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Abstract. We report on a study aiming at characterising the kinetic Sunyaev-Zel’dovich (KSZ) effect through statistical cri-
teria that can blindly indicate the presence of secondary anisotropies due to KSZ effect buried in the Cosmic Microwave
Background (CMB) anisotropies. We show, using simulated maps, that some properties of the covariance coefficient between
thermal Sunyaev-Zel’dovich (TSZ) and the temperature fluctuation map can be used in that purpose.
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1. Introduction

The Cosmic Microwave Background (CMB) anisotropies rep-
resent a superposition of temperature fluctuations that are ei-
ther generated before recombination, the so-called primary
anisotropies, or after recombination, (they are called secondary
in this case). The Sunyaev-Zel’dovich (SZ) effect (Sunyaev &
Zel’dovich 1980) (or Birkinshaw 1999 for a recent review) in-
duces secondary anisotropies through the interaction of CMB
photons with the free electrons of the ionised and hot gas in
galaxy clusters. The inverse Compton interaction between pho-
tons and hot electrons globally at rest with respect to each other
induces a second order effect (in ve/c) called the thermal SZ ef-
fect (TSZ). It is characterised by a peculiar spectral signature
with brightness decrement and increment respectively around
2 mm and 0.8 mm, and a null effect around 1.4 mm. The
Doppler effect, induced when the galaxy cluster moves with re-
spect to the CMB rest frame, generates first order (in ve/c) sec-
ondary anisotropies. They have in this case the same spectral
signature as the primary temperature fluctuations. The Doppler
effect is commonly known as the kinetic SZ effect (KSZ).

The CMB analysis is becoming one of the most powerful
tools for observational cosmology. The primary anisotropies
are indeed used to probe the early universe and the cosmo-
logical parameters (e.g. Wang et al. 2002; de Bernardis et al.
2002; Pryke et al. 2002). To achieve this goal, the primary
anisotropies need to be first separated from the secondary fluc-
tuations. The distinction between the anisotropies due to TSZ
effect and the primary anisotropies (and henceforth their sep-
aration) is in principle feasible. It takes advantage of the pe-
culiar spectral signature of the TSZ and can thus be achieved
through multi-wavelength observations (Hobson et al. 1998;
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Bouchet & Gispert 1999; Snoussi et al. 2001). On the contrary,
the separation between the primary fluctuations and those pro-
duced by the KSZ effect is a priori impossible by means of
multi-wavelength observations only, since both have the same
spectral signature. The non-Gaussian signature associated with
the KSZ anisotropies may be regarded as a way of differentiat-
ing the secondary and primary fluctuations. This signature can
be measured, in the direct and dual spaces (Fourier, wavelet),
through the high order moments, the bispectrum, or the trispec-
trum. This statistical differentiation is promising. However, it
relies on the fact that the primary anisotropies are a priori
Gaussian distributed. It also neglects the fact that other sources
of non-Gaussian signatures could contribute to the measure-
ment (other secondary anisotropies, e.g. inhomogeneous reion-
isation (Aghanim & Forni 1999), galactic emission (Jewell
2001), systematic effects,...). The problem of separating be-
tween CMB and KSZ remains therefore mostly unsolved.

In the present study, we will investigate statistical criteria
that might allow to indicate in a signal constituted of a mixture
of the primary and KSZ secondary anisotropies the contribu-
tion from KSZ effect, and thus ease the separation between the
two signals.

2. Analysis and results

We adopt an empirical approach for the statistical characteri-
sation of the different astrophysical signals and we choose to
address the problem through the analysis of simulated maps
(15 maps of 512 × 512 pixels (12.5 degrees aside)). The ma-
jor advantage of this choice resides in the fact that the analy-
sis mimics the kind of analysis we can perform on “real” data.
Also in this spirit, we always focus on the two observable quan-
tities that we will possibly obtain from multi-wavelength ob-
servations: the TSZ map on one hand and, on the other hand,
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a temperature fluctuation map accounting for the non-
separable KSZ and primary CMB anisotropies. We use sim-
ulated maps of the TSZ and KSZ effect, and of the primary
anisotropies (a description of the simulations can be found in
Aghanim et al. 2001). We illustrate our results in the case of
the low matter density flat universe with parameters Ωm = 0.3,
ΩΛ = 0.7, h = H0/100 km s−1 Mpc−1 = 0.65. In the follow-
ing, the temperature fluctuation map (primary CMB + sec-
ondary KSZ) will be referred to as KSZ+CMB map, and the
TSZ effect will be expressed in terms of the Compton parame-
ter (y) map.

