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Abstract— Blind and universal image denoising consists of
using a unique model that denoises images with any level of
noise. It is especially practical as noise levels do not need
to be known when the model is developed or at test time.
We propose a theoretically-grounded blind and universal deep
learning image denoiser for additive Gaussian noise removal.
Our network is based on an optimal denoising solution, which
we call fusion denoising. It is derived theoretically with a
Gaussian image prior assumption. Synthetic experiments show
our network’s generalization strength to unseen additive noise
levels. We also adapt the fusion denoising network architecture
for image denoising on real images. Our approach improves
real-world grayscale additive image denoising PSNR results for
training noise levels and further on noise levels not seen during
training. It also improves state-of-the-art color image denoising
performance on every single noise level, by an average of 0.1d B,
whether trained on or not.

Index Terms— Additive Gaussian noise removal, Bayesian
estimation theory, deep learning, CNN image denoiser optimality.

I. INTRODUCTION

I
MAGE denoising is a fundamental image restoration task
applied in all image processing pipelines. An image

denoiser can also be part of deep network models to improve
the training of high-level vision tasks [27]. However, being an
ill-posed inverse problem, denoising is challenging [14].

After the development of the best analytical solution,
BM3D [8], [18], little improvement in denoising perfor-
mance was achieved until the advent of deep learning
denoisers [59]. Recent Convolutional Neural Network (CNN)
based methods achieve state-of-the-art image denoising per-
formance and are even faster than traditional optimization-
based approaches [55]. The increased capacity of deep CNN
models also addresses the limitation of previous multi-layer
perceptron methods when it comes to denoising different
levels of noise [5]. Well-designed CNN architectures can also
outperform adversarial training methods in image restoration
tasks [45].

Neural networks can be deep and wide and thus have large
capacity to model complex functions [56], [61], by leveraging
network regularization or normalization [21] and residual
learning [19]. However, the complex functions modeled by
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the networks are not interpretable and have little connection
to stochastic denoising. This is a limitation for training general
models for denoising different noise levels. Denoisers are blind

when they require no information about the noise level at test
time, and universal when a single model can handle all noise
levels. Blind universal models are important since knowing the
noise level, at test time or ahead of training, is not a practical
scenario for most applications.

We first mathematically derive a blind and universal denois-
ing function under the theoretical assumption that the image
prior is Gaussian. Our denoising function, which is optimal
in stochastic expectation, is referred to as fusion denoising
because it fuses the input with a prior weighted using the
signal-to-noise ratio. It is optimized for additive Gaussian
noise removal. Our experimental results show that the state-
of-the-art denoiser DnCNN [59] can model an optimal fusion
denoising function. However, it only models it for noise levels
that are seen by the network during training. For unseen levels,
our synthetic experiment’s fusion network, called Fusion Net,
far outperforms DnCNN. We show on synthetic data our
improved generalization results.

The assumption that the image prior is Gaussian does
not necessarily apply to real-world images. Building on the
foundations of our theoretical solution, we adapt our Fusion

Net by designing a second network that learns a fusion
function for additive Gaussian noise removal. We call this new
network Blind Universal Image Fusion Denoiser (BUIFD).
BUIFD improves state-of-the-art denoising performance on
noise levels seen in training for grayscale and color images
on the standard Berkeley test sets (BSD68 and CBSD68) [41].
Furthermore, we show that our generalization results to unseen
noise levels obtained in our synthetic experiment extend to the
denoising of the grayscale BSD68 test set. Indeed, the denois-
ing performance on noise levels not trained on improves by
multiple PSNR points. We present an extended denoising
evaluation that covers other test datasets and other traditional
and learning-based denoising methods.

Our main contributions are: (1) we theoretically derive an
optimal fusion denoising function and integrate it into a deep
learning architecture (Fusion Net) to evaluate the optimality
of deep networks on a theoretical additive Gaussian noise
removal task with known prior, (2) we show on synthetic data
that the integration of the auxiliary fusion loss into our Fusion
Net improves the network’s generalization power bringing
closer to the optimal solution, and (3) we develop a blind
universal image fusion denoiser (BUIFD) network adapted to
real images, and show that it outperforms the state of the art for

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/.

https://orcid.org/0000-0002-7469-2404
https://orcid.org/0000-0002-0441-6068


4886 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 29, 2020

Gaussian noise removal on multiple standard image processing
test sets.

The paper is organized as follows. After a review of related
work, we first lay the ground for our theoretical experiments.
Our experiment allows us to assess the optimality of the
networks on training noise levels and the generalization of
trained networks to unseen Gaussian noise levels, in compar-
ison to the optimal Bayesian solution. We then extend the
Bayesian framework solution into our network designed for
real images (BUIFD) whose exact prior is unknown to improve
generalization. Experimental results on standard denoising
benchmarks show that our denoising network outperforms the
state of the art, especially on unseen noise levels.

II. RELATED WORK

Image denoising approaches in the literature can be divided
into classical methods and the more recent deep-learning-
based methods. One common aspect is, however, the lever-
aging of image priors to improve denoising results. For prac-
tical reasons, it is important for a denoiser to be blind and
universal since the noise levels in noisy images might not be
constant or known.

