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Blind spots in global soil biodiversity and
ecosystem function research
Carlos A. Guerra 1,2✉, Anna Heintz-Buschart 1,3, Johannes Sikorski4, Antonis Chatzinotas 5,1,

Nathaly Guerrero-Ramírez1,6, Simone Cesarz1,6, Léa Beaumelle 1,6, Matthias C. Rillig 7,8,

Fernando T. Maestre 9,10, Manuel Delgado-Baquerizo 9, François Buscot 3,1, Jörg Overmann 4,11,

Guillaume Patoine1,6, Helen R. P. Phillips 1,6, Marten Winter 1,6, Tesfaye Wubet 12,1, Kirsten Küsel 1,13,

Richard D. Bardgett 14, Erin K. Cameron15, Don Cowan16, Tine Grebenc 17, César Marín 18,19,

Alberto Orgiazzi 20, Brajesh K. Singh 21,22, Diana H. Wall 23 & Nico Eisenhauer 1,6

Soils harbor a substantial fraction of the world’s biodiversity, contributing to many crucial

ecosystem functions. It is thus essential to identify general macroecological patterns related

to the distribution and functioning of soil organisms to support their conservation and con-

sideration by governance. These macroecological analyses need to represent the diversity of

environmental conditions that can be found worldwide. Here we identify and characterize

existing environmental gaps in soil taxa and ecosystem functioning data across soil macro-

ecological studies and 17,186 sampling sites across the globe. These data gaps include

important spatial, environmental, taxonomic, and functional gaps, and an almost complete

absence of temporally explicit data. We also identify the limitations of soil macroecological

studies to explore general patterns in soil biodiversity-ecosystem functioning relationships,

with only 0.3% of all sampling sites having both information about biodiversity and function,

although with different taxonomic groups and functions at each site. Based on this infor-

mation, we provide clear priorities to support and expand soil macroecological research.
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S
oils harbor a large portion of global biodiversity, including
microorganisms (e.g., bacteria), micro- (e.g., Nematoda),
meso- (e.g., Collembola), and macrofauna (e.g., Oligochaeta)1.

This high biodiversity plays critical roles driving multiple ecosystem
functions and services, including climate regulation, nutrient
cycling, and food production1–6. Accordingly, recent experimental7,8

and observational9,10 studies, based either on particular biomes (e.g.,
drylands) or local sites, have shown that soil biodiversity is of high
importance for the maintenance of multifunctionality (i.e. the ability
of ecosystems to simultaneously provide multiple ecosystem func-
tions and services11) in terrestrial ecosystems.

Nevertheless, and with few exceptions9,12, global soil biodiversity-
ecosystem function relationships have not yet been studied in depth
in macroecological perspectives and evaluations of patterns and
causal mechanisms that link soil biodiversity to soil ecosystem
functions have only emerged in the last decade10,13–15. By com-
parison, albeit with important limitations16, there is a plethora of
studies describing the global distribution and temporal patterns
of aboveground biodiversity17, ecosystems18, and biodiversity-
ecosystem function relationships12,19–23, something that is cur-
rently mostly absent (but see Delgado-Baquerizo et al.24) in soil
macroecological studies due to the lack of temporally explicit data
for soil biodiversity and soil-related functions.

Despite the mounting number of soil ecology studies, major gaps
and/or geographic and taxonomic biases exist in our understanding
of soil biodiversity25. Although the existing gaps in global soil
biodiversity data are consistent with gaps in other aboveground
biota16,26,27, these are further exacerbated when described across
specific ecological gradients (e.g., differences across altitudinal gra-
dients) and taxa (e.g., Collembola, Oligochaeta)28. Furthermore,
almost nothing is known about temporal patterns in soil biodi-
versity at larger spatial scales and across ecosystem types25. Iden-
tifying and filling these gaps on soil taxa distributions and functions
is pivotal to identify the ecological preferences of multiple soil taxa,
assess their vulnerabilities to global change, and understand the
causal links between soil biodiversity, ecosystem functioning, and
associated ecosystem services16,29. Despite growing scientific and
political interest in soil biodiversity research25, little to no attention
is given to the governance of soil ecosystems (Supplementary
Fig. 1). This has resulted in a lack of inclusion of soil biodiversity
and functions in land management and conservation debates, and
environmental policy30.

In contrast to groups of organisms from other ecosystems (e.g.,
aboveground terrestrial31) for which the Global Biodiversity
Information Facility (GBIF) constitutes already the main global
data hub32,33, soil organisms are poorly represented. In fact,
distribution data on soil taxa are spread across the literature,
museum archives, and a number of non-interoperable platforms
(e.g., EDAPHOBASE (https://portal.edaphobase.org/), the global
Ants database34, the Earth Microbiome project35), and much
needs to be done to fully aggregate these valuable resources.
Across all available soil biodiversity data, major issues remain
regarding their spatial and temporal representativeness (e.g.,
absent data in most tropical systems), and coverage of taxonomic
groups (e.g., focus on fungi and bacteria), which limits our
capacity to comprehensively assess and understand soil systems at
multiple temporal and biogeographic scales. Also, even for the
most represented taxa (i.e., bacteria and fungi), there are strong
concerns regarding the current taxonomic depth36, even in better
covered regions.

