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ABSTRACT We proposed a blind image quality assessment model which used classification and prediction
for three-dimensional (3D) image quality assessment (denoted as CAP-3DIQA) that can automatically
evaluate the quality of stereoscopic images. First, in the classification stage, the model separated the distorted
images into several subsets according to the types of image distortions. This process will assign the images
with the same distortion type to the same group. After the classification stage, the classified distorted image
set is fed into the image quality predictor that contains five different perceptual channels which predict
the image quality score individually. Finally, we used the regression module of the support vector machine
to evaluate the final image quality score, where the input of the regression model is the combination of
five channel’s outputs. The model, we proposed is tested on three public and popular databases, which are
LIVE 3D Image Quality Database Phase I, LIVE 3D Image Quality Database Phase II, and MCL 3D Image
Quality Database. The experimental results show that our proposed model leads to significant performance
improvement on quality prediction for stereoscopic images compared with other existing state-of-the-art
quality metrics.

INDEX TERMS Hierarchical learning, image quality assessment, no reference, stereoscopic images.

I. INTRODUCTION

In recent years, with the development of three-
dimensional (3D) technology, more and more multimedia
contents of 3D television and 3D movies have been cre-
ated, and also brought us new experience and challenges.
In the process of transmitting, processing and displaying
the 3D contents, various distortions affecting image quality
perception may be involved. Therefore, it is very necessary
to establish an effective method to measure the quality of
stereoscopic images. Because Human Visual System (HVS)
is the ultimate receiver of images, it is a more direct and
accurate way to evaluate the quality of the received images
by subjective experience and feeling of human beings. The
above assessment method is called subjective image qual-
ity assessment (IQA) [1], [2], denoted as SIQA. Since the
subjective evaluation of the image quality is directly scored
by the human subjects, the perceived quality score closer to

the real visual perception of human beings can be obtained.
However, this entire assessment process is labor-intensive and
time-consuming. During the subjective assessment of image
quality, each participant has to do the evaluation in a pre-
designed laboratory environment. For example, the viewing
distance to the screen, the viewing angle, and the lighting
condition of the room has to be kept the same for each
participant. Finally, the quality scores of each image obtained
from all subjects are averaged to become the final quality
score, which is called subjective quality score. There are two
ways to calculate subjective quality scores: Mean Opinion
Score (MOS) and Differential Mean Opinion Score (DMOS).
The MOS is calculated by taking the average of quality
scores from each subject for the distorted image, while
the DMOS is obtained by the following procedure. First,
subtracting the quality score of the corresponding reference
image from the quality score of the distorted image given
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by each subject to obtain a differential opinion score (DOS).
Then the DOSs obtained from all subjects are averaged to
produce the DMOS.

From the above description, we can see that the experimen-
tal requirements for subjective evaluation of image quality are
very troublesome. For instance, a perfect testing environment
must be set up first. Second, the subject must focus and
concentrate on assessing the quality of the distorted image.
The overall evaluation process may take a few days, while the
long one can take weeks or even months to establish the
subjective quality scores for all the distorted images. Due to
the time consumption and inconvenience of subjective IQA,
most researchers turn their efforts to objective IQA [1], [2],
denoted as OIQA. This type of method builds a metric that
can automatically evaluate the quality of distorted images.
Over the past decades, many researchers have proposed
dozens of methods for objective IQA. One of the classi-
fication method for OIQA is based on the availability of
reference image information, which can be divided into three
types: Full-Reference (FR), Reduced-Reference (RR) and
No-Reference (NR) methods, respectively. The FR method
requires all information of the reference image as input to
assess the quality score of the distorted image. Since this type
of method is based on the entire reference image, it generally
has better performance. The method of RR is based on par-
tial reference images, so the performance of this method is
usually only second to the FR method. The NR method only
considers the distorted image as an input. Since there is no
reference image as the basis, the performance of this method
is usually inferior to the other two. The NR image quality
assessment is also referred to as blind IQA.

Due to the presence of depth field information in stereo-
scopic images, it is not easy to propose an effective objec-
tive method to evaluate the quality of distorted stereoscopic
images. Up to now, many objective stereoscopic IQA meth-
ods have been proposed by researchers and they can be
roughly divided into three types.