2.1. Amplitude of the covariance coefficient

The interaction of CMB photons with the electrons of the hot
ionised gas in galaxy clusters induces both temperature fluctu-
ations and Compton distortions through respectively the KSZ
and TSZ effects. Obviously, the maps of the two effects are very
closely related. We investigate this property and the way it is
affected by the mixing of primary and secondary fluctuations.
We first simply investigate the correlation between two quan-
tities TSZ, on the one hand, and either KSZ or KSZ+CMB,
on the other hand. We find it a rather limited tool to exhibit
the KSZ temperature anisotropies even if considering the corre-
lation with a pure KSZ map. This is due to the fact that the cor-
relation coefficient is a normalised quantity unable to differen-
tiate between large and small signals. We know that large TSZ
distortions are not systematically associated with large KSZ
anisotropies. We therefore favoured the use of the covariance
which is a better-suited tool as it is sensitive to the relative am-
plitude of the compared signals. The covariance coefficient be-
tween two signals a and b is given by:

Ccov(a, b) =
1
N

N−1∑
i=0

(ai − a)(bi − b), (1)

where a and b stand for the means of a and b, and N is the
number of elements.

Using Eq. (1), we produce a covariance map by computing
the covariance factor, in a 2 × 2 pixel window, between the
signal a (always TSZ map in our case) and the signal b (KSZ,
pure CMB or KSZ+CMB map). The size of the computation
window (3 arcmin aside) is particularly sensitive to the central
region of the clusters.

A simple cut, at the same position, across the simulated
maps of the astrophysical processes is displayed, in Fig. 1, up-
per panel. It is compared, Fig. 1 lower panel, to the cuts (again
at the same position) across the covariance maps between TSZ
and KSZ (dashed line), TSZ and CMB (thick solid line) and fi-
nally TSZ and KSZ+CMB (solid line). A direct comparison be-
tween the cuts, shows the following: there are small amplitude
covariance coefficients between TSZ and pure CMB. These
amplitudes are compatible with only fortuitous and random
correlations. The absence of significant correlation between
the two signals is not surprising since they are not causally
related. The Ccov(TSZ,KSZ + CMB) have, on the contrary,
significantly larger amplitudes. In addition, large covari-
ance coefficients between TSZ and KSZ+CMB are generally

Fig. 1. Upper panel: cuts across the simulated maps. Solid thick line
stands for the pure CMB map, dashed line represents the pure KSZ
signal, and thin solid line is for the KSZ + CMB. Also displayed in
dotted line is the TSZ signal in terms of its y parameter shifted by −6×
10−5. Lower panel: cuts (at the same position) across the covariance
maps between TSZ and KSZ (dashed line), TSZ and CMB (thick solid
line), and TSZ and KSZ + CMB (solid line). The curves are shifted to
ease the reading. Note the similarity between the two upper lines. The
covariance coefficients are computed in a 2 × 2 pixel window.

associated with the same features in the TSZ and KSZ covari-
ance map. In these cases, the amplitudes of the covariance are
almost identical. Moreover, the covariance coefficients behave
like the KSZ signal: each of the significantly large covariance
coefficient is indeed associated with a temperature fluctuation
due to the KSZ effect (Fig. 1, upper panel). This correspon-
dence seems a powerful indicator (both in terms of position
and amplitude) of the presence of KSZ fluctuations, and hence
galaxy clusters buried in the CMB signal, as it seems to over-
come the fact that KSZ and CMB fluctuations have the same
spectral signature.