More importantly, both the lack of representativeness and the
distribution of gaps in global soil biodiversity and ecosystem
function research hampers the prioritization of future monitoring
efforts16. Such knowledge deficit in soil biodiversity also prevents
stakeholders from taking appropriate management actions to
preserve and maintain important ecosystem services37, such as

food and water security, for which soils are the main provider1.
Therefore, it is both timely and relevant to identify these blind
spots in global soil macroecological knowledge and research. By
doing so, we can assess their main causes and line up potential
solutions to overcome them.

Since the mere accumulation of data will not advance ecolo-
gical understanding38,39, it is important to identify how well the
current macroecological studies cover the range of existing
environmental conditions on Earth, including soil properties,
climate, topography, and land cover characteristics40,41. There-
fore, here we identify fundamental gaps in soil macroecological
research by analyzing the distribution of sampling sites across a
large range of soil organisms and ecosystem functions. In a review
of current literature, we collected sample locations from most
existing studies focused on soil macroecological patterns (see
below; Table 2). The studies were then organized according to
different soil taxonomic groups and ecosystem functions studied
(nine and five categories, respectively, see Methods for more
details). Finally, we examined how these macroecological studies
have captured the diversity of global environmental conditions to
identify critical ecological and geographical “blind spots” of global
soil ecosystem research (e.g., specific land use types, soil prop-
erties, climate ranges; see Methods for more detail). By identifying
the environmental conditions that have to be covered in future
research and monitoring to draw an unbiased picture of the
current state of global soils as well as to reliably forecast their
futures, our synthesis goes a step beyond recent calls to close
global data gaps25. Our comprehensive spatial analysis will help
researchers to design future soil biodiversity and ecosystem
function surveys, to support the mobilization of existing data, and
to inform funding bodies about the allocation of research prio-
rities in this important scientific field.

Results and discussion
Biogeographical biases. From our literature search, we collected
details on locations of 17,186 individual locations/sampling sites
representing macroecological studies on soil biodiversity (N=
12,915) and ecosystem functions (N= 3318) (Fig. 1). In our
assessment, we also included studies on soil organisms referring
to organism biomass (N= 977; e.g. microbial and faunal biomass)
as an important link between biodiversity and function, although
our focus will be on the last two components. Bacteria, fungi, and
soil respiration (Fig. 1a) were the best-represented soil taxa and
functions in our literature survey, respectively. The total number
of sites across all studies is low compared with many above-
ground macroecological databases that surpass the numbers
found here (e.g., the PREDICTS database42 contains ~29,000 sites
across the globe).

Globally, soil biodiversity and ecosystem function data are not
evenly distributed. Bacteria (N= 3453), fungi (N= 1687), and
Formicoidea (N= 3024; which together concentrate 48.8% of all
soil biodiversity records) have comparatively large and geogra-
phically balanced distributions when compared to Rotifera (N=
41), Collembola (N= 27), and Acari (N= 10), which have a
substantially lower number of sampling sites and more scattered
distributions (see Supplementary Fig. 2 for more detail). The
distribution and availability of data for macroecological studies of
soil organisms has changed dramatically during the last year, with
the outcomes of efforts to synthesize local scale studies into large-
scale initiatives43,44. Thus, in the case of bacteria, fungi,
Nematoda, and Oligochaeta (here including earthworms and
enchytraeids), the relatively high number of sampling sites reflects
a community effort to assemble databases based on collections
from different projects10,45. In the case of Formicoidea, the
availability of data reflects the outcome of systematic global
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sampling initiatives46 or a combination of both47. Still, most of
the analysis made so far lack a balanced representation of the
world’s ecosystems with most observations concentrated in
temperate systems (Supplementary Fig. 4) and suffer from
methodological limitations rising from the comparison of multi-
ple methods and sampling schemes.

Soil ecosystems are by nature very heterogeneous at local
scales48. Having a small and scattered number of sampling sites
for both soil functions and taxa (Supplementary Fig. 11) limits the
power of current global analyses to evaluate macroecological
relationships between soil biodiversity and ecosystem function,
particularly for nutrient cycling and secondary productivity,
which have strong local inter-dependencies49. In fact, from the
five functions assessed here, there is a clear concentration of
studies on soil respiration, accounting for 78.8% (N= 2616) of all
function records (Fig. 1d; see Supplementary Figure 3 for more
detail).

We found a lack of matching data for soil biodiversity and
multiple ecosystem functions in current global datasets. Due to
the dependency of these and other soil functions on
biodiversity2,50, being able to deepen our understanding of the
strength and distribution of expected biodiversity and ecosystem
function relationships is a needed step to better inform manage-
ment and policy decisions51. In this context, only 0.3% of all
sampling sites have an overlap between biodiversity and function
datasets (corresponding to 67 sampling sites, Supplementary
Fig. 11), with a non-systematic coverage of just a few taxa and
functions across sites. Nowadays, macroecological studies on

aboveground biodiversity and ecosystem functioning19,42,52–55

rely on data mobilization mechanisms that allow data to be
reused to address multiple research questions. By contrast, apart
from some taxonomic groups (i.e., bacteria and fungi) soil
macroecological studies based on observational data have a very
small degree of overlap and remain conditioned by poor data
sharing and mobilization mechanisms56–58. Two exceptions to
the latter are recent studies on nematodes44 and earthworms43

that relied on large synthesis of locally available data, paving
the way for more efforts in synthesizing soil diversity data.
Nevertheless, these studies have to cope with large arrays of
methodological approaches that limit some macroecological
analysis (e.g., compositional turnover studies). Also, although
the large number of sampling locations, these new datasets
further reflect the current biases in macroecological findings by
being skewed toward temperate systems (Supplementary Fig. 12).