The first type is the application of two-dimensional (2D)
image quality assessment to evaluate the quality scores of
stereoscopic images, such as VIF [3], [4], PSNR, SSIM [5],
MS-SSIM [6] and so on. Many researchers apply the 2D
image quality metrics to the left-view image and the right-
view image respectively and then average quality scores from
the left and right image to obtain the final stereo image
quality score. However, these methods are unsatisfactory in
the experimental results of three-dimensional image quality
assessment. The second type of stereoscopic image qual-
ity assessment takes depth information into account. For
instance, Benoit et al. [7] proposed a 3D image quality metric
which calculated the final stereo image quality score by
combining the 2D image quality and the depth image quality.
Although there are many studies on the design of image qual-
ity assessment for stereoscopic images, the true information
of stereoscopic image, such as the disparity image or the
cyclopean image, is not yet considered effectively. The third
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type of stereoscopic image quality assessment is based on
the perceptual characteristics of the human visual system.
Chen et al. [8] proposed a FR 3D IQA method by simulating
binocular suppression behavior to solve the problem of binoc-
ular rivalry, and to establish an effective model to measure the
quality of stereoscopic images. The proposed full-reference
stereoscopic IQA method first synthesized the left-view and
right-view images into a binocular visual combination image
called cyclopean image, and used 2D image quality metrics
to evaluate the quality score of the distorted stereo images.
The experimental results show that the performance of the
proposed structure is superior to the common 2D image
quality metrics on asymmetric distorted stereoscopic images.
Shao et al. [9] proposed a stereo IQA approach based on
binocular energy response. These methods have better per-
formances than the previous two types of stereoscopic IQA
methods.

Therefore, inspired by previous research [7]-[9], we pro-
posed a blind stereoscopic IQA model which combines
the perception information from the monocular images and
the binocular visual combination images, and then use the
machine learning architecture to evaluate the quality scores
of stereoscopic images. Compared with previous works, our
proposed method in this paper has the following distinctive
features:

1) Using quality score prediction combined with distor-
tion classification help improve the overall perfor-
mance, especially for cross-database evaluation.

2) Inthe distortion classification stage, hierarchical binary
classifiers are used instead of a multi-class classifier,
which is simple and have better classification accuracy
than multi-class classification.

3) We use Otsu algorithm to separate the left-view and
right-view images into 3 different depth regions, which
are the long-range view, the mid-range view, and the
close-up view. This can provide us another way to
perceive the depth feeling for monocular images.

4) Using different features and regression methods
for monocular image (Singular Value Decomposi-
tion + Random Forest) and binocular visual combi-
nation (BVC) image (Local Binary Pattern + Support
Vector Regression) can increase the diversity between
these two types of images. In consequence, it increases
the possibility to improve the next stage 5-channel
(2 monocular image channels plus 3 BVC image chan-
nels) fusion performance of predicting visual quality
for stereoscopic images.

The rest of the paper is organized as follows. In Section II,
we mainly review the related works on stereoscopic image
quality assessment and the background of binocular visual
combination image. In Section III, we describe the archi-
tecture of the proposed 3D image quality assessment.
In Section IV, we will describe the experimental results and
analyze the performance. Finally, Section V will conclude
this paper.
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Il. RELATED WORKS AND BACKGROUND

In order to explain the proposed objective 3D IQA model
in Section III, we give a brief review of previous works and
relevant background on binocular visual combination.

A. RELATED WORKS

In this part, we will briefly introduce the stereoscopic IQA
methods which are based on machine learning structures.
Among these shallow architectures and deep architectures for
3D images, we classify them into two categories, which are:
1) 3D IQA based on a shallow architecture, and 2) 3D IQA
using a deep architecture.

In the first category, Chen et al. [10] proposed a
no-reference stereoscopic IQA approach which extracts 2D
and 3D natural scene statistic (NSS) features from stereo-
scopic images, and then trained by the support vector
machine (SVM) regression model to predict the quality
score of stereoscopic images. Zhou and Yu [11] proposed
a no-reference stereoscopic IQA model that simulates the
binocular vision through binocular energy response and
binocular rivalry response, and used k-nearest neighbor algo-
rithm to predict the quality score of a stereoscopic image.
Shao et al. [12] proposed a no-reference stereoscopic IQA
structure, which analyzed the correlation between the pre-
dictors of the left-view and right-view images, combined
the feature-prior and feature-distribution to formulate the
stereo image quality prediction, and then used the support
vector machine to train the regression model for quality score
prediction. Lin er al. [13] proposed a no-reference stereo
IQA architecture which extracted the commonly used sta-
tistical features from stereoscopic images and predicted the
stereo image quality scores by training the regression model
through SVM.

For the second category, Shao et al [14] proposed a
no-reference stereoscopic IQA metric based on the monoc-
ular and binocular image interaction. The metric used deep
belief network (DBN) to train monocular images and binoc-
ular images separately to simulate the human stereo vision in
image quality prediction process, and combined both scores
to form the final 3D image quality scores through different
weighted combinations.

B. BACKGROUND ON HUMAN BINOCULAR

VISUAL COMBINATION

Human binocular vision is a very complex visual system and
also plays an important role in depth perception. The impor-
tant clues about the whole system may come from the bright-
ness perception when the human eyes observe the surface
of an object. Many researchers have proposed the algorithm
that combine two slightly different monocular images into
one binocular vision composite image and produce the infor-
mation of depth perception. Next we will briefly describe
the binocular visual composition. First, the binocular visual
combination (BVC) image can be synthesized by three dif-
ferent models: eye-weighted model [15], vector summation
model [16] and neural network model [17].
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In the eye-weighted model, it is based on monocular lumi-
nance information or binocular luminance information, form-
ing a linear model for perceiving binocular vision, which is
defined as

C = [wilL) + (wrl)*17, )

where C is the binocular combination image, wy and wg are
the weighting factors of the left-view and right-view images,
I1 and I are the left-view and right-view images respectively,

and B is the perception parameter, where § = 1 and 2
represent the monocular luminance and binocular luminance,
respectively.

