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Abstract—We develop a framework for reconstructing images that
are sparse in an appropriate transform domain from polychromatic
computed tomography (CT) measurements under the blind scenario
where the material of the inspected object and incident-energy
spectrum are unknown. Assuming that the object that we wish to
reconstruct consists of a single material, we obtain a parsimonious
measurement-model parameterization by changing the integral vari-
able from photon energy to mass attenuation, which allows us to
combine the variations brought by the unknown incident spectrum
and mass attenuation into a single unknown mass-attenuation spec-
trum function; the resulting measurement equation has the Laplace-
integral form. The mass-attenuation spectrum is then expanded
into basis functions using B-splines of order one. We consider a
Poisson noise model and establish conditions for biconvexity of the
corresponding negative log-likelihood (NLL) function with respect
to the density-map and mass-attenuation spectrum parameters. We
derive a block-coordinate descent algorithm for constrained mini-
mization of a penalized NLL objective function, where penalty terms
ensure nonnegativity of the mass-attenuation spline coefficients and
nonnegativity and gradient-map sparsity of the density-map image,
imposed using a convex total-variation (TV) norm; the resulting
objective function is biconvex. This algorithm alternates between
a Nesterov’s proximal-gradient (NPG) step and a limited-memory
Broyden-Fletcher-Goldfarb-Shanno with box constraints (L-BFGS-
B) iteration for updating the image and mass-attenuation spectrum
parameters, respectively. We prove the Kurdyka-Łojasiewicz prop-
erty of the objective function, which is important for establishing
local convergence of block-coordinate descent schemes in biconvex
optimization problems. Our framework applies to other NLLs and
signal-sparsity penalties, such as lognormal NLL and `1 norm of
2D discrete wavelet transform (DWT) image coefficients. Numerical
experiments with simulated and real X-ray CT data demonstrate
the performance of the proposed scheme.

Index Terms—X-ray CT, statistical model-based iterative recon-
struction (MBIR), beam-hardening correction.

I. Introduction

X-ray computed tomography (CT) measurement systems are
important in modern nondestructive evaluation (NDE) and medi-
cal diagnostics. The past decades have seen great progress in CT
hardware and (reconstruction) software development. CT sees
into the interior of the inspected object and gives 2D and 3D
reconstruction at a high resolution. It is a fast, high-resolution
method that can distinguish density differences as small as 1%.
As it shows the finest interior detail, it has been one of the most
important techniques in medical diagnosis, material analysis and
characterization, and NDE [1, 2]. Thanks to recent computational
and theoretical advances, such as graphics processing units
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(GPUs) and sparse signal reconstruction theory and methods, it
is now possible to design iterative reconstruction methods that
incorporate accurate nonlinear physical models into sparse signal
reconstructions from significantly undersampled measurements.
Due to the polychromatic nature of the X-ray source and the

fact that mass attenuation generally decreases as a function of
photon energy, the center of the spectrum shifts to higher energy
as X-rays traverse the object, an effect known as “hardening”
[3]. This effect destroys the linearity between the attenuation
coefficient and the logarithm of the noiseless measurements.
Therefore, linear reconstructions such as filtered backprojec-
tion (FBP) exhibit beam-hardening artifacts, e.g., cupping and
streaking [4, Ch. 7.6], which limit the quantitative analysis of
the reconstruction. In medical CT applications, severe artifacts
can look similar to certain pathologies and further mislead the
diagnosis [4, Sec. 7.6.2]. Fulfilling the promise of compressed
sensing and sparse signal reconstruction in X-ray CT depends
on accounting for the polychromatic measurements, in addition
to other effects such as ring artifacts, metal artifacts in medical
applications, X-ray scatter, and detector crosstalk and afterglow
[5, 6]. It is not clear how aliasing and beam-hardening artifacts
interact, and our experience is that we cannot achieve great
undersampling when applying sparse linear reconstruction to
polychromatic measurements. Indeed, the error caused by the
model mismatch may well be larger than the aliasing error that
we wish to correct using sparse signal reconstruction.
Beam-hardening correction methods can be categorized into

pre-filtering, linearization, dual-energy, and post-reconstruction
approaches [7]. Reconstruction methods have recently been
developed in [8–10] that aim to optimize nonlinear objective
functions based on the underlying physical model; [8, 9] assume
known incident polychromatic source spectrum and imaged ma-
terials, whereas [10] considers a blind scenario for a lognormal
measurement model with unknown incident spectrum and im-
aged materials, but employs a photon-energy discretization [11,
eq. (2)], [4, Sec. 8.4] with an excessive number of parameters
(which leads to permutation and scaling ambiguities; see [11] for
details) and suffers from numerical instability [12]. The methods
in [10] do not impose sparsity of the reconstructed density-map
image, only its nonnegativity, and they have been tested in [10]
using real and noiseless simulated data.
It is often expensive to determine the X-ray spectrum and the

materials of the object. X-ray spectrum measurements based on
semiconductor detectors are usually distorted by charge trapping,
escape events, and other effects [13], and the corresponding cor-
rection requires a highly collimated beam and special procedures
[14]. Even after measuring the spectrum, it is not feasible to scan
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different objects with fixed scanning configurations, e.g., X-ray
tube voltage, current, prefiltrations, and scanning time. Knowing
the mass-attenuation function can be challenging as well when
the inspected material is unknown or the inspected object is
made of a compound or a mixture with an unknown percentage
of each constituent.
In this paper (see also [11, 12, 15]), we adopt the nonlinear

measurement scenario resulting from the polychromatic X-ray
source and formulate a parsimonious measurement-model pa-
rameterization by exploiting the relationship between the mass-
attenuation coefficients, X-ray photon energy, and incident
spectrum; see Fig. 1a. This simplified model allows blind
density-map reconstruction and estimation of the composite
mass-attenuation spectrum ι.�/ in the case for which both
the mass attenuation and incident spectrum are unknown. We
develop a blind sparse density-map reconstruction scheme from
measurements corrupted by Poisson noise, where the signal
sparsity in the density-map domain is enforced using a total-
variation (TV) norm penalty. The Poisson noise model is ap-
propriate for measurements from photon-counting detectors and
a good approximation for the more precise compound Poisson
distribution for measurements from energy-integrating detectors
[16, 17].
Although we focus on Poisson noise and gradient-map image

sparsity in this paper, our framework is general and easy to
adapt to, for example, lognormal noise and image sparsity in a
2D discrete wavelet transform (DWT) domain; see [12, 15].
We introduce the notation: IN , 1N �1, and 0N �1 are the

identity matrix of size N and the N � 1 vectors of ones and
zeros, respectively (replaced by I; 1, and 0 when the dimensions
can be inferred easily); j�j, k�kp , and “T ” are the absolute
value, p̀ norm, and transpose, respectively. Denote by dxe the
smallest integer larger than or equal to x 2 R. For a vector
˛ D Œ˛1; : : : ; p̨�T 2 R

p , define the nonnegativity indicator
function

IŒ0;C1/.˛/ ,

(

0; a � 0

C1; otherwise
(1)

where “�” and “�”are the elementwise versions of “�” and
“>”, respectively. Furthermore, aL.s/ ,

R

a.�/e�s� d� is the
Laplace transform of a vector function a.�/ and

�

.��/ma
�L

.s/ D
Z

.��/ma.�/e�s� d� D dmaL.s/
dsm (2)

is the mth derivative of aL.s/. Define also the set of nonnegative
real numbers as RC D Œ0;C1/, the elementwise logarithm
lnı x D Œln x1; : : : ; ln xN �T where x D Œx1; x2; : : : ; xN �T ,
and Laplace transforms aL

ı.s/ D
�

aL.sn/
�N

nD1
and .�a/Lı.s/ D

�

.�a/L.sn/
�N

nD1
obtained by stacking aL.sn/ and .�a/L.sn/

columnwise, where s D Œs1; s2; : : : ; sN �T . We define the
proximal operator for function r.˛/ scaled by � [18]:

prox�r a D arg min
˛

1
2
k˛ � ak22 C �r.˛/: (3)

Finally, supp.�.�// is the support set of a function �.�/,
dom.f / D fx 2 R

n jf .x/ < C1g is the domain of function
f .�/, and diag.x/ is the diagonal matrix with diagonal elements
defined by the corresponding elements of vector x.