We also found that most studies are based on single sampling
events, i.e., without repeated measurements over multiple years or
long time periods for the same sampling sites. Being able to study
how communities and functions change over time is essential for
assessing trends in key taxa and functions, and their vulnerability
to global change17. Our global survey suggests that such
information is almost nonexistent in large-scale soil biodiversity
and ecosystem functions studies. Thus, for most soil communities
and functions, although local studies exist59,60, understanding the
global trends and the implications of global change drivers and
scenarios is difficult and limited by the absence of globally
distributed and temporally explicit observational data.
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and function data points (this number does not mean that soil biodiversity and function were assessed in the same soil sample or during the same sampling

campaign; i.e., there are thematic or temporal mismatches, see Supplementary Fig. 11 for more details), relative to the total number of sampling sites

covered by the studies. The maps show the overall spatial distribution of sampling sites for all taxa (a) and soil ecosystem functions (c). The size of the

circles corresponds to the number of sampling sites within a 1° grid ranging from <10 to >50. All supporting data at: 10.6084/m9.figshare.12581306.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-17688-2 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:3870 | https://doi.org/10.1038/s41467-020-17688-2 | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Ecological blind spots. Overall, both soil biodiversity and eco-
system function variables reveal a high degree of spatial clustering
across global biomes: temperate biomes (especially broadleaved
mixed forests and Mediterranean) contain more sampling sites
than tundra, flooded grasslands and savannas, mangroves, and
most of the tropical biomes, with the exception of moist broadleaf
forests (Supplementary Fig. 4). This spatial clustering is even
more pronounced in studies of ecosystem functions, with tem-
perate systems being overrepresented with 62% of all sampling
sites, while the rest of the globe has scattered information on soil
conditions. This likely reflects differences in funding availability
and research expertize across countries27,61. In fact, for taxa like
Collembola and Nematoda (despite a large number of sampling
sites), most sampling sites are concentrated in temperate regions,
with very few documented in other regions. This imbalance
results in quite accurate predictions of soil biodiversity for tem-
perate regions, but with high standard errors elsewhere, which is
further enhanced when coupled with non-spatially-stratified
algorithms43,44,62.

Furthermore, the availability of soil biodiversity and function
data is especially scarce or even non-existent in tropical and
subtropical regions (see Supplementary Fig. 4 for more details),
which are among the most megadiverse places on Earth,
montane grasslands, and hyper-arid areas. In many cases, local
experts and study sites may exist, although their contributions
are often not included in macroecological studies and therefore
their environmental characteristics are not covered. At the same
time, for many of the best-represented regions in the globe,
there is rarely a complete coverage of soil taxa and functions,
with records often being dominated by one or two densely
sampled taxa (e.g., bacteria and fungi) or functions (e.g., soil
respiration).

The range of environmental conditions currently described
within soil macroecological studies is necessary to understand the
relationship between soil biodiversity, ecosystem functions, and
key environmental conditions (e.g., the known relationship
between bacteria richness and pH62 or the dependence of soil
respiration on temperature63,64). In this context, the complete
range of soil carbon levels existing on Earth is not well covered,
with soils of very high and low carbon contents (Fig. 2a) being
underrepresented compared with their global distribution. The
same applies to soil type, with only a fraction of soil types being
well covered (i.e., acrisols, andosols, cambisols, kastanozems,
luvisols, and podzols), while others are underrepresented or
completely absent (e.g., durisols, stagnosols, and umbrisols;
Fig. 2o). In contrast, our study identified over- and under-
represented environmental conditions in soil biodiversity and
function studies (Fig. 2). For example, some soil properties are
well represented across studies, such as soil texture (i.e., sand, silt,
and clay content) and pH, with the exception of extreme ranges
(e.g., pH > 7.33 or silt content <19%).

In contrast to soil conditions, climate variability is poorly
covered in soil biodiversity and function studies, with several
climatic ranges being almost completely missing (Fig. 2f–k).
These include low and high potential evaporation/aridity areas
and those with high climate seasonality, low precipitation, and
extreme temperatures (i.e., very hot and very cold systems), with
no overall differences in coverage between biodiversity and
ecosystem function studies. Drylands, for example, cover ~45% of
the land surface65 and have been shown to be highly diverse
in terms of soil biodiversity and with strong links to specific
ecosystem functions24,66, but are often underrepresented
(although some studies specifically target them10,12). Climatic
conditions (current and future) have strong influences on both
soil organisms60 and functions63,67,68. As such, assessing a wide
range of these conditions, including climatic extremes, is

fundamental to describe the complex dynamics of soil systems.
This issue is further exacerbated when looking at specific climate
combinations (Fig. 3c), where 59.6% of the global climate
conditions are not covered by any of the studies considered.