Image Priors: Whether they are in the form of assumptions
made on image gradients [23], [35], [42], [51], sparsity [10],
[15], self-similarity within images [4], [11], [53], hybrid
approaches [30], or neural network weights given a certain
architecture [3], [59], image priors are essential for denoising.
Even traditional methods based on diffusion or filtering (in
space [37] or in other domains [44]) rely on some priors. They,
in all their forms and for multiple image restoration problems,
can be discovered and tested heuristically [13], [23], learned
with dictionaries [15], with Markov random fields [41], or with
deep neural networks [59]. In our network, the prior takes the
explicit form of learned feature representations.

Noise Modeling: Additive white Gaussian noise is not
necessarily the best model in practical scenarios such as
denoising raw images [3]. Nevertheless, a large part of the
image denoising literature focuses on Gaussian denoising
since it remains a fundamental problem. Images with noise
following different, potentially data-dependent, distributions
can be transformed into images with Gaussian noise, and
transformed back [31], [38]. In addition, a Gaussian denoising
solution can serve as a proximal [26], [36] for image reg-
ularizers. It can be a substitute for the costly step in half-
quadratic splitting (HQS) optimization, typically responsible
for non-differentiable regularization in image processing. This
approach is taken in the recent HQS method that leverages
the denoiser for image restoration [60]. We thus work with
the assumption of an additive white Gaussian noise model.

Image Denoisers: Having to know the exact noise level is
a serious limitation in practice for denoisers, and to know it
ahead of time, before training, is even more limiting. A fixed
and known noise level is also a limitation when denoising
images with spatially-varying noise level [61]. Not having a
universal denoising model means that multiple models need
to be trained and stored for different noise levels, and that
noise level knowledge is required at test time. The recent

method [60] that generalizes to image restoration tasks is
a non-universal non-blind denoiser, where 25 denoising net-
works are used for noise levels below 50, and even training
parameters are chosen based on the noise level. Similarly,
Remez et al. [39], who reach PSNR results on par with the
state of the art, is another non-universal non-blind example.
To leverage better priors, images are first classified into a set
of classes and every single class has its specific deep network.
The method is also not blind and is trained per noise level.
Zhang et al. [62] present a universal non-blind network for
multiple super-resolution degradations by denoising, deblur-
ring, and super-resolving images. They report that although a
blind version is more practical, their blind approach fails to
perform consistently well since it cannot generalize.

Blind Universal Denoisers: The state-of-the-art Gaussian
denoiser DnCNN is both universal and blind [59]. It is a deep
network that is jointly trained on randomly-sampled noise level
patches to generalize denoising to a range of noise levels.
It has not been outperformed yet by other methods, whether
blind or not [16], [48]. Only the recent FFDNet [61] by the
same authors of DnCNN [59] improves on DnCNN for noise
levels 50 and 75 by 0.06 and 0.15d B respectively, on the
Berkeley BSD68 set, while performing similarly or worse
for other levels. It is, however, not a blind network as
it requires a noise level map as input. Lefkimmiatis [26]
recently studied universal denoising, building on prior work
for modeling patch similarity in CNNs [25]. His methods are,
strictly speaking, not universal as two networks are trained
separately, one for low (≤ 30) and one for high noise levels
(∈ [30, 55]). They are thus non-blind since a noise-level-
based choice must be made at inference time. Furthermore,
the published results do not outperform the blind DnCNN
denoising results. We thus conduct evaluation comparisons
of our BUIFD method with the state-of-the-art DnCNN and
the classic BM3D approach [8], [9], which is the best non-
learning-based denoiser. It leverages image self-similarities by
jointly filtering similar image patches. The authors also present
a blind version of the BM3D algorithm, and we compare to
both blind and non-blind versions.

Our proposed image denoiser BUIFD learns to disentangle
its features to predict a prior and a noise level intermediate
results. They serve as inputs to the fusion part of the network,
responsible for the final denoising. Disentangling the feature
space is fundamental for interpretability [6], partial transfer
learning [57], domain translation [54], domain adaptation [58],
specific attribute manipulation [12], [28], [63] and multi-task
networks [2]. In our case, it is fundamental for our theoretical
denoising function since the different representations serve as
its inputs.

III. SINGLE-IMAGE FUSION DENOISING

A. Theoretical Framework

Although some specific applications can have a more accu-
rate modeling [24], [49], an additive white Gaussian noise
model is often assumed in denoising tasks, as it models
common acquisition channels [52]. We thus assume that
the additive independent and identically distributed noise n
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follows a Gaussian distribution N (0, σ 2
n ), and is uncorrelated

with the data x . The noise standard deviation σn is called noise
level. In a Bayesian framework, the conditional probability
distribution of the noiseless data x given a noisy observation
y (where y = x + n) is given by the relation

pX |Y (x |y) =
pY,X (y, x)

pY (y)
=

pY |X (y|x)pX(x)

pY (y)
, (1)

where X and Y are the random variables corresponding
respectively to x and y. We are interested in the conditional
distribution as we search for the Maximum Aposteriori Prob-
ability (MAP) estimate x̂ of x . The former is

x̂ = arg max
x

pX |Y (x |y). (2)