A. Polychromatic X-ray CT Model
We review the standard noiseless polychromatic X-ray CT

measurement model.
Assume that the incident intensity I in of a polychromatic X-

ray source spreads along photon energy " following the density
�."/ � 0:

I
in D

Z

�."/ d"I (4a)

see Fig. 1a, which shows a typical �."/. The noiseless measure-
ment collected by an energy-integrating detector upon traversing
a straight line ` D `.x; y/ in a Cartesian coordinate system has
the superposition-integral form [3, Ch. 4.1], [5, Sec. 6]:

I
out D

Z

�."/ exp

�

�
Z

`

�.x; y; "/ d`

�

d"

D
Z

�."/ exp

�

��."/

Z

`

˛.x; y/ d`

�

d"; (4b)

where we model the attenuation coefficients �.x; y; "/ of the in-
spected object consisting of a single material using the following
separable form [5, Sec. 6]:

�.x; y; "/ D �."/˛.x; y/: (5)

Here, �."/ > 0 is the mass-attenuation coefficient of the
material, a function of the photon energy " (illustrated in Fig. 1a),
and ˛.x; y/ � 0 is the density-map of the object. For a
monochromatic source at photon energy ", lnŒI in."/=Iout."/� is
a linear function of ˛.x; y/, which is a basis for traditional
linear reconstruction. However, X-rays generated by vacuum
tubes are not monochromatic [3, 4], and we cannot transform
the underlying noiseless measurements to a linear model unless
we know perfectly the incident energy spectrum �."/ and mass
attenuation of the inspected material �."/.
In Section II, we introduce our parsimonious parameterization

of the measurement model (4b) tailored for signal reconstruction.
In Section III, we define the parameters to be estimated and
discuss their identifiability. Section IV presents the measurement
model and establishes biconvexity of the underlying negative log-
likelihood (NLL) function with respect to the density-map and
mass-attenuation parameters. Section V introduces the penalized
NLL function that incorporates the parameter constraints, estab-
lishes its properties, and describes a block coordinate-descent
algorithm for its minimization. In Section VI, we show the
performance of the proposed method using simulated and real
X-ray CT data. Concluding remarks are given in Section VII.

II. Mass-Attenuation Parameterization

Since the mass attenuation �."/ and incident spectrum density
�."/ are both functions of " (see Fig. 1a), we combine the
variations of these two functions and write (4a) and (4b) as
integrals of � rather than ", seeking to represent our model using
two functions ι.�/ (defined below) and ˛.x; y/ instead of three
(�."/; �."/, and ˛.x; y/); see also [11]. Hence, we rewrite (4a)
and (4b) as (see Appendix A)

I
in D ι

L.0/ (6a)

I
out D ι

L
�Z

`

˛.x; y/ d`

�

; (6b)
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Fig. 1: (a) Mass-attenuation spectrum ι.�/ obtained by combining the mass attenuation �."/ and incident spectrum �."/ and (b)
its B1-spline expansion, with �-axis in log scale.

where ι
L.s/ D

R

ι.�/e�s� d� is the Laplace transform of the
mass-attenuation spectrum ι.�/, which represents the density
of the incident X-ray energy at attenuation �; here, s > 0,
in contrast with the traditional Laplace transform where s

is generally complex. For invertible �."/ with differentiable
inverse function ".�/,

ι.�/ , �.".�//j"0.�/j � 0 (7)

with "0.�/ D d".�/= d�. In Fig. 1a, the area �."j /�"j depicting
the X-ray energy within the �"j slot is the same as area
ι.�j /��j , the amount of X-ray energy attenuated within the
corresponding ��j slot. In Appendix A, we generalize (7) to
non-invertible �."/ with K-edges.
The mass-attenuation spectrum ι.�/ is nonnegative for all �;

see (7) and its generalization (A1) in Appendix A. Due to its
nonnegative support and range, ιL.s/ is a decreasing function
of s. Here, s > 0, in contrast with the traditional Laplace
transform where s is generally complex. The function .ιL/�1

maps the noiseless measurement Iout in (6), which is a nonlinear
function of the density-map ˛.x; y/, into a noiseless linear
“measurement”

R

` ˛.x; y/ d`. The .ιL/�1 ı exp.��/ mapping
corresponds to the linearization function in [19] (where it was
defined through (4b) rather than the mass-attenuation spectrum)
and converts �ln Iout into a noiseless linear “measurement”
R

` ˛.x; y/ d`.
The mass-attenuation spectrum depends on the measurement

system (through the incident energy spectrum) and inspected ob-
ject (through the mass attenuation of the inspected material). In
the blind scenario with unknown inspected material and incident
signal spectrum, parameterization (6) allows us to estimate two
functions: ι.�/ and ˛.x; y/ rather than three: �."/; �."/, and
˛.x; y/. This blind scenario is the focus of this paper.

III. Discrete Parameter Definition and Ambiguity

We first define the discrete density map and mass-attenuation
spectrum parameters and then discuss their identifiability.

A. Density-map discretization and mass-attenuation spectrum
basis-function expansion
Upon spatial-domain discretization into p pixels, approximate

the integral
R

`
˛.x; y/ d` with �T ˛:

Z

`

˛.x; y/ d` D �T ˛; (8)

where ˛ � 0 is a p � 1 vector representing the 2D image that
we wish to reconstruct and � � 0 is a p � 1 vector of known
weights quantifying how much each element of ˛ contributes to
the X-ray attenuation on the straight-line path `. An X-ray CT
scan consists of hundreds of projections with the beam intensity
measured by thousands of detectors for each projection. Denote
by N the total number of measurements from all projections
collected at the detector array. For the nth measurement, define
its discretized line integral as �T

n ˛. Stacking all N such integrals
into a vector yields ˆ˛, where

ˆ D
h

�1 �2 � � � �N

iT

2 R
N �p (9)

is the projection matrix, also known as the Radon transform ma-
trix in a parallel-beam X-ray tomographic imaging system. We
call the corresponding transformation, ˆ˛, the monochromatic
projection of ˛.
Approximate ι.�/ with a linear combination of J (J � N )

basis functions:

ι.�/ D b.�/I; (10a)

where

I , ŒI1; I2; : : : ; IJ �T � 0 (10b)

is the J � 1 vector of corresponding basis-function coefficients,
and the 1 � J row-vector function

b.�/ ,
�

b1.�/; b2.�/; : : : ; bJ .�/
�

(11)

consists of B-splines [20] of order one (termed B1 splines,
illustrated in Fig. 1b). In this case, the decomposition (10a)
yields nonnegative elements of the spline coefficients I (based
on (7)) and thus allows us to impose the physically meaningful
nonnegativity constraint (10b) when estimating I . Substituting
(8) and (10a) into (6a)–(6b) for each of the N measurements
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yields the following expressions for the incident energy and the
N � 1 vector of noiseless measurements:

I
in.I/ D bL.0/I (12a)

I
out.˛;I/ D bL

ı.ˆ˛/I (12b)

where, following the notation introduced in Section I, bL
ı.s/ D

�

bL.sn/
�N

nD1
is an output basis-function matrix obtained by

stacking the 1 � J vectors bL.sn/ columnwise, and s D ˆ˛

is the monochromatic projection. Since the Laplace transform
of (11) (see also (13b)) can be computed analytically, bL.s/

has a closed-form expression.
1) Spline selection: We select the spline knots from a grow-

ing geometric series .�j /J C1
j D0 with �0 > 0:

�j D qj �0 (13a)

and common ratio q > 1, which yields the B1 splines

bj .�/ D

‚
���j �1

�j ��j �1
; �j �1 � � < �j

��C�j C1

�j C1��j
; �j � � < �j C1

0; otherwise

(13b)

that satisfy the q-scaling property:

bj .�/ D bj C1.q�/ (13c)

see also Fig. 1b. The geometric-series knots (13a) appear
uniformly spaced in Fig. 1b because the �-axis in this figure
is shown in the log scale. When computing bL

j .�T
n ˛/, larger

j implies exponentially smaller e��T
n ˛� terms within the in-

tegral range Œ�j �1; �j C1/. The geometric-series knot selection
(13a) compensates for larger j with a geometrically wider
integral range Œ�j �1; �j C1/, which results in a more effective
approximation of (6). In particular, this knot selection leads

to
�

bL
j .�T

n ˛/
�J

j D1
with similar values for different values of

j , which allows us to balance the weight of each
�

Ij

�J

j D1
in

bL.�T
n ˛/I . Furthermore, the geometric-series knots (13a) span

a range from �0 to �J C1, which can be made wide with a
moderate number of knots J .
The common ratio q determines the resolution of the B1-

spline approximation. Here, we select q and J so that the range
of � spanning the mass-attenuation spectrum is constant:

�J C1

�0

D qJ C1 D const: (13d)

In summary, the following three tuning constants define our B1-
spline basis functions b.�/:

.q; �0; J /: (13e)

B. Density-map and mass-attenuation spectrum ambiguities
By noting (13c) and the �-scaling property of the Laplace

transform,

bj .q�/
L! 1

q
bL

j

�

s

q

�

; q > 0 (14)

we conclude that selecting basis functions
�

b0.�/; b1.�/; : : : ; bJ �1.�/
�

that are q times narrower

than those in b.�/ and density-map and spectral parameters q

times larger than ˛ and I : q˛ and qI , yields the same mean
output photon energy. Consequently,

I
out�

˛; Œ0; I2; : : : ; IJ �T
�

D I
out�

q˛; qŒI2; : : : ; IJ ; 0�T
�

: (15)

We refer to this property as the shift ambiguity of the mass-
attenuation spectrum, which allows us to rearrange leading or
trailing zeros in the mass-attenuation coefficient vector I and
position the central nonzero part of I .

C. Rank of bL
ı.ˆ˛/ and selection of the number of splines J

If bL
ı.ˆ˛/ does not have full column rank, then I is not

identifiable even if ˛ is known; see (12b). The estimation of I
may be numerically unstable if bL

ı.ˆ˛/ is poorly conditioned
and has small minimum singular values. We can think of
the noiseless X-ray CT measurements as bL.s/I sampled at
different s D �T

n ˛ 2
�

0; maxn.�T
n ˛/

�

. If we could collect all
s 2 Œ0; a�; a > 0 (denoted s), the corresponding bL

ı.s/ would be
a full-rank matrix; see [12, Lemma 1 in Sec. II-B]. If our data
collection system can sample over

�

0; maxn.�T
n ˛/

�

sufficiently
densely, we expect bL

ı.ˆ˛/ to have full column rank.
As the number of splines J increases for fixed support

Œ�0; �J C1� (see (13d)), we achieve better resolution of the mass-
attenuation spectrum, but bL

ı.ˆ˛/ becomes poorly conditioned
with its smallest singular values approaching zero. To estimate
this spectrum well, we should choose a J that provides both
good resolution and sufficiently large smallest singular value
of bL

ı.ˆ˛/. Fortunately, we focus on the reconstruction of ˛,
which is affected by I only through the function bL.s/I , and
bL.s/I is stable as we increase J . Indeed, we observe that when
we choose a J significantly larger than the rank of bL

ı.ˆ˛/, the
estimation of ˛ will be good and bL.s/I stable, even though
the estimation of I is poor due to its non-identifiability. The
increase of J will also increase the computational complexity
of signal reconstruction under the blind scenario for which the
mass-attenuation spectrum is unknown.

IV. Measurement Model and Its Properties

For an N �1 vector E of independent Poisson measurements,
the NLL in the form of generalized Kullback-Leibler divergence
[21] is (see also (12b))

L.˛;I/ D 1T
�

I
out.˛;I/ � E

�

�
X

n;En¤0

En ln
Iout

n .˛;I/

En

: (16)

In the following, we express the NLL (16) as a function of
˛ with I fixed and vice versa, and derive conditions for its
convexity under the two scenarios. These results will then be
used to establish biconvexity conditions for this NLL.

NLL of ˛. Recall (10a) and define

ι
L
ı.ˆ˛/ D bL

ı.ˆ˛/I (17)

obtained by stacking
�

ι
L.�T

n ˛/
�N

nD1
columnwise. The NLL of

˛ for fixed I is

Lι.˛/ D 1T
�

ι
L
ı.ˆ˛/ � E

�

�
X

n;En¤0

En ln
ι
L
�

�T
n ˛
�

En

; (18)
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which corresponds to the Poisson generalized linear model
(GLM) with design matrix ˆ and link function equal to the
inverse of ιL.�/. See [22] for an introduction to GLMs.
To establish convexity of the NLL (18), we enforce mono-

tonicity of the mass-attenuation spectrum ι.�/ in low- and high-
� regions and also assume that the mid-� region has higher
spectrum than the low-� region. Note that we do not require here
that ι.�/ satisfy the basis-function expansion (10a); however,
(10a) will be needed to establish the biconvexity of the NLL
in (16). Hence, we define the three � regions using the spline
parameters (13e) as well as an additional integer constant

j0 � d.J C 1/=2e: (19a)

In particular, �J C1�j0
and �j0

partition the range Œ�0; �J C1�

into the low-, mid-, and high-� regions: Klow, Kmid, and Khigh,
respectively, see Fig. 1b.

Assumption 1: The mass-attenuation spectrum satisfies

A D
n

ι W Œ�0; �J C1�! RC
ˇ

ˇ

ι non-decreasing in Klow;

non-increasing in Khigh, and

ι.�/ � ι

�

�J C1�j0

�

8� 2Kmid

o

: (20a)

If the basis-function expansion (10a) holds, (20a) reduces to

A D
n

I 2 R
J
C
ˇ

ˇ I1 � I2 � � � � � IJ C1�j0
; Ij0

� � � � � IJ ;

and Ij � IJ C1�j0
; 8j 2 ŒJ C 1 � j0; j0�

o

: (20b)

Here, the monotonic low- and high-� regions each contain J�j0

knots, whereas the central region contains 2j0 � J knots in the
B1-spline representation.
In practice, the X-ray spectrum �."/ starts at the lowest

effective energy that can penetrate the object, vanishes at the
tube voltage (the highest photon energy), and has a region in the
center higher than the two ends; see Fig. 1a. When the support
of �."/ is free of K-edges (see the discussion in Appendix A),
the mass-attenuation coefficient �."/ is a monotonic function
of "; thus ι.�/ as a function of � has similar shape as �."/ as
a function of ", which justifies Assumption 1. If a K-edge is
present within the support of �."/, it is difficult to infer the shape
of ι.�/. In most cases, Assumption 1 holds.
For the approximation of ι.�/ using a B1-spline basis expan-

sion, as long as Œ�0; �J C1� is sufficiently large to cover the range
of �."/ with " 2 supp.�."//, we can always meet Assumption 1
by the appropriate selection of j0.
Multiple different .˛;I/ share the same noiseless output

I
out.˛;I/ and thus the same NLL; see Section III-B. In

particular, equivalent .˛;I/ can be constructed by left- or right-
shifting the mass attenuation spectrum and properly rescaling it
and the density-map; see (15).

Lemma 1: Provided that Assumption 1 holds, the Poisson NLL
Lι.˛/ is a convex function of ˛ over the following region:

�

˛

ˇ

ˇ

ˇ ι
L
ı.ˆ˛/ � .1 � V /E; ˛ 2 R

p
C

�

(21a)

where

V ,
2qj0

q2j0 C 1
: (21b)

Proof: See Appendix B.
Note that (21a) is only a subset of the region where Lι.˛/

is convex and that Lemma 1 does not assume a basis-function
expansion of the mass-attenuation spectrum, only that it satisfies
(20a).
The condition in (21a) corresponds to lower-bounding

Iout
n .˛;I/

ı

En by 1�V for all n. The constant V is a function
of qj0 , which is the ratio of the point where ι.�/ starts to be
monotonically decreasing to the point where the support of ι.�/

starts; see Fig. 1b.
NLL of I . The NLL of I for fixed ˛ reduces to a Poisson

GLM with design matrix

A D bL
ı.ˆ˛/ (22a)

all of whose elements are positive, and the identity link function:

LA.I/ D 1T .AI � E/ �
X

n;En¤0

En ln
ŒAI�n

En

: (22b)

We now prove the convexity of LA.I/.
Lemma 2: The NLL LA.I/ in (22b) is a convex function of

I for all I 2 R
J
C.