Although representing a major driver of soil biodiversity and
function4, land-cover based studies have shown different
responses across groups of soil organisms59,69,70 and specific
functions71,72. While, in general, land cover types are well
covered, sites in the proximity of urban areas are disproportio-
nately overrepresented (Fig. 2n). Climate and soil properties
shape soil communities worldwide62. Nevertheless, anthropo-
genic disturbances, particularly those related to land-use change
and intensity, have important impacts on these soil communities
and their functional performance. Lichens, mosses, and bare areas
have been neglected, and shrublands are not well represented in
ecosystem function assessments. These gaps may have important
implications, particularly when they correlate with understudied
ecosystems like drylands or higher latitude systems that may
harbor high biodiversity66, but for which patterns are mostly
unknown. In this context, the present analysis indicates that low
diversity areas (here represented as plant richness73) are absent
from most studies or poorly represented, with the focus being
mostly on higher diversity areas. Concurrently, it has been
suggested that there may be important mismatches between
above- and belowground biodiversity across the globe74, i.e., there
are huge areas where aboveground biodiversity does not well
predict belowground biodiversity. Although most macroecologi-
cal studies point in this direction (mismatch between above- and
belowground diversity), there are still important dependencies
between above- and belowground diversity75,76. These depen-
dencies can be functional and, in the case of some groups (e.g.,
like fungi), can also increase diversity and biomass, with positive
effects on soil carbon storage77.

When looking at how belowground studies cover global
environmental conditions (Fig. 3a, c), important spatial gaps
are observed. Although most soil-related variables are well
covered across studies, the same does not apply when looking
at aboveground diversity (see Supplementary Fig. 10), which
shows a very good coverage in forest and crop areas with above-
average plant richness in mid to low elevations, while other
environmental combinations are underrepresented. Overall, while
it is unreasonable to expect all macroecological studies to cover all
possible soil conditions our results show that most studies have,
on average, a coverage below 50% across global regions, with the
exception of Central and west Europe and Caribbean (for both
biodiversity and function) and Central and North-East Asia and
North and South America (for ecosystem functions). All other
regions show a systematic poor coverage across soil macro-
ecological studies with North Africa and West Asia having the
lowest average environmental coverage (Fig. 3b, d).

Although temperate regions (e.g., Central and West Europe)
have the highest average environmental coverage across soil
macroecological studies, within these regions many environmen-
tal combinations are not properly covered, particularly areas of
high altitude with low pH and high carbon content (see Fig. 3AF,
BF). Worryingly, regions or countries considered to be mega-
diverse (i.e., at least from an aboveground diversity point of view)
are systematically poorly represented across soil macroecological
studies (Fig. 3aB, aE, aD, cB, cE, cD).

Many of the reasons and drivers of existing data gaps have
already been discussed in recent literature for aboveground
systems16 (e.g., accessibility, proximity to large cities, etc.). In the
case of soil biodiversity and ecosystem functions, these blind
spots are further reinforced because of the lack of standardized
protocols for acquiring biodiversity and ecosystem function data.
This translates into an absence of comparable data, which is even
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more pronounced than in other systems16,78. Nevertheless, there
is a continuous movement towards improving data mobilization
and international collaborations that could help overcome these
issues if steered in the direction of underestimated taxa and/or
functions identified here79.

In a changing world where soil biodiversity shifts are being
systematically reported80–82, and where current forecasts are
pointing to increases in land-use intensity83,84, desertification85,

and rapid climate change86–89, understanding if and to what
extent biodiversity changes are happening in soil communities is
of high importance. This is particularly relevant to assess causal
effects between changes in biodiversity and ecosystem function
(e.g., are changes in biodiversity occurring because of changes in
function, paired with them, or despite them, and vice versa),
which is even more relevant if key ecosystem functions (e.g.,
carbon sequestration) are the subject of evaluation.
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Challenges to move beyond blind spots. Filling the knowledge
gap on large-scale temporal trends in soil biodiversity and ecosys-
tem function cannot be achieved without spatially explicit studies
based on resampled locations. This could be done with a standar-
dized global monitoring framework that is recognized and sup-
ported by a large number of countries, which currently does not
exist. Given the strength of recognized soil taxa interactions90,
biodiversity and ecosystem function relationships24, and above-
belowground interactions91, these large-scale monitoring activities
and research studies should consider going beyond traditional
single taxa/function approaches and collect information on the

multiple dimensions of soil ecosystems28, while at the same time
expanding/supporting surveys to cover the blind spots of soil
macroecological research (Fig. 3).

Across all soil taxa and functions, the geographical and
ecological blind spots identified here often emerge from a number
of obstacles specific to soil ecology79 (see summary in Table 1).
Soil macroecologists face many challenges and constraints
spanning from a lack of methodological standards and scientific
expertize in different taxonomic groups92–94, to limitations
caused by the current implementation of the Convention for
Biological Diversity (CBD) and the Nagoya Protocol95,96. While

Fig. 2 Global soil ecological blind spots. Values (y-axis) correspond to the percentage of sites per study when compared with the global percentage

distribution (e.g., a value of 20% means that a given study overrepresents a given environmental variable by 20%, when compared to the global

distribution of that same variable). Soil biodiversity studies in green (N= 35) and ecosystem function studies in orange (N= 12). a soil carbon (g soil kg−1)
127; b sand content (%)127; c soil pH127; d clay content (%)127; e silt content (%)127; f potential evapotranspiration (mm/day)128; g aridity index128; (h)

precipitation seasonality129; (i) temperature seasonality129; j mean annual temperature (°C)129; kmean total precipitation (mm)129; l elevation (meters)130;

m vascular plant richness73; n land cover131; and o soil type127. The zero black line corresponds to a situation where the proportion of sites in a given class

within a study matches the global proportional representation of the same class. Although outliers were not eliminated, for representation purposes these

were omitted >800% between panels a–l and >3000% for panels m–o. The class intervals of each continuous variable were obtained based on a natural