We choose not to address source detection issues suggested
by the spatial concordance between the covariance coefficients
and the KSZ anisotropies (or in other words the galaxy clus-
ters). We rather focus on a statistical criterion to indicate the
presence of KSZ fluctuations that is based on the relation be-
tween the amplitudes of the covariance coefficients and the
temperature fluctuations.

Instead of investigating the cuts one by one, we use a two
dimensional representation in the (Ccov, (δT/T )KSZ) plane. This
representation is used to investigate how closely the amplitude
of the KSZ effect is (or is not) related to the covariance co-
efficient. As a first step, we plot the covariance coefficients
Ccov(TSZ,CMB), between TSZ and the CMB temperature fluc-
tuations (δT/T )CMB, as a function of the temperature fluctua-
tions due to KSZ effect (δT/T )KSZ. As the two signals are in-
dependent, we find that the data points are randomly distributed
in the (Ccov, (δT/T )KSZ) plane as displayed in Fig. 2. The ab-
sence of a general trend confirms the absence of any physical
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Fig. 2. For the 15 simulated maps, covariance coefficients (above a 3σ
threshold) computed in a 2×2 pixel window between the TSZ and pri-
mary CMB signals as a function of temperature fluctuation (δT/T )KSZ.

relation between the primary CMB fluctuations and those as-
sociated with the SZ effect, and consequently with the galaxy
clusters.

On the contrary, when we compute the map of covariance
between TSZ and pure KSZ signals, and plot Ccov(TSZ,KSZ)
as a function of (δT/T )KSZ (Fig. 3), we find, as expected
from the simple cuts, that Ccov(TSZ,KSZ) are not randomly
distributed but they rather obey a general law. In particular,
the highest covariance coefficients are clearly associated with
temperature fluctuations arranged along a straight line in the
(Ccov, (δT/T )KSZ) space. This behaviour exhibits, on a graph-
ical basis, the tight physical relation between TSZ and KSZ
effects as they are both due to the same galaxy clusters.

In a second step, we analyse the relation between the co-
variance coefficients Ccov(TSZ,KSZ + CMB), and the temper-
ature fluctuations (δT/T )KSZ (Fig. 4). Interestingly, the same
kind of alignment in the (Ccov, (δT/T )KSZ) space, observed for
a pure KSZ signal, holds for the mixture of KSZ and pri-
mary CMB anisotropies (note that KSZ signal is almost one
order of magnitude smaller than the primary CMB). In this case
and especially for the highest covariance coefficients, the spa-
tial distribution of the data points (i.e. their overall alignment)
also exhibits the relation between the covariance and the un-
derlying KSZ temperature fluctuations. The bundle of points
centred around zero corresponds mainly to the noise associated
with the fortuitous and random correlations between the TSZ
and pure CMB, already observed in the cuts. We can definitely
think of the relation (δT/T )KSZ = f (Ccov(TSZ,KSZ + CMB))
as an empirical statistical indicator of the presence of KSZ
secondary anisotropies in the temperature fluctuation map. An
obvious characterisation consists of expressing this relation in
terms of a linear fit with non-zero intercept of the form:

(
δT
T

)
KSZ
= αCcov(TSZ,KSZ + CMB) + β,

Fig. 3. For the 15 simulated maps, covariance coefficients, computed
in a 2 × 2 pixel window, between the TSZ and pure KSZ signals
(above 3σ threshold) as a function of (δT/T )KSZ.