Proof: The Hessian of the NLL in (22b)

@2LA.I/

@I@IT
D AT diag.E/ diag�2.AI/A (23)

is positive semidefinite. Thus, LA.I/ is convex on R
J
C.

The Hessian expression in (23) implies that LA.I/ in (22b) is
strongly convex if the design matrix A has full rank. Combining
the convexity results in Lemmas 1 and 2 yields the biconvexity
region for the NLL L.˛;I/ in (16).

Theorem 1 (Biconvexity of the NLL): Suppose that Assump-
tion 1 in (20b) holds. Then, the Poisson NLL (16) is biconvex
[23] with respect to ˛ and I in the following set:

P D
n

.˛;I/
ˇ

ˇI
out.˛;I/ � .1 � V /E;I 2 A; ˛ 2 R

p
C

o

; (24)

which bounds Iout
n .˛;I/

ı

En from below by 1 � V for all n;
see also (21b).

Proof: We first show the convexity of P with respect to
each variable (˛ and I) with the other fixed. We then show the
convexity of the NLL (16) for each variable.
Region A in (20b) is a subspace, thus a convex set. Since Iout

in (12b) is a linear function of I , the inequalities comparing
I
out to constants specify a convex set. Therefore, P˛ D

˚

I j .˛;I/ 2 P
	

is convex for fixed ˛ 2 R
p
C, for it is the

intersection of the subspace A and a convex set via Iout. Since
bj .�/ � 0,

�

bL
j .s/

�J

j D1
D
R �j C1

�j �1
bj .�/e�s� d� are decreasing

functions of s, which, together with the fact that I � 0, implies
that bL.s/I is a decreasing function of s. Since the linear
transform ˆ˛ preserves convexity, PI D

˚

˛ j .˛;I/ 2 P
	

is
convex with respect to ˛ for fixed I 2 A. Therefore, P is
biconvex with respect to I and ˛.
Observe that P in (24) is the intersection of the regions

specified by Assumption 1 and Lemmas 1 and 2. Thus, within
P , the Poisson NLL (16) is a convex function of ˛ for fixed I

and a convex function of I for fixed ˛, respectively.
By combining the above region and function convexity results,

we conclude that (16) is biconvex within P .
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In [12], we establish conditions for biconvexity of the NLL under
the lognormal noise model.

V. Parameter Estimation

Our goal is to compute penalized maximum-likelihood esti-
mates of the density-map and mass-attenuation spectrum param-
eters .˛;I/ by solving the following minimization problem:

min
˛;I

f .˛;I/ (25a)

where

f .˛;I/ D L.˛;I/C ur.˛/C IŒ0;C1/.I/ (25b)

r.˛/ D
p
X

iD1

s

X

j 2Ni

.˛i � j̨ /2 C IŒ0;C1/.˛/ (25c)

are the penalized NLL objective function and the density-map
regularization term that enforces nonnegativity and sparsity of
the image ˛; u > 0 is a scalar tuning constant. We impose the
nonnegativity of the mass-attenuation coefficients (10b) using
the indicator-function term in (25b). Here, Ni is the index set
of neighbors of ˛i , where the elements of ˛ are arranged to
form a 2D image: Each set Ni consists of two pixels at most,
with one on the top and the other on the right of the i th pixel,
if possible [24].

A. Properties of the objective function f .˛;I/

Since r.˛/ in (25c) and IŒ0;C1/.I/ in (25b) are convex
functions of ˛ and I for all ˛ � 0 and I � 0, the following
holds:

Corollary 1: The objective f .˛;I/ in (25b) is biconvex with
respect to ˛ and I under the conditions specified by Theorem 1.
Although the NLL may have multiple local minima of the

form ql y̨ with integer l (see Section III-B), those with large
l can be eliminated by the regularization penalty, see the
discussion in [12, Sec. IV-A].
We now show that the objective function (25b) satisfies the

Kurdyka-Łojasiewicz (KL) property [25], which is important for
establishing local convergence of block-coordinate schemes in
biconvex optimization problems. The KL property [25] regular-
izes the (sub)gradient of a function through its value at a certain
point or over the whole domain and also ensures the steepness
of the function around the optimum so that the length of the
gradient trajectory is bounded.

Theorem 2 (KL Property): The objective function f .˛;I/

satisfies the KL property in any compact subset C � dom.f /.
Proof: See Appendix C.

Note that all .˛;I/ that lead to positive noiseless measure-
ments, i.e. Iout.˛;I/ � 0, are in the domain of f , which
excludes the case I D 0 when no incident X-ray is applied;
see also (12b).

B. Minimization algorithm
The parameters that we wish to estimate are naturally divided

into two blocks, ˛ and I . The large size of ˛ prohibits effective
second-order methods under sparsity regularization, whereas I
has much smaller size and only nonnegative constraints, thus

allowing for more sophisticated solvers, such as the quasi-
Newton Broyden-Fletcher-Goldfarb-Shanno (BFGS) approach
[26, Sec. 4.3.3.4] that we adopt here. In addition, the scaling
difference between ˛ and I can be significant, so that the joint
gradient method for ˛ and I together would converge slowly.
Therefore, we adopt a block coordinate-descent algorithm to
minimize f .˛;I/ in (25b), where the Nesterov’s proximal-
gradient (NPG) [27, 28] and limited-memory BFGS with box
constraints (L-BFGS-B) [29] methods are employed to update
estimates of the density-map and mass-attenuation spectrum
parameters, respectively. The choice of block coordinate-descent
optimization is also motivated by the related alternate convex
search (ACS) and block coordinate-descent schemes in [23]
and [30], respectively, both with convergence guarantees under
certain conditions.
We minimize the objective function (25b) by alternatively

updating ˛ and I using Steps 1 and 2, respectively, where
Iteration i proceeds as follows:
1) (NPG) Set the mass-attenuation spectrum ι.�/ D

b.�/I.i�1/, treat it as known1, and descend the regularized
NLL function f .˛;I.i�1// D Lι.˛/C ur.˛/ by applying
an NPG step for ˛, which yields ˛.i/:

� .i/ D 1

2

�

1C
q

1C 4
�

� .i�1/
�2

�

(26a)

x̨.i/ D ˛.i�1/ C � .i�1/ � 1

� .i/

�

˛.i�1/ � ˛.i�2/
�

(26b)

˛.i/ D proxˇ .i/ur

�

x̨.i/ � ˇ.i/rLι

�

x̨.i/
�

�

(26c)

where the minimization (26c) is computed using an inner
iteration that employs the TV-based denoising method in
[24, Sec. IV], and ˇ.i/ > 0 is an adaptive step size chosen
to satisfy the majorization condition:

Lι

�

˛.i/
�

� Lι

�

x̨.i/
�

C
�

˛.i/ � x̨.i/
�TrLι

�

x̨.i/
�

C 1

2ˇ.i/





˛.i/ � x̨.i/






2

2
(26d)

using an adaptation scheme [31] that aims at finding the
largest ˇ.i/ that satisfies (26d):
i) � if there have been no step-size backtracking events or

increase attempts for n consecutive iterations (i � n

to i �1), start with a larger step size x̌.i/ D ˇ.i�1/=�

where � 2 .0; 1/ is a step-size adaptation parameter;
� otherwise start with x̌.i/ D ˇ.i�1/;

ii) (backtracking search) select

ˇ.i/ D � ti x̌.i/ (27a)

where ti � 0 is the smallest integer such that (27a)
satisfies the majorization condition (26d); backtracking
event corresponds to ti > 0.

We select the initial step size x̌.0/ using the Barzilai-Borwein
(BB) method [32]. We also apply the function restart [33]
to restore the monotonicity and improve convergence; see
the following discussion.

2) (BFGS) Set the design matrix A D bL
ı
�

ˆ˛.i/
�

, treat it
as known2, and minimize the regularized NLL function

1This selection corresponds to Lι.˛/ D L
�

˛;I.i�1/
�

; see also (18).
2This selection corresponds to LA.I/ D L

�

˛.i/;I
�

; see also (22b).
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f
�

˛.i/;I
�

with respect to I ; i.e.,

I
.i/ D arg min

I�0
LA.I/ (28)

using the inner L-BFGS-B iteration, initialized by I
.i�1/.