breaks (Jenks) classification (20 classes). Each barplot (quantile distribution) represents the proportional number of sampling sites covering a particular

class when compared to the global distribution. In panel (n) mosaic (crops) represent small scale landscapes dominated by crops, while mosaic (forests)

represent small scale landscapes dominated by forests.
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Fig. 3 The extent to which main soil environmental characteristics are covered across macroecological studies. Colors (in a and c) correspond to the

average χ2 values across all studies considered and environmental conditions calculated based on Mahalanobis distance123–125 (gray color corresponds to

outlier conditions: see Methods for more details) within: a and b corresponding to the biodiversity studies and c and d to ecosystem function studies. a and

c correspond to the spatial distribution of the χ2 values to 0.50, 0.75, 0.90, 0.95, and 0.975 break points. b and c correspond to boxplots (quantile

distribution) of the percentage of area covered (<0.975 χ2) by each study considered across the different IPBES regions. Results show that most studies

have, on average, a coverage below 50% of all the regions in the world, with the exception of Central and west Europe (f) and Caribbean (for both

biodiversity and function), Central and North-East Asia, and North and South America (for ecosystem functions). a–f correspond to zooms on specific

areas of the globe. All supporting data at: 10.6084/m9.figshare.12581306.
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the first has more immediate, albeit non-trivial solutions (e.g., by
expanding the language pool of the researchers and studies
included16,97 and by applying common standards for sampling,
extraction, and molecular protocols98–101), the latter contains
systemic issues that go beyond soil ecology alone. In this context,
although the CBD and the Nagoya Protocol were created to
protect countries while making the transfer of biological material
more agile, numerous states have either not yet implemented
effective national “Access and Benefit Sharing” (ABS) laws or
have implemented very strict regulations102,103. Yet, even after 25

years of the CBD and the ABS framework being in place, the
major motivation for a strict national regulation - the anticipated
commercial benefits and high royalties from the “green gold” -
has not yet materialized95,104.

Researchers have yet to coordinate a global effort to characterize
the multiple aspects of soil biodiversity and function in a
comprehensive manner, with the current literature dominated by
scattered, mostly local studies focused on specific soil organisms
and/or functions. Although here we do not comprehensively assess
the potential of local studies to overcome the current blind spots,

Table 1 Summary of the main obstacles soil ecologists face to create a global soil biodiversity monitoring network and the

priority actions to overcome them.

Researchers

Challenges Priority actions Institutions Policymakers

Legal issues regarding the

transport and sharing of soil

samples and biological data

Raise the awareness of institutions

and decision-makers about the

importance of these legal bottlenecks

for the development of international

research programs.

Develop a legal understanding of the

implications of material transfer

mechanisms for soil samples and provide

support to researchers also by promoting

knowledge and expertize exchange.

Support and facilitate the establishment

of international consortia and bilateral

institutional agreements particularly with

developing countries

Establish global multilateral

solutions and International Treaties

focused on soil biodiversity and

ecosystem function research.

Establish knowledge transfer

mechanisms for soil-related research

together with the classification of

soil samples for research purposes.

Scattered literature and lack

of mobilization/

systematization of local

studies

Invest in data harmonization,

synthesis, meta-analysis approaches,

data collation, and standardizedr

metadata to improve currently

available datasets (e.g., through GBIF

for soil biodiversity).

Publishing under free “Open Access”

(OA) licence and/or using preprint

platforms or fully OA journals.

Define and publish data standards

that allow for better data transfer

focussing on the methods, reporting

in standard units, and best practices

for data availability.

Increase the focus on understudied

soil groups (e.g., collembola, acari,

protists, mammals) and functions

(e.g., soil aggregate stability,

bioturbation, nutrient cycling).

Establish effective coordination of

current networks to support the

development of integrated ecological

assessments of the soil realm

Adoption of available data and methods

standards101, 132–136 and support the

establishment and maintenance of data

repositories and open access policies.

Support open access partnerships

(e.g., the German DEAL137) to

facilitate knowledge transfer and

collaboration across countries and

researchers from different

backgrounds and expertize.

Improve the digitally available data

on soil biodiversity and ecosystem

function by supporting the

expansion of current global

databases (e.g., GBIF) or the

creation of interoperable data

infrastructures on soil function data.

Lack of temporally explicit

information on soil

biodiversity and functions

Identify relevant sites - e.g., sites

covering a wide range of taxa or

functions and/or a high degree of

standardization - for resampling.

Revisit already sampled sites to

obtain temporal measurements of

soil biodiversity and ecosystem

function.

Institutional support of long-term

databases and collections of soils, soil

functional data, and soil biological

material.

Create funding schemes for strategic

long-term research projects on soil

monitoring and research (e.g., using

the LTER framework as an

example138).

Lack of globally distributed

expertize, research funding

and infrastructures

Promote knowledge transfer

mechanisms and capacity building,

especially with developed countries

that might see little advantage of

being involved in a global network

that only offer co-authorship as the

main benefit.

Setup international workshops,

summer schools, or classes with a

focus on educating the next

generation of scientists on different

aspects of soil ecology.

Build on or expand current networks to

include knowledge transfer activities,

namely on education, methods

calibration, sharing research facilities,

and taxonomic expertize.

Promote funding flexibility to train

and empower researchers across

countries and/or regions, also

allowing local scientists, particularly

in the developing world, to conduct

soil biodiversity and ecosystem

function research.