where α and β are the two parameters of the law which can be
obtained by fitting the data points corresponding to the highest
covariance coefficients. The values of these parameters there-
fore depend on the amplitude of both the temperature fluc-
tuations and TSZ distortions. Both are directly linked to the
mass and abundance of galaxy clusters, to the cluster veloc-
ity distribution and to the primary CMB anisotropies. They
hence depend on the underlying cosmological model which
also rules, among other things, the number of fortuitous and
random correlations between TSZ and pure CMB. The val-
ues of α and β can therefore only be drawn for a particular
cosmological model and instrumental configuration. It is how-
ever remarkable to notice that the relation between the covari-
ance coefficients and the temperature fluctuations exhibits the
buried KSZ signal despite the fact that it has the same spectral
signature as the primary CMB anisotropies, and is one order of
magnitude smaller. The covariance coefficients seem to trace
very well the temperature fluctuations due to the KSZ effect
buried in the CMB. This is perfectly illustrated, in Fig. 5 where
we plot the covariance coefficients Ccov(TSZ,KSZ + CMB)
against Ccov(TSZ,KSZ), by the alignment of the points along
a line of slope unity. Consequently, the covariance product be-
tween TSZ and CMB signals can be viewed as a criterion char-
acterising the KSZ effect which could ease the separation be-
tween these spectrally indistinguishable signals.

When we compute the covariance factor in a larger window
(4 × 4 pixels, i.e., 6 arcmin aside), the results remain similar
with the same general trend (Fig. 4, lower panel). It indicates
that the difference in power spectrum between the KSZ effect
and the primary CMB is important enough to allows us to de-
tect the SZ effect, and hence the galaxy clusters.

2.2. Statistical distribution of the covariance
coefficients

As exhibited above, the covariance seems a good statisti-
cal indicator of the presence of KSZ fluctuations in the sig-
nal through the linear relation between the covariance coef-
ficient and (δT/T )KSZ. We now investigate the characteristics
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Fig. 4. Upper panel: for the 15 simulated maps, covariance coeffi-
cients, in a 2×2 pixel window, between the TSZ and KSZ + CMB sig-
nals (above 3σ) as a function of (δT/T )KSZ. Lower panel: for the same
maps, covariance coefficient (above 3σ) computed in a 4×4 pixel win-
dow between the TSZ and KSZ + CMB as a function of (δT/T )KSZ.

Table 1. The standard deviation of the covariance coefficients (2 ×
2 pixel window) Stddev(Ccov), the mean skewness S cov, and its stan-
dard deviation σS, for the covariance coefficients of the 15 maps.

Stddev(Ccov) S cov σS

KSZ 1.78 × 10−11 0.35 6.22

CMB 1.17 × 10−11 −0.01 0.18

KSZ+CMB 2.10 × 10−11 0.47 4.35

of the distribution of covariance coefficients for each of the 15
maps. We notice again that the covariance coefficients have
larger values when there is a KSZ contribution in the tem-
perature fluctuation signal (i.e., pure KSZ or KSZ+CMB).
This is exhibited by the standard deviation of the covari-
ance coefficients for each map. We compute the mean stan-
dard deviation (over the 15 maps) (Table 1, first column) for
the coefficients Ccov(TSZ,KSZ), Ccov(TSZ,KSZ + CMB) and
Ccov(TSZ,CMB). The standard deviation in the latter case is
smaller than in the previous two. As expected, the tempera-
ture fluctuation map containing a KSZ contribution is obvi-
ously more “correlated” with the TSZ than an independent sig-
nal (primary CMB in our case). However, all three standard

Fig. 5. Covariance coefficient between the TSZ and KSZ + CMB
Ccov(TSZ,KSZ + CMB) as a function of Ccov(TSZ,KSZ) (2 × 2 pixel
window).

deviations remain rather close to each other with the ratio of
Stddev (TSZ, KSZ+CMB) to Stddev (TSZ, CMB) equals 1.8,
and the ratio of Stddev (TSZ, KSZ) to Stddev (TSZ, CMB)
equals 1.5. In practice, there is no way to distinguish, through
the standard deviation of the covariance coefficients, between
the case where the KSZ fluctuations contribute to the signal and
the case where they do not.