Iterate between Steps 1 and 2 until the relative distance of
consecutive iterates of the density map ˛ does not change
significantly:





˛.i/ � ˛.i�1/






2
< �





˛.i/






2
; (29)

where � > 0 is the convergence threshold. The convergence
criteria for the inner TV-denoising and L-BFGS-B iterations in
Steps 1 and 2 are chosen to trade off the accuracy and speed of
the inner iterations and provide sufficiently accurate solutions to
(26c) and (28); see [12, Sec. IV-B2] for details.
We refer to the iteration between Steps 1 and 2 as the NPG-

BFGS algorithm: it is the first physical-model–based image
reconstruction method for simultaneous blind sparse image
reconstruction and mass-attenuation spectrum estimation from
polychromatic measurements; see also our preliminary work in
[11]. In [11], we approximated Laplace integrals with Riemann
sums, used a smooth approximation of the nonnegativity penal-
ties in (25c), and did not employ signal-sparsity regularization.
If the mass-attenuation spectrum ι.�/ is known and we iterate

Step 1 only to estimate the density-map image ˛, we refer to
this iteration as the NPG algorithm (known ι.�/).
If we do not apply the Nesterov’s acceleration (26a)–(26b)

and use only the proximal-gradient (PG) step (26c) to update
the density-map iterates ˛, i.e., assign (31c) instead of (26b) in
every iteration, we refer to the corresponding iteration as the
PG-BFGS algorithm.

Scale-and-shift adjustment of the NPG-BFGS and PG-
BFGS estimates. Denote by yI and y̨ the mass-attenuation
spectrum parameter and density-map image estimates upon
convergence of the NPG-BFGS iteration. To emphasize the
dependence of the objective function (25b) on u, we denote
it here by fu.˛;I/. If the last element yIJ of yI is zero, we
can trivially improve this objective function by using the shift
ambiguity: remove this zero element by circularly shifting yI and
divide yI and y̨ by q; after this adjustment, we would need to con-
tinue the NPG-BFGS iteration and seek the new local minimum.
However, we can avoid additional iteration and simply adjust the
regularization constant u as well as y̨ and yI by assigning new
values to them: .u; y̨; yI/  

�

qu; y̨=q; Œ0; yI1; : : : ; yIJ �1�T =q
�

.
Apply this adjustment sequentially until the last element of the
new yI is nonzero, which yields a local minimum

�

y̨; yI
�

of the
new objective function fu.˛;I/ that is not possible to improve
on by a simple shift adjustment. Our empirical experience is
that scale-and-shift adjustment is either not needed (no zero
elements at the end of yI) or minor (very few zero elements): it
slightly changes the grid of u over which we search for the best
reconstructions, see also Section VI for discussion on selection
of u.

C. Function restart and monotonicity
If f

�

˛;I.i�1/
�

is a convex function of ˛, apply [28,
Lemma 2.3] to establish that the iterate ˛.i/ attains lower (or

equal) objective function than the intermediate signal x̨.i/

f
�

˛.i/;I.i�1/
�

� f
�

x̨.i/;I.i�1/
�

� 1

2ˇ.i/





˛.i/ � x̨.i/






2

2
; (30)

where we have used the fact that step size ˇ.i/ satisfies the
majorization condition (26d). However, (30) does not guarantee
monotonicity of Step 1. We apply the function restart [33] to
ensure this monotonicity and improve convergence. In particular,
we apply the function restart as follows: if monotonicity of
Step 1 is violated in Iteration i , i.e., if

f
�

˛.i/;I.i�1/
�

> f
�

˛.i�1/;I.i�1/
�

(restart cond.) (31a)

set

� .i�1/ D 1 (31b)

and repeat Step 1 using this selection. In this repeated step, the
momentum term �.i�1/�1

�.i/

�

˛.i�1/ � ˛.i�2/
�

in (26b) becomes
zero, and

x̨.i/ D ˛.i�1/ (31c)

holds. Consequently, the new Step 1 is monotonic:

f
�

˛.i/;I.i�1/
�

� f
�

˛.i�1/;I.i�1/
�

; (31d)

which follows by substituting (31c) into (30).
Once we can guarantee the monotonicity of Step 1 in every

Iteration i , it is easy to establish the monotonicity of the entire
NPG-BFGS iteration:

Remark 1 (Monotonicity): Under condition (24) of Theorem 1,
the NPG-BFGS iteration with function restart is monotonically
non-increasing:

f
�

˛.i/;I.i/
�

� f
�

˛.i�1/;I.i�1/
�

(32)

for all i .
Proof: Under condition (24), f

�

˛;I
�

is a convex function
of ˛. In this case, we have established that (31d) holds and Step 1
is monotonic. By Step 2, f

�

˛.i/;I.i�1/
�

� f
�

˛.i/;I.i/
�

and
(32) follows.
Clearly, PG-BFGS and NPG (for known ι.�/) are monotonic
as well under the convexity condition (24). To derive the
monotonicity results, we have used only the fact that step size
ˇ.i/ satisfies the majorization condition (26d), rather than using
any specific details of the step-size selection.
In the following, we show that our PG-BFGS algorithm

converges to a critical point of the objective function; inter-
estingly, this convergence analysis does not require convexity
of the objective function with respect to ˛. Unfortunately, these
theoretical convergence properties do not carry over to the NPG-
BFGS iteration, which empirically outperforms the PG-BFGS
method; see Figs. 5 and 10 in Section VI.

D. Convergence analysis of the PG-BFGS iteration
We analyze the convergence of the PG-BFGS iteration using

arguments similar to those in [30]. Although NPG-BFGS con-
verges faster than PG-BFGS empirically, it is not easy to analyze
its convergence due to NPG’s Nesterov’s acceleration step and
adaptive step size. In this section, we denote the sequence of
PG-BFGS iterates by

˚�

˛.i/;I.i/
�	1

iD0
.
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We have established the monotonicity of the PG-BFGS iter-
ation for step sizes ˇ.i/ that satisfy the majorization condition,
which includes the above step-size selection as well.
Since our f .˛;I/ are lower bounded (which is easy to argue;

see Appendix C), the sequence f .˛.i/;I.i// converges. It is also
easy to conclude that the sequence ai ,





˛.i/ � ˛.i�1/






2

2
=ˇ.i/

is Cauchy by showing
P1

iD0 ai < C1 according to (30) when
(31c) holds. Thus ˛.i/ converges if fˇ.i/g1iD1 is upper bounded.
A better result

P1
iD0





˛.i/ � ˛.iC1/






2
< C1 [30] can be

established because f .˛;I/ satisfies the KL property. This
property has been first used in [25] to establish the critical-point
convergence for an alternating proximal-minimization method,
which is then extended in [30] to the more general block
coordinate-descent method. Using the analysis in [25], [34]
shows the convergence of the alternating proximal-minimization
algorithm by applying the KL property to a biconvex objective
function.
Next, we make the following claim on the convergence of the

PG-BFGS iteration.
Theorem 3: Consider the sequence

˚�

˛.i/;I.i/
�	1

iD0
of PG-

BFGS iterates, with step size ˇ.i/ satisfying the majorization
condition (26d). Assume
1) bounded step size: there exist positive ˇC > ˇ� > 0 such

that ˇ.i/ 2 Œˇ�; ˇC� for all i ,
2) L.˛;I/ is a strongly convex function of I , and
3) the gradient of L.˛;I/ with respect to .˛;I/ is Lipschitz

continuous.
Then

�

˛.i/;I.i/
�

converges to one of the critical points
�

˛?;I?
�

of f .˛;I/ and
1
X

iD1





˛.iC1/ � ˛.i/






2
< C1;

1
X

iD1





I
.iC1/ � I

.i/






2
< C1:

(33)

Proof: We apply [30, Lemma 2.6] to establish the conver-
gence of

˚�

˛.i/;I.i/
�	C1

iD1
. Since r.˛/ in (25c) and IŒ0;C1/.I/

are lower-bounded, we need to prove only that (16) is lower-
bounded. By using the fact that ln x � x � 1, we have

L.˛;I/ � 0: (34)

According to the assumption, f .˛;I/ is strongly convex over
I and the step size ˇ.i/ is bounded. Hence, there exist constants
0 < l < L < C1 such that

f
�

˛.iC1/;I.i/
�

� f
�

˛.iC1/;I.iC1/
�

� l

2





I
.i/ � I

.iC1/






2

2

L � 1

ˇ.i/
� l:

In addition, f .˛;I/ satisfies the KL property according to The-
orem 2. We have now verified all conditions of [30, Lemma 2.6].