In the vector summation model, the model shows that the
perception of binocular luminance is based on the sum of two
orthogonal vectors, which is defined as

C = [ + (UR)* + ILIg]?. )

where C is the binocular combination image, I; and I are
the left-view and right-view images, respectively.

In the neural network model, the model is based on a two-
channel model of monocular and binocular images, which is
defined as follows

c— 1t
1+ 141
where C is the binocular combination image, I;, and Iy are
the left-view and right-view images, respectively.

+ 0.1aLZ1; Iy, (3)

()

FIGURE 1. Binocular visual combination images. (a) Stereo image pair.
(b) The corresponding binocular image based on eye-weighted model.
(c) The corresponding binocular image based on vector summation
model. (d) The corresponding binocular image based on neural network
model.

These three BVC images are shown in Fig. 1 for easy
reference.
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FIGURE 2. The proposed blind stereoscopic image quality assessment
model.

lll. PROPOSED METHOD

The most effective method to predict the quality of a stereo-
scopic image is to directly assess the quality of the true
binocular visual image which is formed inside the human
brain. However, it is difficult to obtain a real binocular visual
image. Therefore, in this paper, we propose a NR IQA model
that utilizes BVC image and monocular image to imitate
human visual system to assess the quality of stereoscopic
images. Our proposed model can be roughly divided into
two stages, namely, classification stage and prediction stage,
as shown in Fig. 2. The details of the blind stereoscopic image
quality assessment model that we proposed are described in
the following subsections.

A. CLASSIFICATION STAGE

In the classification stage, the overall detailed architecture is
shown in Fig. 3. I; in Fig. 3 represents the distorted stereo-
scopic image pair, where (I, Ir) represents the left-view gray
scale image and the right-view gray scale image, respectively.
And Ny;s represents the set of distortion types. The classifiers
are in a hierarchical combination. Each classifier only needs
to classify the image into 2 types: the image belonged to
distortion type n;, and the image not belonged to distortion
type n;. The reason for us to design these hierarchical classi-
fiers is two-fold: 1) reduce the computational complexity of
each classifier, and 2) improve the classification accuracy of
each classifier.

1) EXTRACTING FEATURES FOR CLASSIFICATION
We can extract local binary pattern (LBP) [18], [19] features
from either gray scale right-view image or left-view image,
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which is a very useful way to describe the image textures.
However, in order to reduce the computation cost in this
work, we only extract LBP features from the right-view image
instead of both right-view and left-view images. The LBP
feature is obtained by using a filter of 3 x 3 window size for
each pixel to compare its grayscale intensity with its neighbor
pixels, and then using rotation function [20] to extract the
rotational-invariant LBP feature. Here, we set the radius value
and number of surrounding neighbors to be equal to 1 and
8 respectively to obtain the rotational-invariant LBP feature,
whose total dimension is 36.

2) THE CLASSIFICATION MODEL

The machine learning method we use in the classification
stage is support vector classification (SVC), which belongs to
one type of SVM. For the implementation, we use LIBSVM
package [21] to design a stack of C-SVC classifiers with a
radial-basis function (RBF) kernel to classify a given dis-
torted stereoscopic image into one of the distortion types
hierarchically [22], [23]. We proposed this hierarchical struc-
ture to be able to classify each stereo image into one spe-
cific distortion type in order to form several distorted stereo
image sets. In the subsequent prediction stage, we design
a quality rating system within each type of distortion
image set.

B. PREDICTION STAGE

In the prediction stage, we adopt the same quality rating
architecture which consists of five different image quality
prediction channels for each type of distortion image. The
five image quality prediction channels are the left-view image
quality prediction channel, the right-view image quality pre-
diction channel, and the three different BVC image quality
prediction channels. Fig. 4 shows the block diagram of five
image quality prediction channels used in this paper. The left-
view and right-view image quality prediction channels can
mimic the process of human’s monocular vision, while the
three different BVC image quality prediction channels can
mimic the process of human’s binocular vision. Since the
quality prediction for left-view and right-view channels are
basically the same, except in the input images, we will only
describe the evaluation process in right-view image quality
prediction channel.