We also model the data prior on x as a Gaussian distribution
N (x̄, σ 2

x ) centered at x̄ [40]. We later modify this assumption
in Sec. III-D to the practical case of real-world images. The
conditional probability of y given a noiseless x value is

pY |X (y|x) =
1

√

2πσ 2
n

e
−

(y−x)2

2σ2
n , (3)

and the probability distribution of y is the convolution of those
of x and n, given in the Gaussian case by

pY (y) = pX (x) ⊛ pN (n) =
e
−

(y−x̄)2

2(σ2
x +σ2

n )

√

2π(σ 2
x + σ 2

n )
, (4)

where ⊛ is the convolution operator. With these probability
distribution functions, we can obtain an expression for the
conditional distribution of x given its noisy observation y by
substituting Eq. (3) and Eq. (4) into Eq. (1). pX |Y (x |y) can
also be written in the following form of a Gaussian in x , given
an observation y

pX |Y (x |y) =
1

√

2πσ̂ 2
x

e
−

(x−µ̂)2

2σ̂2
x . (5)

By matching the expanded expression of pX |Y (x |y) with
Eq. (5) for all possible x values, we obtain the expressions
for µ̂ and σ̂ 2

µ̂ =
σ 2

n x̄ + σ 2
x y

σ 2
x + σ 2

n

, σ̂ 2 =
σ 2

x σ 2
n

σ 2
x + σ 2

n

. (6)

For the Gaussian shown in Eq. (5), the MAP estimator is also
the conditional expected value (mode and mean being equal)
and it is hence given by

x̂ = E[x |y] =

∫ ∞

−∞

x · pX |Y (x |y)dx, (7)

which, using Eq. (5), can be directly derived to be

x̂ =
x̄

1 + S
+

y

1 + 1/S
, (8)

where S � σ 2
x /σ 2

n and stands for Signal-to-Noise Ratio (SNR).
We call this operation fusion denoising as it fuses the prior
and the noisy image, based on the SNR.

Image denoising models are typically trained to maximize
PSNR or equivalently minimize Mean Squared Error (MSE)

Fig. 1. (a) Schematic of the DnCNN residual learning approach for denoising.
The network predicts the noise in an image. (b) Our Fusion Net that explicitly
learns the SNR function for optimal fusion of the noisy image with the
learned prior, following Eq. (8). (c) Our real-image fusion denoiser, BUIFD,
where fusion is carried out with a pixel-wise product stage followed by three
convolution layers for learning a general fusion function (Sec. III-D).

loss. This means that with close-to-optimal convergence of a
neural network model (MSE loss → 0+), its output tends
towards the minimum MSE estimator (MMSE). With our
Gaussian modeling, this leads to the MAP estimator x̂ of
Eq. (8). Thus, an MSE reconstruction loss in a neural network
leads it to the estimator x̂ , iff S and x̄ are correctly predicted
and correctly used in the fusion with the noisy input y,
as in Eq. (8). The optimal fusion, used as reference in our
experimental evaluation in Sec. IV-B, is given the exact S and
x̄ values for Eq. (8).

B. Fusion Net Architecture

We incorporate the basic structure of the optimal fusion
solution into the architecture of a neural network, which we
call Fusion Net. We build the main blocks of our Fusion Net
based on the blind DnCNN introduced in [59] and illustrated
in Fig. 1(a). In Fig. 1, the noise-predicting CNN of DnCNN
(Fig. 1(a)), the prior-predicting CNN, and the one predicting
f (S) (where f (S) � 1

1+S
) in our Fusion Net (Fig. 1(b)), all

leverage the same DnCNN architecture design. The CNNs are
all constituted of a sequence of convolution layers, rectified
linear units (ReLU) [34] and batch normalization blocks [21].
Note that f (S) is inversely-proportional to the SNR and
proportional to the noise level. It is the factor multiplying
the prior in Eq. (8). To summarize, the f (S) CNN predicts

1
1+S

where S is the SNR of the input image (determined by
the noise level and the image model used in our theoretical
settings), and the prior CNN predicts x̄ defined in Eq. (7).
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Unlike the DnCNN that predicts the noise values in the
input noisy image, then subtracts them from the noisy input
to yield the final denoised output, our network learns optimal
fusion denoising given by the function in Eq. (8), as illustrated
in Fig. 1(b). The same depth and capacity of the DnCNN
are retained to learn separately the image prior and the SNR
function, f (S), that is required for the weighted fusion of
the prior and the noisy input image. Note that SNR learning
also contains a form of prior knowledge, but of variance
rather than of expectation. We subtract from the prior our
noisy input image and multiply the result, pixel-wise, with
the SNR function. This yields the noise prediction given a
noisy input, which we subtract from the latter to obtain the
denoised output. This architecture is mathematically equivalent
to Eq. (8). However, the wiring of Fig. 1(b) allows us to clearly
have a residual learning connection and to keep the parallelism
between the two aforementioned networks.

