ; 0 
otherwise}. Taking the scalar product ofa function s(t) with the wavelet <PJ(t - T) , we 
produce a finite differentiation of the function s(t) at the point t = T. This means that the 
number of non-zero coefficients at the finest resolution for a block function will correspond 
roughly to the number of jumps ofthis function. Proceeding to the next, coarser resolution 

level, we have <P J - l (t) = {I , ift E [0, 2) ; - 1, if t E [2, 4) ; ° otherwise}. At this level, 
the number of non-zero coefficients still corresponds to the number of jumps, but the total 
number of coefficients at this level is halved, and so is the sparsity. If we further proceed 
to coarser resolutions, we will encounter levels where the support of a wavelet <Pj (t) is 

comparable to the typical distance between jumps in the function s(t). In this case, most 
of the coefficients are expected to be nonzero, and, therefore, sparsity will fade away. 

To demonstrate how this influences accuracy of a blind source separation, we randomly 
generated two block-signal sources (Figure 1, two upper plots.), and mixed them by the 



crosstalk matrix A with colwnns [0.83 -0.55] and [0.62 0.78]. Resulting sensor signals, 

or mixtures, X l (t) and X2 (t) are shown in the two lower plots of Figure l. The scatter 

plot of X l (t) versus X2( t) does not exhibit any visible distinct orientations (Figure 2, left). 

Similarly, in the scatter plot of the wavelet coefficients at the lowest resolution distinct 

orientations are hardly detectable (Figure 2, middle). In contrast, the scatter plot of the 

wavelet coefficients at the highest resolution (Figure 2, right) depicts two distinct orienta

tions, which correspond to the columns of the mixing matrix. 
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Figure 2: Separation of block signals: scatter plots of sensor signals (left), and of their 

wavelet coefficients (middle and right). Lower colwnns present the normalized mean

squared separation error (%) corresponding to the Bell-Sejnowski InfoMax, and to the 

Fuzzy C-Means clustering, respectively. 

Since a crosstalk matrix A is estimated only up to a column permutation and a scaling fac

tor, in order to measure the separation accuracy, we normalize the original sources sm(t) 
and their corresponding estimated sources sm(t). The averaged (over sources) normal-

ized squared error (NSE) is then computed as: NSE = it 2: ~= 1 (il sm - sm ll §/ll sm ll §)· 
Resulting separation errors for block sources are presented in the lower part of Figure 2. 

The largest error (l.93%) is obtained on the raw data, and the smallest «0.005%) - on 

the wavelet coefficients at the highest resolution, which have the best sparsity. Using all 

wavelet coefficients yields intermediate sparsity and performance. 

Multinode representation. Our choice of a particular wavelet basis and of the sparsest 

subset of coefficients was obvious in the above example: it was based on knowledge of the 

structure of piecewise constant signals. For sources having oscillatory components (like 

sounds or images with textures), other systems of basis functions , such as wavelet packets 

and trigonometric function libraries [9], might be more appropriate. The wavelet packet 

library consists of the triple-indexed family of functions: i.f! j ,i,q(t) = 2j / 2 i.f!q(2j t - i), j , i E 

Z , q E N,where j , i are the scale and shift parameters, respectively, and q is the frequency 

parameter. [Roughly speaking, q is proportional to the nwnber of oscillations of a mother 

wavelet i.f!q(t)]. These functions form a binary tree whose nodes are indexed by the depth 

of the level j and the node number q = 0, 1, 2, 3, ... , 2j - l at the specified level j. This 

same indexing is used for corresponding subsets of wavelet packet coefficients (as well as 

in scatter diagrams in the section on experimental results). 

Adaptive selection of sparse subsets. When signals have a complex nature, it is difficult 

to decide in advance which nodes contain the sparsest sets of coefficients. That is why we 

use the following simple adaptive approach. First, for every node of the tree, we apply our 

clustering algorithm, and compute a measure of clusters' distortion. In our experiments we 

used a standard global distortion, the mean squared distance of data points to the centers of 

their own (closest) clusters (here again, the weights of the data points can be incorporated): 

d=2:f=l min II U m - Yk II ,where K is the nwnber of data points, U m is the m-th centroid 
m 

coordinates, Yk is the k-th data point coordinates, and 11 . 11 is the sum-of-squares distance. 



Second, we choose a few best nodes with the minimal distortion, combine their coefficients 

into one data set, and apply a separation algorithm (clustering or Infomax) to these data. 

4 Experimental results 

The proposed blind separation method based on the wavelet-packet representation, was 

evaluated by using several types of signals. We have already discussed the relatively simple 

example of a random block signal. The second type of signal is a frequency modulated 

(FM) sinusoidal signal. The carrier frequency is modulated by either a sinusoidal function 

(FM signal) or by random blocks (BFM signal). The third type is a musical recording of 

flute sounds. Finally, we apply our algorithm to images. An example of such images is 

presented in the left part of Figure 3. 
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Figure 3: Left: two source images (upper pair), their mixtures (middle pair) and estimated 

images (lower pair). Right: scatter plots ofthe wavelet packet (WP) coefficients of mixtures 

of images; subsets are indexed on the WP tree. 