For right-view image quality prediction channel, we firstly
transform the right-view image into grayscale image Ig
and then divide it into 16 image patches, denoted as I =
{I, I, ..., 1I16}. Then we use Otsu algorithm [24], [25] to
separate each of 16 image patches into 3 different depth
regions, which are the long-range view, the mid-range
view, and the close-up view. These Otsu filtered image
patches are regarded as feature image patches, denoted
as Loy = [otsu1, Lotsu,2s - - - » Lorsu,16]. Next the Lo, is
passed through the Sobel filter to generate the edge fea-
ture image patches and the corresponding threshold values,
denoted as Iedge = [Iedge,lv Iedge,2v e Iedge,16] and thedge =
[thedge,1, thedge,2, - - - » thedge,16], Tespectively. Then we use
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FIGURE 3. Block diagram of the hierarchical classification stage.
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FIGURE 4. The block diagram of five image quality prediction channels used in the prediction stage. (a) Left-view image quality
prediction channel, (b) right-view image quality prediction channel, (c) the eye-weighted BVC image quality prediction channel,
(d) the vector summation BVC image quality prediction channel, (e) the neural network BVC image quality prediction channel.

singular value decomposition (SVD) [26], [27] to extract the
eigenvalues of I.gg. After evaluating the eigenvalues of
the I.4g., we use Otsu algorithm to divide the eigenvalues
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thsvd = [thsvd,l s thxvd,Z, .-

into 2 groups and obtain the threshold values, denoted as
., thewa 16]. In Fig. 5, we show the

input image and its corresponding image patches created in
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(©)

(d)

FIGURE 5. Demonstration of image used in the right-view image prediction channel. (a) Right-view image of JPEG distorted stereoscopic image
pair, (b) the corresponding image patches / for (a), (c) the respective Otsu filtered image patches /4, (d) the respective edge feature image

patches Jggge-

the intermediate steps of right-view image quality prediction
channel.

The two feature vectors of th,qg. and thy,q are combined to
form a 32-dimensional right channel feature, denoted as fig.
Since the size of ftg is large compared to the size of the
dataset, over-fitting is a possibility. Hence, we use forward
feature selection (FFS) [28] to reduce the feature dimension.
First, we choose the feature that correlates the best with
perceptual scores on the training set; then, we find the next
feature which combines with the chosen feature in previous
step and the combined one has the best correlation with
perceptual scores. This process continues until the increment
of correlation coefficients is less than 0.001, and the resul-
tant chosen feature combination is denoted as fty. Finally,
we use random forest (RF) regression model which consists
of 300 decision trees to predict the channel quality score.
The predicted quality scores for the left-view and right-view
image quality prediction channels are denoted as channel 1
predicted score and channel 2 predicted score, respectively.
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In the three BVC image quality prediction channels,
the input image is a BVC image that is synthesized from the
corresponding left-view and right-view images. According
to the image combination model mentioned in Section II,
the BVC image can be computed by the following three ways:

1) Eye-Weighted (EW) model

€1 = (0500 (3 +0.5Ur (x +d,0)°)° @)
2) Vector Summation (VS) model
Co = [y (e, ) + (g (x +d. ) |
+IL () IR+ d )1 ()
3) Neural Network (NN) model

_ I (x,) I (x+d,y)
I1+Ig(x+d,y)  14+1.(x,y)
+0.1-Ip (x,y) - Ig(x+d,y) (6)

Cs
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Compared with (1)-(3), we know g is set equal to 2, w% =

w,ze = 0.5, and (x, y) represent the position of an image
pixel, d is the disparity index, I; and I represent the left-
view image and right-view image, respectively. These three
channels are also roughly the same except the input image.
So in next paragraph, we will only outline the evaluation
procedure in eye-weighted BVC image quality prediction
channel.

We first extract LBP features from gray scale eye-weighted
BVC image, and the configuration we use for LBP is the same
as we did for the classification stage. The extracted feature
vector is denoted as ftgw. Then ftgw is fed into FFS process
to reduce the feature dimension and becomes fiyy, .

Finally, we use SVM regression model (i.e.,e-SVR with
RBF kernel) to acquire the channel predicted score. The
predicted quality scores of the EW, VS and NN image quality
prediction channels are denoted as channel 3 predicted score,
channel 4 predicted score, and channel 5 predicted score,
respectively.

To summarize, in this stage, we not only use different
features (SVD and LBP) but also use different regression
methods (RF and SVR) to learn the prediction model for
monocular image and BVC image, respectively. As a result,
the diversity between these two types of images will increase
and the next stage fusion performance of five quality predic-
tion channels will have larger possibility to be improved.

C. FINAL QUALITY EVALUATION

After obtaining each channel’s predicted score, we use the
same configuration of SVM regression model [29], [30] to
fuse predicted scores from five channels to predict the final
stereoscopic image quality score. The procedure is shown
in Fig. 6.

Channel 1
predicted score

Channel 2
predicted score
Final
Channel3 8 SVR predicted

predicted score .
quality score

Channel4
predicted score

Channel5
predicted score

FIGURE 6. The block diagram of final quality evaluation used in the last
step of prediction stage.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

The method we presented in the previous Section is called
Classification and Prediction 3D Image Quality Assess-
ment (CAP-3DIQA). In this section, we will analyze how
well the performance of our proposed image quality met-
ric is in predicting the quality for stereo images. For this
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purpose, we test the CAP-3DIQA on three public and
popular 3D image quality databases, which are LIVE 3D
IQA Database Phase 1[31], [32], LIVE 3D IQA Database
Phase II [33] and MCL 3D IQA Database [34].