C. Fusion Net Feature Disentangling

To mimic the optimal fusion between image prior and
noisy image based on the SNR, as in Eq. (8), both the
architecture and loss function are adapted. For the fusion,
the network needs to predict the image prior x̄ and f (S)

per pixel (Fig. 1(b)). We obtain, with close-to-zero MSE
reconstruction loss of our Fusion Net, that the ground-truth
target and the network output are approximately equal

x̄ · f (S) + y · (1 − f (S)) ≈ a · b + y · (1 − b), ∀y ∈ D
T ,

(9)

where a and b are the outputs of intermediate layers in the
Fusion Net, and y is the noisy input. Specifically, a is the
output of the final layer of the prior CNN in Fig. 1(b), and b

the output of the last layer of f (S) in the same figure. After
gradient descent convergence, when the MSE reconstruction
loss is close to zero, we get the approximate equality of the
left and right terms in Eq. (9). We can view this equation
as a first-degree polynomial in the variable y. As Eq. (9)
holds for all y in the training dataset DT , we can apply
coefficient equating, where the coefficients are {a ·b, 1−b} and
{x̄ · f (S), (1− f (S))}. We thus obtain the approximate equality
between a and x̄ and between b and f (S). The network
intermediate outputs {a, b} are therefore, respectively, equal to
the prior and the SNR function {x̄, f (S)}, with close-to-zero
MSE reconstruction loss ∀y ∈ DT . This extends to other y

outside the dataset assuming that the latter is general enough.
We can further incorporate optimal denoising information in
the Fusion Net, under the theoretical settings described in
Sec. III-A, through explicit SNR learning with a dedicated loss
term. The fusion representations, i.e. the prior x̄ and f (S), are
thus further enforced through a penalty term for predicting
f (S) in the loss function. The full loss function L f of the
Fusion Net is given by

L f = α||a · b + y · (1 − b) − x ||22 + (1 − α)||b − f (S)||22,

(10)

where α is a weight parameter, the first term is the MSE recon-
struction loss similar to that of the DnCNN, and the second

term is a reconstruction loss for f (S). Following Eq.(9),
a · b + y · (1 − b) is the denoised output of the Fusion Net.

The Fusion Net therefore minimizes the reconstruction loss
over the denoised image by learning to predict the image prior
and the SNR function values separately. Unlike the DnCNN
residual learning network, which only leverages ground-truth
noise-free images during training, the Fusion Net also lever-
ages explicit SNR information.

D. Denoising Non-Gaussian Images

Here, our main objectives are to (1) design a Blind Universal

Image Fusion Denoiser (BUIFD) for real images, by adapting
the theoretical fusion strategy integrated in our Fusion Net,
(2) evaluate the denoising performance of BUIFD on training
noise levels, and (3) assess the generalization to unseen noise
levels with real images.

Since a real image cannot be modeled with a simple
Gaussian prior, our image fusion denoising network used for
real images (BUIFD), shown in Fig. 1(c), is adapted from the
theoretical Fusion Net, shown in Fig. 1(b), by modifying the
fusion part. We replace the optimal mathematical fusion by a
product fusion step followed by trainable convolution layers.
We use three convolution layers to learn the data-dependent
fusion function. The optimal fusion function F is to be applied
on the noisy input image y, the prior prediction, and the noise
level prediction

x̂ = F(y, fP (y, θP), fN (y, θN )), (11)

where the prior-predicting and noise-level-predicting network
functions are respectively fP and fN , with their corresponding
learned parameters θP and θN , and the denoised estimate is x̂ .
Intuitively, the prior-predicting network ( fP ) is used to predict
the expected value of the unknown real-word distribution out
of which the intensity of a given pixel is sampled, and that for
each pixel. The noise-level-predicting network ( fN ) predicts
the noise level, which is used to control the weighted average
between prior and observation. When the noise level is low,
the actual observation can be given more weight, and when
the noise level is high, the current observation is less reliable
and the fusion resorts more to the use of the prior estimation.

The optimal fusion F can be approximated by F̂ modeled
with three convolution layers. However, we expect F to
contain pixel-wise inter-input multiplications similar to the
ones of Eq. (8). Since such pixel-wise multiplications cannot
be replicated with convolutions, we pass two additional inputs
into the convolution layers that model F̂ . These two additional
inputs are given by

fP (y, θP) ⊙ fN (y, θN ), y ⊙ (1 − fN (y, θN )), (12)

where ⊙ is pixel-wise multiplication. They are concatenated
with the inputs of F given in Eq. (11), yielding five different
inputs that are sent to F̂ . The two additional inputs reduce
the learning burden of the convolution layers and improve
the denoising performance. Note that we normalize fN (·, ·) ∈

[0, 1]. We call this pixel-wise multiplication step and the con-
catenation of the additional inputs the product fusion (shown
in the pipeline of Fig. 1(c)). These two fusion steps, namely
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TABLE I

TEST SET PSNR (d B ) RESULTS FOR THE NOISE STANDARD DEVIATIONS GIVEN IN THE TOP ROW. THE NETWORKS ARE TRAINED ON NOISE LEVELS