The conditions for strong convexity of L.˛;I/ as a function
of I are discussed in Section IV; see also Section III-C. The
KL property can provide guarantees on the convergence rate
under additional assumptions; see [25, Theorem 3.4]. The con-
vergence properties of NPG-BFGS are of great interest because
NPG-BFGS converges faster than PG-BFGS; establishing these
properties is left as future work.
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Fig. 2: (a) Density-map image used to generate the sinogram, and
(b) mass attenuation and incident X-ray spectrum as functions
of the photon energy ".

VI. Numerical Examples

We now evaluate the proposed algorithms using simulated
and real-data examples.
We construct the fan-beam X-ray projection transform matrix

ˆ and its adjoint operator ˆT directly on GPU with circular
masks [35]; the multi-thread version on CPU is also available;
see https://github.com/isucsp/imgRecSrc, which also contains
Matlab implementation of the proposed algorithms.

A. Simulation example
Consider the reconstruction of the 512 � 512 image in Fig. 2a

of an iron object with density-map ˛true. We generated a fan-
beam polychromatic sinogram, with distance from the X-ray
source to the rotation center equal to 2000 times the pixel size,
using the interpolated mass attenuation �."/ of iron [36] and
the incident spectrum �."/ from tungsten anode X-ray tubes
at 140 keV with 5% relative voltage ripple [37]; see Fig. 2b.
The mass-attenuation spectrum ι.�/ is constructed by combining
�."/ and �."/ and shown in Fig. 1b, see also Fig. 1a. Our
simulated approximation of the noiseless measurements uses
130 equi-spaced discretization points over the range 20 keV
to 140 keV. We simulated independent Poisson measurements
.En/N

nD1 with means .E En/N
nD1 D I

out.˛;I/. We mimic real
X-ray CT system calibration by scaling projection matrix ˆ

and spectrum �."/ so that the maximum and minimum of the
noiseless measurements .E En/N

nD1 are 216 and 20, respectively.
Here, the scale of ˆ corresponds to the real size that each image
pixel represents, and the scale of �."/ corresponds to the current
of the electrons hitting the tungsten anode as well as the overall
scanning time.
Our goal is to reconstruct a 512 � 512 density-map using the

measurements from an energy-integrating detector array of size
512 for each projection.
Since the true density-map is known, we adopt relative square

error (RSE) as the main metric to assess the performance of the
compared algorithms:

RSEfy̨g D 1 �
 

y̨T
˛true

ky̨k2k˛truek2

!2

(36)

where ˛true and y̨ are the true and reconstructed signals, respec-
tively. Note that (36) is invariant to scaling y̨ by a nonzero
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constant, which is needed because the magnitude level of ˛ is
not identifiable due to the ambiguity of the density-map and
mass-attenuation spectrum; see Section III-B.
We compare
� the traditional FBP methods

– without linearization [3, Ch. 3] (termed FBP) and
– with linearization to correct for the polychromatic source
[19] (linearized FBP)

based on the ‘data’

y D �lnı E (without linearization) (37a)
y D

�

ι
L��1

ı .E/ (with linearization) (37b)

respectively;
� linearized basis pursuit denoising (linearized BPDN), which
applies the NPG approach to solve the analysis BPDN
problem [24]: min˛

1
2
ky � ˆ˛k22 C u0r.˛/, where y are

the linearized measurements in (37b) and the penalty r.˛/

has been defined in (25c);
� our

– NPG-BFGS algorithm with the B1-spline tuning con-
stants (13e) chosen to satisfy

qJ D 103; �d0:5.J C1/e D 1; J D 30 (38)

– NPG (known ι.�/) algorithm for estimating ˛

with n D 4; see Section V-B.
The linearizing transform (37b) assumes knowledge of the

mass-attenuation spectrum ι.�/ and, in the absence of noise,
leads to the linear model y D ˆ˛ under the general
polychromatic-source scenario. In contrast, the standard loga-
rithm transformation of the X-ray measurements (37a) ignores
the hardening effect and can possibly lead to the linear model
only for monochromatic X-ray sources. If the X-ray source
is monochromatic, (37a) and (37b) coincide up to a known
additive constant, and the two FBP methods are identical; in this
case, linearized BPDN also coincides with the standard analysis
BPDN approach applied to X-ray CT data.
For all methods that use sparsity and nonnegativity regulariza-

tion (NPG-BFGS, NPG, and linearized BPDN), the regulariza-
tion constants u and u0 have been tuned manually for the best
average RSE performance for each number of projections using
a 9-point grid spanning 9 orders of magnitude.
All iterative algorithms employ the convergence criterion

(29) with the threshold � D 10�6 and the maximum number
of iterations set to 4000. We initialize iterative reconstruction
schemes with or without linearization using the corresponding
FBP reconstructions; see also [12, Sec. IV-B4] for details on
NPG-BFGS initialization.
Here, the non-blind linearized FBP, NPG (known ι.�/), and

linearized BPDN methods assume known ι.�/ (which requires
knowledge of the incident spectrum of the X-ray machine and
mass attenuation (material)), computed using (10a), with I equal
to the exact sampled ι.�/ and J D 100 spline basis functions
spanning three orders of magnitude.
Neither FBP nor NPG-BFGS assumes knowledge of the

mass-attenuation spectrum ι.�/: FBP ignores the polychromatic-
source effects whereas NPG-BFGS corrects blindly for these
effects without knowledge of ι.�/.

Figs. 3 and 4 show the reconstructed density-map images and
profiles of different methods from 60 equi-spaced fan-beam pro-
jections with spacing 6ı, using one realization of noisy Poisson
measurements. Fig. 5 shows the RSEs of several methods as
functions of the iteration index i and demonstrates that RSE
of NPG-BFGS decreases significantly faster with increasing i

than the RSE of PG-BFGS; NPG-BFGS also converges faster
than PG-BFGS. The FBP reconstruction in Fig. 3a is corrupted
by both aliasing and beam-hardening (cupping and streaking)
artifacts. Linearized FBP removes the beam-hardening artifacts
but retains the aliasing artifacts and enhances noise due to
the zero-forcing nature of linearization; see Fig. 3b. Linearized
BPDN enforces the signal nonnegativity and sparsity constraints
and achieves a smooth reconstruction in Fig. 3d with a 0.55%
RSE. Thanks to the superiority of the proposed model that
accounts for both the polychromatic X-ray source and Poisson
noise, NPG-BFGS and NPG achieve the best (and nearly the
same) reconstructions; see Fig. 3e.
We also show in Fig. 3c the reconstruction by the NPG-

BFGS method with very small u (labeled NPG-BFGS0), which
effectively removes the signal sparsity constraint and imposes
only the signal nonnegativity constraint; consequently, Step 1 in
NPG-BFGS0 iteration has a closed form and reduces to simple
nonnegativity thresholding. Hence, NPG-BFGS0 is a maximum-
likelihood (ML) approach that aims at minimizing the NLL (16)
subject to the physical parameter constraints ˛ � 0 and I � 0.
As NPG-BFGS0 iterates, its RSE decreases, reaches a minimum,
and then increases; see Fig. 5. This is a common behavior for
unregularized ML image reconstruction approaches [38]. Fig. 3c
shows this method’s reconstruction at iteration step i D 500,
which gives the best RSE; see also Fig. 5. Since it terminates
early and has a simple Step 1, NPG-BFGS0 running only 500
iterations is roughly 8 times faster than NPG-BFGS. The NPG-
BFGS0 method can be thought of as an improved version of [11],
which also imposes only signal nonnegativity. A comparison
of NPG-BFGS0 and NPG-BFGS shows the benefit of signal-
sparsity regularization.
Figs. 4a and 4b show the reconstruction profiles of the

250th column, indicated by the red line in Fig. 3a. Recall that
NPG-BFGS cannot identify the magnitude level of the density-
map image ˛, which explains the corresponding magnitude
discrepancy between NPG-BFGS, NPG-BFGS0, and the non-
blind methods in Fig. 4b. We have corrected this discrepancy
manually in Fig. 3 because we wish to show visual quality and
ability of different methods to remove artifacts and suppress
noise, rather than the trivial difference in image contrast.
In Fig. 4c, we show the scatter plots with 1000 randomly

selected points representing FBP and NPG-BFGS reconstruc-
tions from 60 fan-beam projections. Denote by

�

y̨; yI
�

the
estimate of .˛;I/ obtained upon convergence of the NPG-
BFGS iteration. The y-coordinates in the scatter plots in Fig. 4c
are the noisy measurements in log scale �ln En, and the cor-
responding x-coordinates are the monochromatic projections
�T

n y̨FBP (red) and �T
n y̨ (green) of the estimated density-maps.