A. 3D IQA DATABASES

The LIVE 3D IQA Database Phase I contains 20 reference
stereoscopic image pairs and 365 symmetrically distorted
stereo image pairs, corresponding to five distortion types:
JPEG compression (JPEG) distortion, JPEG2000 compres-
sion (JP2K) distortion, additive white noise (WN) distortion,
the fast fading (FF) distortion, and the Gaussian blur (Gblur)
distortion. While Phase II has the same distortion types as
Phase I, eight reference stereoscopic image pairs, and 360 dis-
torted stereo image pairs which include 120 symmetrically
and 240 asymmetrically distorted stereo image pairs. Here,
if left and right view images both have the same distortion
levels, then they will be considered as symmetrically distorted
stereo pairs, while they will be considered as asymmetrically
distorted stereo pairs if left and right view images have differ-
ent distortion levels. The subjective quality score is provided
in a DMOS value for each distorted stereo image pair in these
two 3D IQA databases.

The MCL 3D IQA Database contains 9 reference stereo
image pairs and 684 symmetrically distorted stereo image
pairs, corresponding to six distortion types, which are
JPEG compression (JPEG) distortion, JPEG2000 compres-
sion (JP2K) distortion, additive white noise (WN) distortion,
Gaussian blur (Gblur) distortion, sampling blur (Sblur), and
transmission loss (Tloss). The subjective quality score pro-
vided in this 3D IQA database is a MOS value for each
distorted stereo image pair.

B. PERFORMANCE MEASURES

In order to benchmark the performance of our proposed
model, three popular performance indicators are used. Pear-
son linear correlation coefficient (PLCC), Spearman rank
ordered correlation coefficient (SROCC) and Root Mena
Squared Error (RMSE) are used to evaluate the perfor-
mance of proposed model with respect to the similarity
between predicted scores and subjective scores. PLCC and
SROCC evaluate the accuracy and monotonicity between the
predicted scores and subjective scores, respectively. When
PLCC, SROCC are closer to 1 and RMSE is closer to O,
the correlation between the assessment scores and the true
scores is better [35].

In all the conducted experiments, each dataset is randomly
split into two non-overlapping sets: training set and testing
set. After training the model on the training subset, the predic-
tion performance is measured on the test subset. The size of
testing set is usually quite small. In each train-test procedure,
80% of the database data is chosen for training, and the
remaining 20% is for testing. 1000 iterations of the above
training and test procedure are performed by varying the
splitting of data over the training and testing sets, and the
median results are reported as the final performance.
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TABLE 1. Classification accuracy for each hierarchical classifier in three databases.

Database Classifier C-SVC, | C-SVC, | C-SVC3 | C-SVCy | C-SVGs

Distortion JPEG/Not | JP2K/Not | WN/Not FE/Gblur | -

LIVE Phase I | types JPEG JP2K WN
Classification 100 92.28 100 90.44 _
accuracy (%)
Distortion WN/Not JP2K/Not | JPEG/Not Gblur/EE | -

LIVE Phase II | types WN JP2K JPEG
Classification 100 100 100 98.61 -
accuracy (%)
Distortion WN/Not Gblur/Not | JP2K/Not | JPEG/Not Sblur/Tloss

MCL types WN Gblur JP2K JPEG

Classification 91.81 86.64 94.37 86.82 82.38
accuracy (%)

TABLE 2. Feature dimension results in the prediction stage for each
channel in the LIVE 3D IQA Database Phase.

TABLE 4. Feature dimension results in the prediction stage for each
channel in the MCL 3D IQA Database.

Channel type Before After Reduction percentage of Channel type Before After Reduction percentage of
FFS FFS feature dimension (%) FFS FFS feature dimension (%)

Left-view image 32 19 40.6 Left-view image 32 21 344

Right-view image | 32 23 28.1 Right-view image | 32 24 25.0

EW image 36 23 36.1 EW image 36 28 22.2

VS image 36 23 36.1 VS image 36 27 25.0

NN image 36 15 58.3 NN image 36 27 25.0

TABLE 3. Feature dimension results in the prediction stage for each
channel in the LIVE 3D IQA Database Phase II.

Channel type Before After Reduction percentage of
FFS FFS feature dimension (%)

Left-view image 32 12 62.5

Right-view image | 32 12 62.5

EW image 36 29 19.4

VS image 36 27 25.0

NN image 36 24 333

In Table 1, we show the classification accuracy for each
classifier in three databases. For example, in LIVE Phase I,
C-SVC; first classifies distorted images into two types
“JPEG” and “Not JPEG’”. Then C-SVC, classifies the
images belonged to “Not JPEG” into “JP2K” and “Not
JP2K”. Next, C-SVC;3 classifies the images in “Not JP2K”
into “WN” and “Not WN”. Finally, C-SVCy4 classifies
images in “Not WN”" into “‘FF”” and “Gblur”. The classifica-
tion accuracy rates for C-SVC; and C-SVC3 are both 100%,
while the accuracy rate for C-SVC; and C-SVCy are 92.28%
and 90.44%. The accuracy rates for all hierarchical classifiers
in LIVE Phase II are even higher.