RANDOMLY CHOSEN IN [5, 25]. NOISE LEVELS IN THE RIGHT HALF OF THE TABLE ARE NOT SEEN DURING TRAINING. WE ALSO REPORT

THE OPTIMAL BAYESIAN DENOISING (OPTIMAL FUSION). THE BOTTOM ROW SHOWS THE INDEPENDENT TWO-SAMPLE T-TEST RESULTS

BETWEEN DNCNN AND OUR FUSION NET. THE TWO-TAILED p-VALUES VALIDATE THE NULL HYPOTHESIS OF EQUAL AVERAGE

PSNR BETWEEN DNCNN AND THE FUSION NET ON TRAINING NOISE LEVELS, WITH SIGNIFICANCE LEVEL 0.05

the product fusion and the three convolution layers, form F̂

and realize point (1) above. The BUIFD’s optimization loss is
given by

L f = ||F̂(C) − x ||22 + || fN (y, θN ) − N ||22, (13)

where C is the concatenation of the inputs listed in Eq. (11)
and Eq. (12), namely, {y, fP (y, θP), fN (y, θN ), fP(y, θP) ⊙

fN (y, θN ), y ⊙(1− fN (y, θN ))}, x is the ground-truth original
image, and fN (y, θN ) and N are respectively the predicted
and ground-truth noise level values, normalized to [0, 1].
We discuss the relation between BUIFD (Fig. 1(c)) and our
theoretical Bayesian network Fusion Net (Fig. 1(b)) in detail
in the following section.

E. Relation With the Bayesian Framework

The Fusion Net in Fig. 1(b) explicitly models the relation
with the Bayesian solution in the theoretical experiments.
We discuss in what follows the relation between BUIFD
(Fig. 1(c)) and the Bayesian solution Eq. (8). We first note
that a Gaussian prior does not perfectly model real images, and
thus, we expect that the real-image BUIFD network (Fig. 1(c))
deviates from the Fusion Net (Fig. 1(b)), from which it is
inspired, to adapt to real images. However, as addressed in
Sec. III-D, the relation between BUIFD and the Bayesian
framework is strongly pertinent.

First, the product fusion Eq. 12 explicitly creates the same

components as in the Bayesian equation Eq. (8). This product
fusion weighs noisy input and learned prior based on SNR,
as in the Bayesian fusion. The fusion layers are only 3 con-
volutional layers with no non-linearities, to ensure that mostly
an additive fusion of our Bayesian terms takes place, with
local smoothing, and the relation with the Bayesian solution
is preserved as much as possible.

Second, we do not predict an image prior in the sense of a
pixel intensity probability distribution, but only the expected
mean of that unknown distribution. In the literature, priors are
often probability distributions of image gradients, but our def-
inition is quite distinctive. Our prior is, per pixel, the expected

value of the distribution out of which the pixel’s intensity

was sampled. Even with noise-free images, one cannot exactly
know that distribution (nor its mean), per pixel, to assess how
much this definition is still respected in the BUIFD network
with real images. However, all other Bayesian components
are consistent, and the empirical results as well. Our improve-
ment of 3.30d B at unseen noise level 70 in the theoretical

experiment is paralleled by an improvement of about 3d B at
noise level 75 in the real image BSD68 experiment.

We hope our methodology motivates future work to analyze
deep network optimality on theoretical experiments that are
designed such that an optimal solution is known, and that
it motivates deep network design inspired from Bayesian
solutions.

IV. EXPERIMENTAL EVALUATION

A. Fusion Net Experimental Setup

The networks are trained (and tested) with data generated
synthetically according to the theoretical assumption of a
Gaussian image prior as defined in Sec. III-A. The training
data is composed of over 200k patches of size 40 × 40 pixels.
Image pixel intensities for the training data are drawn at
random from N (127, 252), following the Gaussian image prior
assumption, and all values are normalized to [0, 1] before the
training through division by 255 and clipping of all values
outside the interval to the interval’s closer bound when noise
is added. For the testing data, 256 images of size 256 × 256
pixels are used, and they are created with the same procedure
as that of the training data.

We train the networks for 50 epochs with mini-batches of
size 128. We use the Adam optimizer [22] with an initial
learning rate of 0.001 that is decayed by a factor of 10 every
30 epochs, the remaining parameters being set to the default
values. The weight α in Eq. (10) is set to 0.1. We train the
networks with multiple levels of noise. The standard deviation
of the additive Gaussian noise is chosen uniformly at random
within the interval [5, 25] during the training. At the end of
every epoch, the noise components are re-sampled, following
the same procedure, but not the ground-truth images. For
the testing phase, the networks are evaluated on test images
where the added noise is also Gaussian, with a given standard
deviation.

B. Fusion Net Evaluation

PSNR results of DnCNN, our Fusion Net, as well as the
optimal upper bound are presented in Table I. The optimal
upper bound denoising performance is that of the optimal
mathematical solution in Eq. (8). We can see that both the
DnCNN and the Fusion Net perform similarly on the training
noise levels (left half of the table), and very close to optimal.
To validate that the results are indeed statistically similar,
we analyze the distribution of PSNR values across the test
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TABLE II

PSNR (d B )/SSIM COMPARISONS OF grayscale IMAGE DENOISING ON THE BSD68 STANDARD TEST SET. WE COMPARE THE NON-BLIND BM3D,
THE BLIND BM3D, DNCNN, AND OUR BUIFD. DNCNNσ OR BUIFDσ INDICATES THAT THE NETWORK SEES NOISE LEVELS only UP TO