�ln
�

bL.�/yI
�

is the inverse linearization function that maps
monochromatic projections to fitted noiseless polychromatic
projections �ln Iout

n .y̨; yI/. Since FBP assumes a linear relation
between �lnı I

out and ˆ˛, its scatter plot (red) can be fitted
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RSE=11.83%

(a) FBP

RSE=7.12%

(b) linearized FBP

RSE=1.77%

(c) NPG-BFGS0

RSE=0.55%

(d) linearized BPDN

RSE=0.18%

(e) NPG-BFGS and
NPG (known ι.�/)

Fig. 3: Reconstructions from 60 projections.
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Fig. 4: (a)–(b) Reconstruction profiles of different methods from 60 projections and (c) the polychromatic measurements as function
of the monochromatic projections and corresponding fitted inverse linearization curves.
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Fig. 5: The RSEs as functions of the iteration index i .

by a straight line y D x, as shown in Fig. 4c. A few points in
the FBP scatter plot with ln En D 0 and positive monochromatic
projections indicate severe streaking artifacts. Observe relatively
large residuals with bias, which remain even when more sophis-
ticated linear models, e.g. iterative algorithms with sparsity and
nonnegativity constraints, were adopted, thereby necessitating
the need for accounting for the polychromatic source. The
nonnegativity constraints on ˛ are particularly important for
good estimation of bL.�/I .
Fig. 6 shows the average RSEs (over 5 Poisson noise real-

izations) of different methods as functions of the number of
fan-beam projections in the range from 0° to 359°. Average
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R
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E
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Number of projections

FBP
linearized FBP
NPG-BFGS0

linearized BPDN
NPG-BFGS

NPG (known ι(κ))

Fig. 6: Average RSEs as functions of the number of projections.

RSEs of the methods that do not assume knowledge of the
mass-attenuation spectrum ι.�/ are shown using solid lines;
dashed lines represent non-blind methods that assume known
mass-attenuation spectrum ι.�/. Red color represents methods
that employ both signal-sparsity regularization and nonnegativity
image constraints, black is for the method that employs the non-
negativity image constraints only, and blue marks the methods
that apply neither signal-sparsity regularization nor nonnegativity
image constraints.
FBP ignores the polychromatic nature of the measurements;

consequently, it performs poorly and does not improve as the
number of projections increases. Linearized FBP, which assumes
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perfect knowledge of the mass-attenuation spectrum, performs
much better than FBP, as shown in Fig. 6. Thanks to the signal
nonnegativity and sparsity that it imposes, linearized BPDN
achieves up to 20 times smaller RSEs compared with the lin-
earized FBP. However, due to its zero-forcing nature, linearized
BPDN enhances noise and breaches the Poisson measurement
model, which explains its inferior performance compared with
NPG (known ι.�/).
As expected, NPG (known ι.�/) performs slightly better

than NPG-BFGS because it uses perfect knowledge of ι.�/.
NPG (known ι.�/) and NPG-BFGS attain RSEs that are 24%
to 37% of that achieved by linearized BPDN, which can be
attributed to optimal statistical processing by these methods, in
contrast with the suboptimal linearization. It is remarkable that
the blind NPG-BFGS method effectively matches the perfor-
mance of NPG (known ι.�/).

B. Real-data examples

We compare the NPG-BFGS and linear FBP methods by
applying them to reconstruct two industrial objects containing
defects, labeled C-I and C-II, from real fan-beam projections.
Here, NPG-BFGS achieves visually good reconstructions for
u D 10�5, presented in Fig. 7, where we also show its
reconstruction for u D 10�4.
The C-I data set consists of 360 equi-spaced fan-beam projec-

tions with 1° separation collected using an array of 694 detectors,
with X-ray source to rotation center distance equal to 3492 times
the detector size. Figs. 7a and 7b show 512 � 512 density-map
image reconstructions of object C-I using the FBP and NPG-
BFGS methods, respectively. The linear FBP reconstruction,
which does not account for the polychromatic nature of the X-
ray source, suffers from severe streaking and cupping artifacts,
whereas the NPG-BFGS reconstruction removes these artifacts
by accounting for the polychromatic X-ray source.
The C-II data set consists of 360 equi-spaced fan-beam

projections with 1° separation collected using an array of 1380
detectors, with X-ray source to rotation center distance equal
to 8696 times the detector size. Figs. 7c–7e show 1024 � 1024
density-map image reconstructions of object C-II by the FBP,
NPG-BFGS0, and NPG-BFGS methods, respectively. The NPG-
BFGS and NPG-BFGS0 reconstructions do not have streaking
and cupping artifacts exhibited by FBP. NPG-BFGS0 terminates
after 500 iterations and is 2 to 3 times faster than NPG-BFGS.
Figs. 7g–7i show the FBP, NPG-BFGS0 (terminated at

i D 500 iterations), and NPG-BFGS reconstructions from a
downsampled C-II data set with 120 equi-spaced fan-beam
projections with 3° separation. The FBP reconstruction in Fig. 7g
exhibits both beam-hardening and aliasing artifacts. In contrast,
the NPG-BFGS reconstruction in Fig. 7i does not have these
artifacts because it accounts for the polychromatic X-ray source
and employs signal-sparsity regularization in (25c). Indeed, if we
reduce regularization constant u sufficiently, the aliasing effect
will occur in the NPG-BFGS reconstruction in Fig. 7i as well. A
comparison of NPG-BFGS0 and NPG-BFGS shows the benefit
of signal-sparsity regularization, particularly its ability to reduce
noise. If we run NPG-BFGS0 beyond i D 500 iterations, it will
exhibit aliasing artifacts, in addition to noise.

Fig. 8 shows the reconstruction profiles of the 337th and 531th
rows highlighted by the red horizontal lines across Figs. 7c and
7e. Noise in the NPG-BFGS reconstructions can be reduced by
increasing regularization parameter u: Figs. 8c and 8d show the
corresponding NPG-BFGS reconstruction profiles for u D 10�4,
which is 10 times that in Figs. 8a and 8b.
The NPG-BFGS reconstructions of C-I and C-II have

higher contrast around the inner region where cracks reside,
which may be due to the detector saturation that leads to
measurement truncation, scattering, noise-model mismatch, or
the bowtie filter applied to the X-ray source. We leave further
verification of causes and potential correction of this problem
to future work and note that this issue does not occur in the
simulated-data examples that we constructed; see Section VI-A.
In Fig. 9, we show the scatter plots with 1000 randomly se-

lected points representing FBP and NPG-BFGS reconstructions
of the C-II object from 360 projections. A few points in the
FBP scatter plot with ln En D 0 and positive monochromatic
projections indicate severe streaking artifacts, which we also
observed in the simulation example; see Fig. 4c.
We now illustrate the advantage of using Nesterov’s accel-

eration in Step 1 of NPG-BFGS. Fig. 10 shows the centered
objective f .˛;I/ � fMIN with u D 10�5 as a function of the
iteration index i for the NPG-BFGS and PG-BFGS methods
applied to the C-II reconstruction from 360 projections; here
fMIN D minx f .x/. Thanks to the Nesterov’s acceleration (26b),
NPG-BFGS is 2 to 3 times faster than PG-BFGS.

VII. Conclusion

We developed a model for single-material beam-hardening
artifact correction that requires no more information than the
conventional FBP method. The proposed model relies on sep-
arability of the attenuation to combine the variations of the
mass attenuation and X-ray spectrum into the mass-attenuation
spectrum. Numerical experiments on both simulated and real
X-ray CT data were presented. Our blind method for sparse
X-ray CT reconstruction matches or outperforms non-blind
linearization methods that assume perfect knowledge of the X-
ray source and material properties. Future work will include
extending our parsimonious polychromatic measurement-model
parameterization to multiple materials [39] and developing cor-
responding reconstruction algorithms.