Establish soil health as a research

priority beyond farming areas and

with a special focus on ecological

conservation of soil organisms and

ecosystem functions.
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other studies34,35,67 have shown that, with an effort in standardiza-
tion and data mobilization, local and regional studies add
fundamental knowledge and empower local researchers to
participate in global initiatives. In fact, several studies not included
in this assessment can provide a finer-scale resolution in many areas
of the globe69,105,106. Nevertheless, their spatial extent systematically
coincides with overrepresented areas (e.g., temperate areas), and
their taxonomic and functional focus is mostly on the already
prevailing taxa (i.e., bacteria and fungi) and functions (i.e., soil
respiration), potentially increasing existing biases. This increases the
relevance of facilitating data mobilization from regions and, more
importantly, environmental conditions that are systematically not
covered by macroecological studies. Here a word of caution is
needed as scientists from around the world need to publish their
findings to progress their careers and/or to obtain research funding.
Managing large data sets and having access to global databases on
climatic and soil information, is often a privilege for well-resourced
research teams (in terms of bibliographic subscriptions, computing
power and technical knowledge, and software107,108). Given the
diversity of global conditions (both scientific and environmental),
data mobilization alone is not the solution and needs to be paired
with the priority to have more national (and local) surveys across a
large number of sites and with a deeper taxonomic level.

In parallel, and given the nature of global change drivers,
understanding their influence on local soil communities and
ecosystem functioning requires global macroecological
approaches that can provide context, predictions, and concrete
suggestions to policymakers across the globe. Yet these macro-
ecological approaches will be less effective in providing relevant
outputs at national scales if based on data extrapolated from other
countries; they would be strongly improved if local data would
exist coming from national and local surveys and were made
openly available25,109. Without more comprehensive studies
seeking answers to large-scale soil ecological questions - often
involving dealing with multiple scales (temporal and spatial) and
a number of thematic and taxonomic depths74 - it is difficult to
deepen soil macroecological knowledge110. This is particularly
relevant in testing biodiversity and ecosystem function relation-
ships at the global scale, or trying to address specific societal
issues (e.g., the attribution of climate and land-use change as
drivers of soil ecological change or general biodiversity trends)17.

Another major challenge is associated with the fact that
currently ABS agreements are bilateral. This hinders global soil
ecology initiatives, as it requires that providers and receivers need
limited (in time and topic) individual material transfer agree-
ments. Thus, for a global initiative, this can amount to hundreds
of material transfer agreements. However, there is an increasing
quest for global solutions and multilateral systems, such as the
International Treaty on Plant Genetic Resources for Food and
Agriculture (IT PGRFA; www.fao.org/3/a-i0510e.pdf), or other
harmonized best practices examples like the Global Genome
Biodiversity Network96. As the commercial value of soil
organisms is regarded to be zero in situ111, and as these are
mostly ubiquitously distributed at the highest taxonomic level
(e.g., bacteria and fungi), soil per se has no commercial value as it
does not match the criteria that “provider countries host unique
and unmatched biodiversity” of the Nagoya Protocol112. There-
fore, a global multilateral solution, similar to the examples listed
above (e.g., the IT PGRFA), but focused on facilitating the
exchange of soil samples to drive basic research on soil
biodiversity, taxonomy, and ecosystem functioning, while still
safeguarding against the spread of foreign genotypes, is pressingly
needed. At the same time, as long as bilateral ABS agreements are
required, researchers should engage with local policymakers to
enable unrestricted soil biodiversity and ecosystem function
research, as was the case for Brazil from 2006 to 2016113.

Looking for solutions to unearth global observations. Globally,
soil habitats are under constant pressure from major threats, such as
climate change, land use change and intensification, desertification,
and increased levels of pollution. Here, we argue for global mon-
itoring initiatives that systematically samples soil biodiversity and
ecosystem functions across space and time. Such global initiatives
are urgently needed to fully understand the consequences of
ongoing global environmental change on the multiple ecosystem
processes and services supported by soil organisms (Table 1). This
requires that current and future funding mechanisms include
higher flexibility for the involvement of local partners from different
countries in global research projects. Given that soil ecological
research requires cross-border initiatives79,108 and often expensive
laboratory infrastructure, there is a need for flexible funding with
proper knowledge transfer mechanisms to sustain global soil mac-
roecological research. Such knowledge will in turn contribute to
advancing our understanding of macroecological patterns of soil
biodiversity and ecosystem function, thereby fulfilling national and
global conservation goals111,114,115.

Considering the current pool of literature, improving the
digitally available data on soil biodiversity and ecosystem function
should be a top priority that can be supported by systematically
mobilizing the underlying data116 in already existing open access
platforms (e.g., GBIF). Achieving this goal on shared knowledge
and open access data will return benefits beyond making global
soil biodiversity surveys possible. It will allow local researchers to
expand their own initiatives, create a more connected global
community of soil ecologists, bypassing publication and language
limitations, and potentially open doors in countries that may
otherwise be reluctant in sharing their soil biodiversity data27.

In parallel, coordinated sampling strategies based on standar-
dized data collection and analysis are needed to improve soil
macroecological assessments. From our results, it is clear that most,
if not all, studies look at only a fraction of the soil realm without
much spatial and thematic complementarity of global environ-
mental conditions. Also, the small overlap between biodiversity and
functional studies indicates that most community assessments
disregard the ecosystem functions that these provide and vice versa,
prompting a call for more complex approaches that can show
potential links and global ecosystem services. Our study helps to
identify global target locations and biomes, which need to be given
priority in future surveys. Future sampling strategies would greatly
benefit from coordinated sampling campaigns with biodiversity and
function assessments at the same locations and ideally from the
same soil samples to improve the current spatial-temporal
resolution of data on soil biodiversity and ecosystem functions.