σ DURING THE TRAINING. BOLD INDICATES THE BEST BLIND RESULT, FOR EACH RANGE OF TRAINING NOISE LEVELS, AND THAT

BEST RESULT IS SELECTED BEFORE ROUNDING. NOTE: SMALL DEVIATIONS IN REPORTED PSNR VALUES COMPARED WITH THE

LITERATURE, NOTABLY ON HIGHER NOISE LEVELS, ARE DUE TO CLIPPING NOISY INPUTS (AND OUTPUTS) TO [0, 255],
AS A PRACTICAL CONSIDERATION

set. A two-sided T-test (independent two-sample T-test) is used
to evaluate the null hypothesis that the PSNR results of both
networks have similar expected values. This test is chosen
as we have the exact same sample sizes defined by the test
dataset, and the variances of PSNR results are very similar. The
T-test results are given in the bottom row of Table I, and the
null hypothesis holds for all configurations in the left half of
the table (for a 0.05 significance level, i.e., a p-value ≥ 0.05).
This shows that the Fusion Net, despite the modeling that
mimics optimal denoising fusion and the additional training
information to learn SNR values, performs similarly to the
DnCNN. The latter has therefore enough capacity and learns
an optimal denoising. This, however, only holds for the noise
levels seen during training by the networks, shown in the left
half of Table I. The confidence in the null hypothesis decreases
with increasing test noise levels. With a significance level
above 0.053, the null hypothesis would even be rejected for
noise level 25.

The evaluation results on noise levels larger than 25, which
are not trained on by any of the networks, are reported in the
right half of Table I. For these larger noise levels, the null
hypothesis is very clearly rejected as there is a growing
performance gap between DnCNN and our Fusion Net. The
p-value quickly drops to zero when there is a PSNR gap,
since variances are very small in our results. The Fusion
Net generalizes better to unseen noise levels, even performing
close to optimal up to noise level 60. The further we increase
the noise level, the larger is the performance gap between the
Fusion Net and the DnCNN. Although both networks perform
well for the training noise levels, the Fusion Net learns a more
general model and clearly outperforms on unseen noise levels.

C. Real-Image Experimental Setup

We use the referenced implementation by the authors of
DnCNN and the same datasets.1 As mentioned in Sec. III-D,
the architecture of our prior-predicting network is identical to

1https://github.com/SaoYan/DnCNN-PyTorch

TABLE III

WE EVALUATE PSNR VALUES, WITH SPATIALLY-VARYING NOISE LEVEL,
ON THE BSD68 TEST SET. THE NOISE LEVEL INCREASES LINEARLY

WITHIN THE IMAGE OVER THE RANGE [σc − 10, σc + 10]. THE

NON-BLIND BM3D IS GIVEN THE CENTRAL NOISE LEVEL σc

Fig. 2. Training losses of the different learning-based methods. Per epoch,
we plot with a full black curve the overall loss (i.e. reconstruction loss) of
the base methods DnCNN and MemNet, in (a) and (b) respectively. The same
reconstruction loss with our fusion method is plotted with a dotted red curve,
the noise-level loss computed on the corresponding intermediate output (i.e.
the output of the noise level CNN) is plotted with a dotted blue curve, and
the overall loss for the fusion methods (the sum of the former two losses)
is plotted with a dotted green curve. Note the abrupt small improvement in
loss reduction at epoch 30, which is when the learning rate is exponentially
decayed. We can see that the different learned function converge by the end
of training (logs shown for the methods with upper training noise level 55).

that of DnCNN.2 All the network details are available in [59]
and we omit the repetition. The same network depth and
feature layers are thus used in the prior-predicting network
(18 main blocks) in Fig. 1(c). The noise level network is
a shallower one consisting of 5 blocks similar to the ones

2Our code is available at: https://github.com/majedelhelou/BUIFD
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Fig. 3. Left to right: original and noisy images, prior and noise level predictions of BUIFD, our fused denoising result and the DnCNN denoised image. Our
denoising result is created by fusing the noisy image, the prior and the noise level values, for instance (e) is F̂((b), (c), (d)). All the networks are trained on
noise levels in [0, 55]. Whether the noise level is seen (25), or not seen (75), during training, our denoised results show better noise removal (sky in (e-f),
window, wall and arms in (k-l)). We show the PSNR in d B and the SSIM [50] between parentheses for the different results. Best viewed on screen.

used in the prior predictor. Each block is a convolution
followed by a batch normalization and a ReLU, and we
append to the noise level predictor a convolution followed by
an application of the logistic sigmoid function to obtain the
normalized fN (·, ·) ∈ [0, 1]. The noise level values are thus
mapped during the training to the range [0, 1] by dividing
by the largest training noise level. The three convolution
layers approximating the final fusion have 16 channels. Both
the BUIFD and the DnCNN networks are trained with the
same training parameters and optimization settings, similar
to Sec. IV-A except for the patch size. For completeness,

we provide all the details of the training hyper-parameters.
We use the Adam optimizer [22] with an initial learning rate
of 0.001 that is decayed by a factor of 10 every 30 epochs,
the remaining optimizer parameters being set to the default
values. The networks are trained for 50 epochs each, and the
progress of the different losses can be seen in Fig. 2. We use
a patch size of 50 × 50 with a stride of 10 on the training
images. The training mini-batch size is set to 128 patches
per mini-batch. The added noise is drawn from a Gaussian
distribution of given standard deviation, based on the noise
level. This standard deviation is sampled uniformly at random
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TABLE IV