Tables 2-4 list feature dimension results in the prediction
stage for each channel (Left-view image, Right-view image,
EW image, VS image and NN image) in the LIVE 3D IQA
Database Phase I, Phase II and MCL 3D IQA Database,
respectively. As we can observe from Table 2, the feature
dimension can be reduced by as much as 58.3% for NN
image channel and as little as 28.1% for right-view image
channel in the LIVE 3D IQA Database Phase 1. For LIVE 3D
IQA Database Phase II, we can reduce the feature dimension
by 62.5% in both left-view and right-view image channels,
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TABLE 5. Channel prediction performance within CAP-3DIQA for LIVE 3D
IQA Database Phase I.

Channel type PLCC SROCC RMSE
Left-view image 0.8797 0.8561 7.8152
Right-view image | 0.8883 0.8683 7.5365
EW image 0.9359 0.9304 5.7826
VS image 0.9338 0.9313 5.8731
NN image 0.9378 0.9346 5.7051

TABLE 6. Channel prediction performance within CAP-3DIQA for LIVE 3D
IQA Database Phase II.

Channel type PLCC SROCC RMSE
Left-view image 0.7020 0.6677 8,1083
Right-view image | 0.6033 0.6090 9.1931
EW image 0.9115 0.9137 4.7344
VS image 0.9051 0.9041 4.9086
NN image 0.9242 0.9273 4.3795

and 19.4% in EW image channel. In MCL 3D IQA Database,
the feature dimension has decreased by 34.4% and 22.2% for
left-view image channel and EW image channel, respectively.
Tables 5-7 show channel prediction performance within
CAP-3DIQA for LIVE 3D IQA Database Phase I, LIVE
3D IQA Database Phase II and MCL 3D IQA Database,
respectively. The NN image channel has the best prediction
performance in LIVE 3D IQA Database Phase I and II, while
left-view and EW image channels have better prediction per-
formance than others in MCL 3D IQA Database.

C. OVERALL PERFORMANCE ON INDIVIDUAL DATASET

We first evaluate the FR IQA and NR IQA metrics on each
individual dataset. Similar to the proposed CAP-3DIQA,
we randomly divide a whole dataset into 80% training subset
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TABLE 7. Channel prediction performance within CAP-3DIQA for MCL 3D
1QA Database.

Channel type PLCC SROCC RMSE
Left-view image 0.8738 0.8772 1.2790
Right-view image | 0.8615 0.8653 1.3358
EW image 0.8560 0.8841 1.3817
VS image 0.8315 0.8700 1.5109
NN image 0.8345 0.8768 1.4914

TABLE 8. Median PLCC, SROCC and RMSE on the LIVE 3D IQA Database
Phase I

Indicators
Model PLCC | SROCC | RMSE
Chen [8] (FR) 0.9167 | 0.9157 | 6.5503
Chen [10] (NR) 0.8954 | 0.8912 | 7.2473
Zhou [11] (NR) 0.9283 | 0.8875 | 6.0254
Shao [12] (NR) 0.9531 0.9440 | 5.1079
Lin [13] (NR) 0.9419 | 0.9370 | 5.5190
Shao [14] (NR) 0.9565 | 0.9449 | 4.7552
P-3DIQA (NR) 0.9457 | 0.9397 | 5.3303
CAP-3DIQA (NR) 0.9412 | 0.9356 | 5.5483

TABLE 9. Median PLCC, SROCC and RMSE on the LIVE 3D IQA Database
Phase II.

Indicators
Model PLCC | SROCC | RMSE
Chen [8] (FR) 0.9065 | 0.9013 | 4.7663
Chen [10] (NR) 0.8802 | 0.8801 5.1024
Zhou [11] (NR) 0.8614 | 0.8228 | 5.7591
Shao [12] (NR) 0.9034 | 0.8849 | 4.9681
Lin [13] (NR) 0.9130 | 0.9064 | 4.6095
Shao [14] (NR) 0.9265 | 09106 | 4.3381
P-3DIQA (NR) 0.9337 | 0.9247 | 4.0567
CAP-3DIQA (NR) 0.9504 | 0.9492 | 3.5260

TABLE 10. Median PLCC, SROCC and RMSE on the MCL 3D IQA Database.

TABLE 12. SROCC evaluation on each distortion type for LIVE 3D IQA
Database Phase 1.