These two complementary pathways (i.e., data mobilization
and sharing of current literature and a globally standardized
sampling) if done in a spatially explicit context, and following
standardized protocols, could ultimately inform predictive
modeling frameworks for soil ecosystems to track the fulfillment
of global/national biodiversity targets, policy support, and
decision-making. Taken together, our study shows important
spatial and environmental gaps across different taxa and
functions that future macroecological research should target,
and a need to collect temporal datasets to explore if current
aboveground biodiversity declines are found in belowground taxa.
With the identification of global spatial, taxonomic, and
functional blind spots, and the definition of priority actions for
global soil macroecological research74, our synthesis highlights
the need for action to facilitate a global soil monitoring system
that overcomes the current limitations.

Methods
Literature selection and data processing. We created a dataset by collecting
published literature on macroecological studies of soil biodiversity and ecosystem
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functions. For this literature search, we conducted a search in the Web of
Knowledge database in November 2018 within papers published between 1945 and
2018 using the keywords: (Global* OR Continental OR latitud*) AND (soil* OR
belowground) AND (*function* OR *diversity OR organism* OR biota OR ani-
mal* OR invert* OR fauna*) AND distribution AND (*mycorrhiz* OR microb*
OR nematod* OR bacteria* OR ant* OR fung* OR invertebrate* OR earthworm*

OR protist* OR eukaryot* OR collembola* OR rotifer* OR archaea OR formic*
OR mite* OR termite* OR arthropod* OR respiration OR decomposition OR
nitrogen-cycling OR nutrient cycling OR water infiltration OR aggregate* OR
bioturbation OR biomass). These keywords were selected to encompass the max-
imum number of published studies, which often use a variety of expressions for
describing soil biodiversity and function. Additionally, we included studies found
in the references of the papers returned by the database, as well as opportunistically
gathering additional studies, such as from personal bibliographic databases of
global soil studies.

The initial Web of Science search returned 1203 studies, which were screened
for the following three inclusion criteria: (1) studies dealing with soil taxa and/or
soil ecosystem functions; (2) studies spanning more than one continent with more
than single locations in each continent (the Pacific islands not included in any
particular continent were counted as an individual continent, contributing to the
inclusion of some studies); and (3) studies that span across an entire continent (i.e.,
a study focussing only on Europe would not be included but if larger scales would
be assessed - e.g., across Eurasia - the study would be included). From these, the
number of studies was reduced to 58 that, after being complemented with
additional studies, resulted in a dataset with 62 studies dealing with processes and
patterns of soil biodiversity and/or soil ecosystem function across global gradients
ranging from 1995117 to 2018118 (Fig. 4, Table 2).

The 62 studies selected were then classified according to the taxon and/or
function that was subject of the paper and screened for the availability of point
coordinates for the sampling sites underlying the study (Table 2). We obtained the
locations of the sampling sites that supported each manuscript, either by using
published data or by contacting the corresponding authors of the publications.
Papers including only national or regional level information were not included in
this analysis. This was not done because of any consideration about the quality of
the study nor related to bad reporting, but rather because of the lack of comparable
data across studies. Overall, ~72.6% (45 studies) of the total number of studies
identified were included in the analysis (see Table 2 for more details). This allowed
us to cover ten different taxa and five (from a total of seven) ecosystem functions
with important relevance for biogeochemical cycles2,119,120 and the supply of key
ecosystem services1,3 (Fig. 1; Table 2).

Available pairs of coordinates were then georeferenced and projected to WGS84
to create a dataset comprising all individual studies. The geographic coordinates of
the sites were included based on the data provided by the studies and no spatial
corrections were made (Fig. 1). In the manuscript, sampling sites refer to unique X,
Y pairs of coordinates that represent individual locations. As a final step, sampling
sites located outside of the terrestrial scope of this paper - which excludes
Antarctica and Greenland - were removed from the subsequent analysis.

Completeness and estimation of global representation. One of the main
objectives of this paper is to describe the ability of current soil macroecological

research to capture the diversity of conditions affecting the soil realm, here
described as the bulk of characteristics encompassing the soil (including physical
and chemical properties), climate (including properties that affect soil conditions
e.g., related to soil humidity and temperature), geomorphology (including global
topographic properties), and aboveground diversity1,41. With this definition, we
identified 15 environmental and diversity descriptor variables of the soil realm
(Table 3) that we used to characterize how the overall sampling locations for each
study capture the global environmental and aboveground diversity scope. Initial
calculations were made using ArcGIS and ArcPy at the original resolution of the
different datasets although, for the final spatial mapping and integration, all
datasets were harmonized to an ~1 km2 (at the equator) resolution using a
resampling algorithm without changing the original values - i.e., focussing only on
pixel disaggregation with a nearest neighbor classifier.