PSNR (d B )/SSIM COMPARISONS OF Color IMAGE DENOISING, SIMILAR TO TABLE II, ON THE CBSD68 STANDARD TEST SET. BOLD INDICATES THE

BEST BLIND RESULT, FOR EACH RANGE OF TRAINING NOISE LEVELS, AND THAT BEST RESULT IS SELECTED BEFORE ROUNDING

from a specified range (details in Sec. IV-D), and is the same
for all pixels in a given training patch. We use the training
hyper-parameters of DnCNN, for training it and for training
BUIFD, the hyper-parameters are not tweaked for BUIFD. The
noise level predictor is jointly trained within BUIFD, so both
network branches always see the same training data (with
the same simulated noise distributions) as each other in the
experiments of Sec IV-D. We use the 400 Berkeley images [7],
[43] for grayscale training and the 432 color Berkeley images
for color training, as in [59]. The same architectures are
retained for grayscale and color networks.

D. Real-Image Evaluation

Grayscale denoising evaluation is carried out over the stan-
dard Berkeley 68 image test set (BSD68) [41] taken from [32].
Table II reports the results of our fusion approach and of
the state-of-the-art blind DnCNN, when they are both trained
with noise levels up to 55 or up to 75. Note that for our
fusion approach that is trained up to noise level 55, we map
the maximum network prediction of 1, during training, to 55
and not to the maximum test noise level, for a more fair
comparison. The results of the blind version of BM3D as
well as those of the non-blind BM3D, which is given the
correct test noise level at inference time, are also reported
for reference. We restrict all noisy test images to the range
[0, 255], as having negative intensities, or values exceeding
255, is not a configuration encountered in practice.

Fig. 3 shows our intermediate feature results, the prior
and the noise level values, along with denoising results. The
denoised image is created by fusing the noisy input image
with the network-derived prior and the noise level values. The
fusion is carried out by the product fusion step and the three
convolution layers. As in practical scenarios, the denoised
outputs are clipped to [0, 255], as are the noisy input images.
Our results better remove the noise compared with those of
DnCNN over low frequency regions, and details are better
reconstructed over the high-frequency content. We note that,
at high noise levels, there is a smudging effect most visible
around low-frequency regions (Fig. 3 (k) and (l)), which
creates blurry and noisy edges. These are created by both

networks, but are more salient in our result (k) as it is less
noisy than (l). The higher the noise level and standard devia-
tion of the Gaussian noise, the larger the number of averaged
samples needs to be such that the statistical mean converges
to zero. This makes the local mean of the noise across small
patches vary around zero from region to region, randomly,
and causes the smudging-like or wave-like effect (notice over
low-frequency regions how almost all these artifacts have a
curve shape, rather than a linear one, which is modeled by the
various different mean values around them).

As seen in Table II, our fusion approach improves the PSNR
at every single noise level starting from 15−20, which includes
seen levels for both training ranges. Comparing DnCNN75

and BUIFD75, which are trained on all noise levels, we also
note with our approach an improvement of up to 0.7d B and
an average improvement of 0.36d B . We outperform even the
non-blind version of BM3D by an average of 0.25d B with
our version trained on all noise levels and we perform just
as well as the non-blind BM3D when training only up to
level 55. Comparing the results of DnCNN55 and of BUIFD55

in Table II, for unseen noise levels in the range (55, 75],
we see that the generalization of the fusion approach to unseen
noise levels indeed applies to real images. The improvement
of multiple PSNR points for level 75 is consistent with that
obtained in our synthetic experiment in Table I.

The results in Table III illustrate denoising images with
spatially-varying noise level, without re-training the networks.
Noise is added across an image with a level that increases
linearly with rows. For the non-blind BM3D, we input the
average noise level as a guide. The BUIFD network can handle
spatially-varying noise, which neither the prior nor the noise
level predicting network branches are trained on. It outper-
forms DnCNN on all noise setups, whether the networks are
trained on the full range or only up to level 55.

For color image denoising, we use the standard color
version of BSD68 (CBSD68) for testing. Noise is simulated
and added to each test image before running it through a
denoising method. PSNR results are reported in Table IV.
The high inter-channel correlation between the RGB color
channels [13] allows all methods to perform significantly
better in terms of denoising PSNR on color images compared
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TABLE V

PSNR/SSIM EVALUATION OF THE Blind BM3D, EPLL, KSVD, WNNM, DNCNN, BUIFD, MEMNET, AND BUIFD(M). BOLD INDICATES THE BEST

BLIND DENOISING RESULT IN TERMS OF PSNR OR SSIM BETWEEN EACH PAIR OF LEARNING METHODS, FOR EACH GAUSSIAN NOISE LEVEL.
WE CLIP NOISY IMAGES TO [0, 255], AS A PRACTICAL CONSIDERATION

with grayscale images. We note that this advantage of having
multiple correlated channels as in color imaging is not always
available, for instance with single-wavelength imaging [29].
We hypothesize that this correlation also enables the networks
to implicitly learn the noise level prediction. High correlation
implies that the network sees multiple approximately equal
data samples with different noise instances drawn from the
same distribution. Thus, it more easily learns an estimate
of the noise variance. Each of the two networks therefore
performs more or less the same when trained up to noise
level 55 and when trained up to noise levels 75. Our fusion
approach, however, consistently outperforms CDnCNN on
every single noise level for both training noise ranges. Our

average improvement over CDnCNN is about 0.1d B . We also
note that the networks outperform, on average, even the non-
blind CBM3D by about 0.5d B for CDnCNN and 0.6d B for
our CBUIFD.