We therefore turn to the third moment of the distribution of
the covariance coefficients, namely the skewness (Table 1, sec-
ond column). We compute the skewness denoted S cov(TS Z, i)
where i stands for our three signals. For i = KSZ, the skewness
of each map ranges between −7.7 and 12.9 with a mean skew-
ness S cov = 0.35 and a standard deviation σS = 6.2. For the
covariance between TSZ and KSZ+CMB, we find the skew-
nesses ranging between −4.6 and 10.5 with mean and standard
deviation respectively equal to 0.47 and 4.35. If we now com-
pute the same quantities for the covariance between TSZ and
the pure primary CMB signal, we find that the skewness has
smaller values. It ranges between −0.37 and 0.29 and has a
mean of −0.01 and a standard deviation of 0.18. The numbers
we obtain for the skewness in each case shows that the KSZ
and KSZ+CMB signals behave in similar ways. The values of
the skewness are large as expressed by the standard deviation.
Whereas for the pure primary CMB map, the skewness is al-
ways small. High values for the skewness are associated with
highly non-symmetric distributions of covariance coefficients.
This feature can already be derived from Fig. 4. It indicates an
excess of signal due to the presence of positive KSZ tempera-
ture fluctuations (in our case), i.e., galaxy clusters with negative
peculiar velocities. In our simulations, this excess of negative
velocities is related to the statistical realisations. However, we
expect that the galaxy clusters will exhibit large scale coherent
motions. On small pieces of the sky, these coherent bulk mo-
tions will translate, in the same manner, into large values of the
skewness. Therefore, similarly to the linear relation between
(δT/T )SZ and Ccov, the skewness of the covariance coefficients
seems a promising blind statistical indicator of the presence of
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KSZ anisotropies as soon as the skewness is large enough (typ-
ically unity).

3. Discussion and conclusion

In the new general context of CMB observation, the compo-
nent separation is a key issue for the precision needed to accu-
rately estimate the cosmological parameters. It is also a neces-
sity to reach the accuracy needed for the numerous scientific
projects that are aimed with the foreground emissions and sec-
ondary contributions. The component separation usually takes
advantage of the multi-frequency observations that allow us to
distinguish between the various signals through their spectral
signatures; as it is the case for the TSZ effect for example.

However, some astrophysical contributions have the same
spectral signature as the primary CMB anisotropies. They can
therefore not be separated from it and they remain as an ad-
ditional buried signal, source of an additional and systematic
error. In particular, the KSZ effect falls into this category of
signals. It represents a contaminating component that should
be subtracted from the primary anisotropies, and in addition,
it is a necessary information to estimate the cluster peculiar
velocities. The KSZ effect has a small amplitude as compared
with the primary CMB fluctuations ('10%) except at angular
scales of about a few arcminutes where it becomes of the same
order of, or exceeds, the primary signal.

The present study aims at finding statistical indicators that
hint to the presence of KSZ fluctuations mixed to the CMB sig-
nal. In our empirical approach, we only assume that we are able
to recover a TSZ map, easily separated due to its spectral sig-
nature, and a temperature map (containing KSZ fluctuations).
We show that the covariance between the TSZ map and the
temperature fluctuation map presents interesting and promis-
ing properties that we use to blindly exhibit the presence of
secondary temperature fluctuations due to KSZ effect mixed to
primary CMB. The skewness, i.e. third moment of the distribu-
tion of the covariance coefficients, can be considered as a blind
statistical indicator of the presence of KSZ anisotropies, when
it is roughly above unity. It may indicate coherent motions. The

linear relation between the covariance coefficients and the tem-
perature fluctuations, when it includes KSZ anisotropies, seems
a second powerful blind statistical indicator of the KSZ effect.
It relates the amplitude of the covariance coefficients with the
secondary anisotropies. We have checked that the linear re-
lation is preserved when we simulate the observing process,
i.e. taking into account the beam dilution and the instrumental
noise in the case of Planck surveyor.

The statistical indicators of the KSZ additional signal we
propose here can by no means stand for a proper component
separation that would allow us to subtract the KSZ fluctuations
from the temperature map and obtain accurate measurements.
Nevertheless, these indicators can be viewed as a promising
way of approaching the separation using directly the maps. In
the context of the present and near future small scale multi-
frequency CMB experiments, the indications of the KSZ con-
tribution from our simple statistical tools could at least motivate
us to consider KSZ as an additional error, which first order am-
plitude may be derived from theoretical predictions.
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