For each study, we examined how these sample-based distributions capture the
diversity of global conditions with the purpose of finding the “blind spots” of global
soil ecosystem research corresponding to underrepresented areas of low
environmental and aboveground diversity representation. To do this, we compared
the global histogram of each of these environmental and aboveground diversity
variables (Table 3) with the one obtained using the sampling sites for every
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Fig. 4 Accumulated number of papers screened for this analysis. Studies were classified in soil biodiversity, function or biodiversity, and ecosystem

function (BEF), according to the subject of the study (see Table 2). a corresponds to the number of studies that were not included due to the underlying

data not being suited for this analysis (e.g., based on national level information) or data availability issues. Overall, ~72.6% of the total number of studies

identified as suitable were included in the analysis ranging from 2004 to 2018.

Table 2 List of studies included in the current assessment.

Soil biodiversitya Included studies Not included studies

Bacteria 10, 14, 35, 66, 70, 120, 139–

145

119, 146–149

Archaea 70, 120, 141, 142, 150 146, 149

Fungi 45, 110, 141, 142, 145, 151–156 119, 146, 157–159

Protista 70, 160, 161 117, 162–164

Nematoda 13, 44, 165, 166 119

Rotifera 166, 167 –

Collembola 168 119

Acari 166, 168 119, 169

Formicoidea 34, 46, 170 –

Oligochaeta 43, 46, 118, 166, 168, 171 –

Soil functionsa – –

Decomposition 67, 72, 168 172

Soil respiration 63, 71, 116, 173–175 176

Nutrient cycling 177 –

Water infiltration 178, 179 –

Bioturbation – 180

Soil aggregate

stability

– 181

aGiven the thematic scope of some studies, an individual study can be included in more than one

taxon/function.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-17688-2 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:3870 | https://doi.org/10.1038/s41467-020-17688-2 | www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


particular study. These histograms were classified using a natural breaks (Jenks)
method121, with the exception of land cover and soil type for which the original
categorical classification was maintained. This procedure allowed us to identify
particular ranges of environmental and diversity conditions that are
overrepresented in current literature and not assume total coverage by just looking
at the spatial distribution of sampling sites. For example, having one sampling site
in the tropics may wrongly give the impression that tropical regions are covered
when in fact this sampling site can only cover a very small range of the total
tropical spectrum. Given the small scale differences in soil communities, by
contrast with other aboveground taxa, this overrepresentation of specific
conditions in detriment of others is of the utmost importance as it can produce
important interpretation biases and knowledge limitations.

Second, for each study, we overlaid the spatial representation of all variables to
include the mean and median distribution and the standard deviation across
environmental variables. In order to have taxonomic and functional
representations (e.g., for Bacteria, fungi, decomposition, etc.), we replicated the
procedure by including all the studies identified for each taxon and function. In
parallel, we used global biomes122 as a spatial stratifier to understand global biases
in soil biodiversity and function data and representation. Finally, to assess the
representation of soil diversity and climate conditions, it is not enough to evaluate
them independently of each other. Therefore, we combined the previously classified
variables (the spatial distributions of each classified variable can be found in
Supplementary Figs. 5–9) in three different groups (Supplementary Fig. 10): (a)
land cover (including the combination of land cover, plant diversity and elevation);
(b) soils (including the combination of organic carbon, sand content, and pH); and
(c) climate (including the combination of mean precipitation and temperature, and
their seasonality). We finally overlayed these mapped combinations with the
distribution data from each study in order to understand which combinations have
the highest number of redundant studies, i.e., more than one study covering the
same environmental combination.

Finally, we applied a statistical method based on the calculation of a
multidimensional distance (considering all continuous environmental variables)
based on mahalanobis distance123,124. For each study, we calculated and mapped
the Mahalanobis distance of all locations to the center of the observed distribution
given by the sample distribution of each study. This distance is useful to detect
outliers in point cloud distributions that are assumed to follow a multivariate
Normal distribution123,124. When each of the variables is normally distributed, the
Mahalanobis distance follows a χ2 distribution with d degrees of freedom, where d
corresponds to the dimension of the multidimensional space (i.e. the number of
environmental variables used)123,124. Figure 3 uses a color gradient to indicate the
quantile of the Chi squared distribution with 13 degrees of freedom that each xy
coordinate belongs to Mallavan et al.125.

We acknowledge that sampling schemes should in the future consider the
amount of diversity represented in each region and, therefore, match the sampling
effort with estimates of completeness coverage of actual composition values126.
Nevertheless, due to the lack of access to the actual diversity and functional data
(apart from publicly available datasets) and, more importantly, to the assumption
that current global soil biodiversity hotspots are either poorly characterized (due to
data constraints) or fail to account for the diversity of environmental conditions
present in the globe, we implemented the current approach as an alternative to
highlight the environmental coverage of current macroecological studies. In the
future, with more studies shedding more light on the global distribution of soil
biodiversity, studies and monitoring initiatives should probably focus on
approaches that use the “novelty” of each new sample to infer how (in)complete
the description of biodiversity is126.

As the current analysis was conducted as a global analysis without a regional
segmentation (e.g., without partitioning the analysis per continent), sampling sites

in one continent (e.g., sampling sites covering high altitude areas in Europe) may
influence the coverage in other continents (e.g., may identify areas in North and
South America as being partially covered). Although this may lead to the
overrepresentation of some areas (and consequent underrepresentation of others),
our main intent is to understand how current macroecological literature is
capturing the diversity of global soil conditions.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data is available as a single dataset including all soil biodiversity and function
locations with reference to the respective manuscripts from which they were extracted. It
can be found here 10.6084/m9.figshare.12581306 and here 10.6084/m9.
figshare.12581306.
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