Model JPEG JP2K WN FF Gblur
Chen [8] 0.5582  0.8956 0.9481 0.6879  0.9261
Chen [10] 0.6174 0.8632 09189 0.6524 0.8779
Zhou [11] 0.6142 0.8237 09146 0.8674 0.9162
Shao [12] 0.7596  0.9088 0.9091 0.8186 0.8989
Lin [13] 0.7724  0.9021 0.9293 0.8201 0.9034
Shao [14] 0.6434 0.6253 0.7740 0.8526  0.8927
P-3DIQA 0.7554 09172 0.9381 0.8403 0.9166
CAP-3DIQA | 0.7616 0.9008 0.9264 0.8344 0.8912

TABLE 13. PLCC evaluation on each distortion type for LIVE 3D IQA
Database Phase Il

Model JPEG JP2K WN FF Gblur
Chen [8] 0.8422  0.8426  0.9602 0.9097  0.9650
Chen [10] 0.9012 0.8990 0.9473 0.9322  0.9407
Shao [12] 0.8933  0.9013 0.8950 0.9075 0.8904
Lin [13] 0.8124 0.9010 0.8952 0.8957 0.9789
P-3DIQA 0.8908 0.9017 0.9594 0.9427 0.9661

CAP-3DIQA | 0.8678 0.9190 0.9657 0.9408 0.9735

TABLE 14. SROCC evaluation on each distortion type for LIVE 3D IQA
Database Phase II.

Model JPEG JP2K WN FF Gblur
Chen [8] 0.8396  0.8344 0.9554 0.8890 0.9096
Chen [10] 0.8671 0.8669 0.9520 0.9334 0.9001
Zhou [11] 0.5931 0.7174 0.8910 0.8912  0.9033
Shao [12] 0.8797 0.8833 0.8788 0.8850 0.8817
Lin [13] 0.7740 0.8971 0.9032 0.8806 0.9221
Shao [14] 0.7031 0.9127 0.9658 0.9387 0.8722
P-3DIQA 0.8843 0.9061 0.9433 0.9258 09138
CAP-3DIQA | 0.8562 0.9234 0.9535 0.9238  0.9467

TABLE 15. PLCC evaluation on each distortion type for MCL 3D IQA
Database.

Indicators Model JPEG JP2K WN Gblur Sblur Tloss
Model PLCC | SROCC | RMSE P3DIQA | 0.9409 09219 09135 09479 09530 0.7618
CAP-3DIQA | 0.8779 09160 0.8640 0.9518 0.9269 0.7833
Chen [8] (ER) 0.8278 | 0.8300 | 1.4596
Shao [14] (NR) 0.9138 | 0.9040 | 1.0233 . : i
P'3DIQA (NR) 0.9044 0.9087 1.1137 TABLE 16. SROCC evaluation on each distortion type for MCL 3D IQA
CAP-3DIQA (NR) 0.9001 | 0.9081 | 1.1409 Database.
Model JPEG JP2K WN Gblur Sblur Tloss
TABLE 11. PLCC evaluation on each distortion type for LIVE 3D IQA Chen [8] 0.7801  0.8311 0.7630 0.4120 0.8386 0.7606
Database Phase I. Shao [14] 0.7992  0.8415 0.6406 0.8993 0.8532 0.5674
P-3DIQA 0.8506 09011 0.9256 0.9519 0.9577 0.7909
Model JPEG JP2K WN FF Gblur CAP-3DIQA | 0.8512 0.8908 0.8870 0.9422 0.9582 0.7842
Chen [8] 0.6344 09164 0.9436 0.7580 0.9417
Chen[10] | 0.6952 0.9073 09174 0.7349 0.9170 . N
Shao [12] 07843  0.9275 0.9082 0.8094 0.9032 IQA Databases, respectively. In addition, we also compare
Lin [13] 0.7613  0.9341 09332 0.8610 0.9319 the performance of the proposed method without using the
P-3DIQA 0.7459 09420 09395  0.8855  0.9638 classification stage (denoted as P-3DIQA) in Tables 8 to 10,
CAP-3DIQA | 0.7128 0.9250 0.9298 0.8574 0.9481

and 20% testing subset [36]. Such partition will be performed
1000 times on each dataset to obtain 1000 results on PLCC,
SROCC, and RMSE. And the median results are recorded
as the final performance measure. The PLCC, SROCC and
RMSE results listed in Tables 8, 9 and 10 include the applica-
tion of proposed CAP-3DIQA, and other well-known metrics
on LIVE 3D IQA Database Phase I, Phase Il and MCL 3D
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where the best performance has been highlighted in boldface.
Observing Tables 8-10, our proposed methods (P-3DIQA and
CAP-3DIQA) are only second to Shao’s approach [14] in
LIVE 3D IQA Database Phase I compared with other FR
and NR models. In MCL 3D IQA Database, P-3DIQA and
CAP-3DIQA have better SROCC performance than Shao’s
method, while they do not perform as well as Shao’s method
on PLCC and RMSE values. However, in LIVE 3D IQA
Database Phase II, the proposed CAP-3DIQA has the best
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TABLE 17. Results of cross-database performance.