Sample image denoising results for grayscale and color
images are illustrated in Fig. 4, 5 and Fig. 6, 7 respectively,
for the non-blind BM3D and the blind networks DnCNN and
BUIFD trained on the full range of noise levels. The main
trade-off seen between the results of BM3D and those of
DnCNN is on detail reconstruction. The non-blind BM3D
achieves good PSNR reconstruction but at the expense of
blurring the results. This causes a loss of details (visible on
the large rock in Fig. 4, and the zoom-in insert in Fig. 5)
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Fig. 4. Grayscale image denoising example from BSD68. All networks
are trained on all noise levels [0, 75] and we test on noise level 25. Non-
blind BM3D loses edge details due to blur smoothing. The network results
are sharper, with the better PSNR being that of BUIFD75. Best viewed on
screen.

and of edge sharpness (visible on the borders of the lake in
the zoom-in insert in Fig. 4). The DnCNN results suffer less
of a blurring problem, but the noise-removal is not optimal
in certain areas such as smooth surfaces (visible on the inner
area of the lake in the zoom-in insert in Fig. 4). Our approach
achieves a good performance in terms of this trade-off. BUIFD

Fig. 5. Grayscale image denoising example from BSD68. All networks are
trained on all noise levels [0, 75] and we test on noise level 45. Non-blind
BM3D results are very smoothed, and details are lost. DnCNN preserves more
details, but at the expense of PSNR. Our blind approach preserves details and
outperforms the non-blind BM3D in terms of PSNR. Best viewed on screen.

achieves good PSNR results, with significantly less blurring
than the non-blind BM3D (see Fig. 5 for example).

E. Extended Benchmark Comparisons

We present more denoising experimental tests on different
benchmark datasets, and compare the results of different
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Fig. 6. Color image denoising example from CBSD68. All networks are
trained on the full range of noise levels [0, 75] and we test on noise level 25.
Best viewed on screen.

denoising approaches on these datasets. We report blind

denoising results for noise levels 10 to 80 (with a step size
of 10) on the BSD68 dataset, Set5, Set14, Sun_Hays80,
Urban100, and Manga109 datasets. Set5 and Set14 are made
up of, respectively, 5 and 14 traditionally-used images for
testing image processing algorithms. Most of their images are

Fig. 7. Color image denoising example from CBSD68. All networks are
trained on the full range of noise levels [0, 75] and we test on noise level 45.
Best viewed on screen.

smaller than 512×512. The Sun_Hays80 dataset is made up of
the high-resolution version of the 80 images presented in [46],
with sizes smaller than 1024 × 1024. The Urban100 dataset
is a collection of 100 high resolution images taken from
Flickr using urban keywords [20]. The Manga109 dataset is
constituted of 109 professional artist drawings [33], of size
827 × 1170. We present in Table V the denoising results of
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Fig. 8. Sample visual result from Set14, with PSNR(d B)/SSIM values. The top row shows non-blind results with the traditional methods KSVD, BM3D,
EPLL and WNNM, as the noise level is 25, which the default set when the noise level is unknown. And the bottom row shows the results with the different
learning methods.

the blind non-learning methods BM3D, EPLL [64], KSVD [1],
and WNNM [17] that were developed for Gaussian denoising
and are given, to enforce the blind setting, the default noise
level set by the non-blind BM3D (set to 25), and the learning-
based methods DnCNN [59] and BUIFD, on denoising the
luminance of the images with added Gaussian noise levels
ranging from 10 to 80. We also evaluate another learning-based
method with the same training hyper-parameters as those of
DnCNN, namely, the MemNet architecture [47], and extend
our fusion technique to that architecture and call it BUIFD(M).
It is constructed following Fig. 1(c), with the exception that
the MemNet architecture replaces that of DnCNN for the
prior-predicting CNN. All the learning-based methods in this
section are trained up to noise level 55. Table V shows the
PSNR and SSIM metrics for each method, and we highlight in
bold the best-PSNR and best-SSIM method between DnCNN
and BUIFD, and between MemNet and BUIFD(M). A sample
visual result is shown in Fig. 8, taken from Set14.

V. CONCLUSION

We define a theoretical framework under which we derive
an optimal denoising solution that we call fusion denoising.
We integrate it into a deep learning architecture and compare
with the optimal mathematical solution and with the state-
of-the-art blind universal denoiser DnCNN. Our synthetic
experimental results show that our Fusion Net generalizes far
better to higher unseen noise levels.

We learn a data-dependent fusion function to adapt our
fusion denoising network to real images. Our blind universal
image fusion denoising network BUIFD improves the state-
of-the-art real image denoising performance both on training
noise levels and on unseen noise levels.
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