In order to compare accuracy of our adaptive best nodes method with that attainable by 

standard methods, we form the following feature sets: (1) raw data, (2) Short Time Fourier 

Transform (STFT) coefficients (in the case of ID signals), (3) Wavelet Transform coeffi

cients (4) Wavelet packet coefficients at the best nodes found by our method, while using 

various wavelet families with different smoothness (haar, db-4, db-S). In the case of image 

separation, we used the Discrete Cosine Transform (DCT) instead of the STFT, and the 

sym4 and symS mother wavelet instead of db-4 and db-S, when using wavelet transform 

and wavelet packets. 

The right part of Figure 3 presents an example of scatter plots of the wavelet packet co

efficients obtained at various nodes of the wavelet packet tree. The upper left scatter plot, 

marked with 'C' , corresponds to the complete set of coefficients at all nodes. The rest are 

the scatter plots of sets of coefficients indexed on a wavelet packet tree. Generally speak

ing, the more distinct the two dominant orientations appear on these plots, the more precise 



is the estimation of the mixing matrix, and, therefore, the better is the quality of separation. 
Note, that only two nodes, C22 and C23 , show clear orientations. These nodes will most 
likely be selected by the algorithm for further estimation process. 

Signals raw STFT WT WT WP WP 

data db8 haar db8 haar 

Blocks 10.16 2.669 0.174 0.037 0.073 0.002 

BFM sine 24.51 0.667 0.665 2.34 0.2 0.442 

FM sine 25 .57 0.32 1.032 6.105 0.176 0.284 

Flutes 1.48 0.287 0.355 0.852 0.154 0.648 

raw OCT WT WT WP WP 

Images data sym8 haar sym8 haar 

4.88 3.651 l.l64 l.l14 0.365 0.687 

Table 1: Experimental results: normalized mean-squared separation error (%) for noise

free signals and images, applying the FCM separation to raw data and decomposition coef
ficients in various domains. In the case of wavelet packets (WP) the best nodes selected by 

our algorithm were used. 

Table 1 summarizes results of experiments in which we applied our approach of the best 
features selection along with the FCM separation to each noise-free feature set. In these 
experiments, we compared the quality of separation of deterministic signals by calculating 
N SE's (i.e., residual crosstalk errors). In the case of random block and BFM signals, we 
performed 100 Monte-Carlo simulations and calculated the normalized mean-squared er
rors (N M SE) for the above feature sets. From Table 1 it is clear that using our adaptive 
best nodes method outperforms all other feature sets (including complete set of wavelet 
coefficients), for each type of signals. Similar improvement was achieved by using our 
method along with the BS InfoMax separation, which provided even better results for im
ages. In the case of the random block signals, using the Haar wavelet function for the 
wavelet packet representation yields a better separation than using some smooth wavelet, 
e.g. db-S. The reason is that these block signals, that are not natural signals, have a sparser 
representation in the case of the Haar wavelets. In contrast, as expected, natural signals 
such as the Flute's signals are better represented by smooth wavelets, that in turn provide 
a better separation. This is another advantage of using sets of features at multiple nodes 
along with various families of 'mother' functions: one can choose best nodes from several 
decomposition trees simultaneously. 

In order to verify the performance of our method in presence of noise, we added various 
types of noise (white gaussian and salt&pepper) to three mixtures of three images at various 
signal-to-noise energy ratios (SNR). Table 2 summarizes these experiments in which we 
applied our approach along with the BS InfoMax separation. It turns out that the ideas 
used in wavelet based signal denoising (see for example [10] and references therein), are 
applied to signal separation from noisy mixtures. In particular, in case of white gaussian 
noise, the noise energy is uniformly distributed over all wavelet coefficients at various 
scales. Therefore, at sufficiently high SNR's, the large coefficients of the signals are only 
slightly distorted by the noise coefficients, and the estimation of the unmixing matrix is 
almost not affected by the presence of noise. (In contrast, the BS InfoMax applied to 
three noisy mixtures themselves, failed completely, arriving at N S E of 19% even in the 
case of SNR=12dB). We should stress here that, although our adaptive best nodes method 
performs reasonably well in the presence of noise, it is not supposed to further denoise the 
reconstructed images (this can be achieved by some denoising method, after source signals 
are separated). More experimental results, as well as parameters of simulations, can be 
found in [11]. 



SNR [dB] 

Mixtures w. white gaussian noise 

Mixtures w. salt&pepper noise 

Table 2: Perfonnance of the algorithm in presence of various sources of noise in mixtures 

of images: nonnalized mean-squared separation error (%), applying our adaptive approach 

along with the BS InfoMax separation. 

5 Conclusions 

Experiments with both one- and two-dimensional simulated and natural signals demon

strate that multinode sparse representations improve the efficiency of blind source separa

tion. The proposed method improves the separation quality by utilizing the structure of 

signals, wherein several subsets of the wavelet packet coefficients have significantly better 

sparsity and separability than others. In this case, scatter plots of these coefficients show 

distinct orientations each of which specifies a column of the mixing matrix. We choose 

the 'good subsets' according to the global distortion adopted as a measure of cluster qual

ity. Finally, we combine together coefficients from the best chosen subsets and restore 

the mixing matrix using only this new subset of coefficients by the Infomax algorithm or 

clustering. This yields significantly better results than those obtained by applying standard 

Infomax and clustering approaches directly to the raw data. The advantage of our method 

is in particular noticeable in the case of noisy mixtures. 
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