Test dataset 3D IQA LIVE-I LIVE-II MCL
Trained dataset model PLCC | SROCC | PLCC | SROCC | PLCC | SROCC
Shao [14] - - 0.7791 | 0.7514 | 0.5619 | 0.5403
LIVE Phase I P-3DIQA - - 0.7872 | 0.7575 | 0.4052 | 0.4124
CAP-3DIQA - - 0.8669 | 0.8378 | 0.6155 | 0.6136
Shao [14] 0.8936 | 0.8917 - - 0.5889 | 0.6015
LIVE Phase I P-3DIQA 0.8670 | 0.8562 - - 0.4619 | 0.4571
CAP-3DIQA | 0.9192 | 0.9136 - - 0.6692 | 0.6651
Shao [14] 0.6561 | 0.6347 | 0.4779 | 0.4631 - -
MCL P-3DIQA 0.2999 | 0.3381 | 0.3692 | 0.3220 - -
CAP-3DIQA | 0.7913 | 0.7829 | 0.5546 | 0.5257 - -

performance among all competing models, including
Shao’s. Thus, we can conclude that the proposed appro-
ach (CAP-3DIQA) performs the best for asymmetrically
distorted stereo image pairs (i.e., LIVE 3D IQA Phase II),
and is also competitive with other methods for symmetrically
distorted stereo image pairs (i.e., LIVE 3D IQA Phase I and
MCL 3D IQA databases). The performance of our model for
asymmetrically distorted stereo image pairs can be boosted
further by incorporating the classification stage with the pre-
diction stage (i.e., CAP-3DIQA). However, the CAP-3DIQA
cannot outperform P-3DIQA in predicting the quality scores
of symmetrically distorted stereo image pairs (i.e., LIVE 3D
IQA Phase I and MCL 3D IQA databases) since the accuracy
rate in the classification stage is not as high as in LIVE 3D
IQA Database Phase II.

D. PERFORMANCE ON INDIVIDUAL DISTORTION TYPE
Although in this paper we do not focus on training models
for specific distortion type, it is interesting to know the per-
formance on each type of distortion. We test the performance
of all IQA models for each distortion type on LIVE 3D IQA
Database Phase I, Phase I and MCL 3D IQA Database and
list the results in Tables 11 to 16. In LIVE 3D IQA Database
Phase I, P-3DIQA ranks the first on PLCC value for JP2K, FF,
and Gblur. In LIVE 3D IQA Database Phase II, CAP-3DIQA
has the best performance on JP2K, WN, and Gblur. For MCL
3D IQA Database, P-3DIQA performs the best for JP2K,
WN, Gblur, and Tloss, while CAP-3DIQA defeats the other
3 models on JPEG and Sblur.

E. CROSS-DATABASE PERFORMANCE EVALUATION

Finally, we perform the cross-database evaluation for the
proposed NR 3DIQA models (P-3DIQA, CAP-3DIQA) and
Shao’s approach [14] (the best 3DIQA method before the
appearance of our method). This means we build the trained
model on one database, and use the trained model to do
the testing on the other two databases. As seen in Table 17,
we find the proposed CAP-3DIQA has the best generalization
performance in all six scenarios. Although the P-3DIQA
does not perform as well as the Shao’s method in cross-
database evaluation, the improved version (CAP-3DIQA)
has overcome this shortcoming by including the classifi-
cation stage and its performance is better than the metric

VOLUME 7, 2019

TABLE 18. Computation time for CAP-3DIQA.

Model
CAP-3DIQA

Elapsed time (secs/image)
1.3227

proposed by Shao [14]. In other words, the CAP-3DIQA
outperforms the most state-of-the-art NR 3DIQA approach
(Shao’s method in [14]) with a significant margin on gener-
alization capability. And the computation time required for
our proposed model CAP-3DIQA evaluating a single stereo
image pair by running on a computer with Intel CPU Xeon
E5-1650 v3 @3.50GHz is around 1.3 seconds, as shown
in Table 18, which is fast enough for real-time applications.

V. CONCLUSION

We propose a blind 3D image quality estimator (CAP-3DIQA)
to evaluate the quality of distorted stereoscopic images. The
model consists of two stages which are classification and
prediction. First, the proposed model classifies the distorted
image into several subsets according to the distortion types
by performing binary classification hierarchically. After the
classification stage, the classified distorted stereo image set
is passed through the prediction stage, where the predic-
tion of image quality scores is realized via five different
prediction channels. Finally, we use a regression model of
SVM to fuse the quality scores obtained from five prediction
channels to estimate the final image quality. The framework
we proposed is tested on three commonly used databases,
LIVE 3D Image Quality Database Phase I, Phase IT and MCL
3D Image Quality Database, respectively. The experimental
results show that the proposed model has significant perfor-
mance improvement in evaluating the quality of stereoscopic
images. Compared with other existing metrics, the proposed
model is very competitive in predicting 3D image quality
scores among all models and also has the best generalization
performance.
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