Appendix A
Mass-Attenuation Parameterization

All mass-attenuation functions �."/ encountered in practice
can be divided into piecewise-continuous segments, where each
segment is a differentiable monotonically decreasing function
of ", see [36, Tables 3 and 4] and [40, Sec. 2.3]. The points
of discontinuity in �."/ are referred to as K-edges and are
caused by the interaction between photons and K shell electrons,
which occurs only when " reaches the binding energy of the K

shell electron. One example in Fig. 11 is the mass attenuation
coefficient curve of iron with a single K-edge at 7.11 keV.
We define the domain E of " and partition it into MC1 inter-

vals
�

.em; emC1/
�M

mD0
with e0 D min.E/ and eMC1 D max.E/,

such that in each interval �."/ is invertible and differentiable.
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C-I

360
(a) FBP

360

(b) NPG-BFGS (u D 10�5)

C-II

360
(c) FBP

360
(d) NPG-BFGS0, i D 500

360

(e) NPG-BFGS .u D 10�5/

360

(f) NPG-BFGS (u D 10�4)

120
(g) FBP

120
(h) NPG-BFGS0, i D 500

120

(i) NPG-BFGS (u D 10�5)

Fig. 7: Real X-ray CT reconstructions of objects C-I and C-II from (a)–(f) 360 and (g)–(h) 120 projections.

Here, E is the support set of the incident X-ray spectrum �."/

and .em/M
mD1 are the M K-edges in E . Taking Fig. 11 as an

example, there is only one K-edge at e1, given that the incident
spectrum has its support as .e0; e2/. The range and inverse of
�."/ within .em; emC1/ are .um; vm/ and "m.�/, respectively,
with um , inf"%emC1

�."/ < vm , sup"&em
�."/. Then, the

noiseless measurement in (4b) can be written as

I
out D

l
M
X

mD0

1.um;vm/.�/�."m.�//
ˇ

ˇ"0
m.�/

ˇ

ˇ e��
R

˛.x;y/ d` d�;

and (6b) and (6a) follow by noting that

ι.�/ D
M
X

mD0

1.um;vm/.�/�."m.�//
ˇ

ˇ"0
m.�/

ˇ

ˇ � 0 (A1)

and that Iout equals I in when ˛.x; y/ D 0. Here, 1.um;vm/.�/

is an indicator function that takes value 1 when � 2 .um; vm/

and 0 otherwise. Observe that (A1) reduces to (7) when M D 0.

Appendix B
Proof of Lemma 1

We first introduce a lemma.
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Fig. 8: C-II object reconstruction profiles from 360 projections with (a)–(b) u D 10�5 and (c)–(d) u D 10�4 used by the
NPG-BFGS method.
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Fig. 9: Polychromatic measurements as functions of monochro-
matic projections and corresponding inverse linearization curves.
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Lemma 3: For ι.�/ that satisfy Assumption 1, the following
holds:

w ,

“

h

�� � qj0

.qj0 C1/2
.�C �/2

i

ι.�/ι.�/h.� C �/ d� d�

� 0 (B1)

for q > 1 and any nonnegative function h W R! RC.
Proof: In Fig. 12, the .�; �/ coordinates of P , B and N

are .�0; 0/, .�j0
; 0/ and .�J C1; 0/, respectively; the line OS is

defined by � D �.
Considering the finite support set of �.�/, the effective integral

range is Œ�0; �J C1�2, which is the rectangle RMSJ in Fig. 12.
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Fig. 11: The mass attenuation coefficients � of iron versus the
photon energy " with a K-edge at 7.11 keV.
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Fig. 12: Integral region illustration.

Using the symmetry between � and � in (B1), we change the
integral variables of (B1) by rotating the coordinates by 90ı:

� D N��N�p
2

; � D N�CN�p
2

(B2)

which yields

w D

p
2�J C1
Z

p
2�0

g. N�/
Z

0

Nw. N�; N�/ d N� h
�
p

2 N�
�

d N� (B3a)
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where

Nw. N�; N�/ , z. N�; N�/ι
�

N�CN�p
2

�

ι

�

N��N�p
2

�

(B3b)

z. N�; N�/ ,

 

qj0 � 1

qj0 C 1

!2

N�2 � N�2 (B3c)

g. N�/ ,

˚
N� �
p

2�0; N� � 1p
2
.�0 C �J C1/

p
2�J C1 � N�; N� > 1p

2
.�0 C �J C1/

(B3d)

and (B3a) follows because (B3b) is even-symmetric with respect
to N�. Hence, the integration region is reduced to the triangle
RSJ .
Note that z. N�; N�/ � 0 in the cone between lines OH and OI ,

[both of which are specified by z. N�; N�/ D 0], which implies
that Nw. N�; N�/ � 0 within RCE and CSQ; hence, the integrals
of Nw. N�; N�/h

�p
2 N�
�

over RCE and CSQ are nonnegative and,
consequently,

w �
“

R

Nw. N�; N�/ d N� h
�
p

2 N�
�

d N�: (B4)

Now

R ,

(

. N�; N�/

ˇ

ˇ

ˇ

ˇ

N� � N�p
2
2 Œ�0; �j0

�;
N�C N�p

2
2 Œ�j0

; �J C1�

)

(B5)

is our new integration region, which is the rectangle ECQJ .
Next, we split the inner integral over N� on the right-hand

side of (B4) for fixed N� into two regions: z. N�; N�/ � 0 and
z. N�; N�/ < 0, i.e., trapezoid ECQI and triangle EIJ , and prove
that the positive contribution of the integral over ECQI is larger
than the negative contribution of the integral over the EIJ .
The line OI is specified by z. N�; N�/ D 0, and the .�; �/-

coordinate of I in Fig. 12 is thus .�J C1�j0
; �J C1/. Define

c ,

p
2

1C qj0
(B6)

and note that ECQI � .Klow [Kmid/ �Khigh and EIJ �
Klow �Khigh. We now use Assumption 1 to conclude that the
following hold within R:

� When z. N�; N�/ � 0, i.e., in region ECQI ,

ι.�/ j
�D N�C N�p

2

� ι

�

cqj0 N�
�

(B7a)

ι.�/ j
�D N�� N�p

2

� ι

�

c N�
�

(B7b)

where (B7a) follows because � D N�CN�p
2

takes values
between �j0

and cqj0 N� 2 Œ�j0
; �J C1�; i.e., � 2 Khigh and

ι.�/ decreases in Khigh. (B7b) follows because � D N��N�p
2

takes values between c N� 2 Œ�0; �J C1�j0
� and �j0

; i.e.,
� crosses Klow (ι.�/ increasing) and Kmid (ι.�/ high)
regions.

� When z. N�; N�/ < 0, i.e., in region EIJ ,

ι.�/ j
�D N�C N�p

2

< ι

�

cqj0 N�
�

(B7c)

ι.�/ j
�D N�� N�p

2

< ι

�

c N�
�

(B7d)

where (B7c) follows because � D N�CN�p
2

> cqj0 N�, i.e.,
� 2 Khigh, and (B7d) follows because � D N��N�p

2
< c N�,

i.e., � 2Klow.
By combining (B7) and (B4), we have

w �
.�J C1 C �J C1�j0/=

p
2

Z

.�0 C �j0/=
p

2

Z

fN� j . N�; N�/2Rg

z. N�; N�/ d N� Nh. N�/ d N� (B8)

where Nh. N�/ , ι

�

cqj0 N�
�

ι

�

c N�
�

h
�p

2 N�
�

� 0. It is easy to
verify that

R

fN� j . N�; N�/2Rg z. N�; N�/ d N� is an increasing function of
N� over the range of the outer integral Œ.�0C�j0

/=
p

2; .�J C1C
�J C1�j0

/=
p

2�, and, consequently,
Z

fN� j . N�; N�/2Rg

z. N�; N�/ d N� � 0; (B9)

where the equality is attained for N� D .�0 C �j0
/=
p

2. Finally,
(B1) follows from (B8) and (B9).
This proof of convexity of Lemma 3 is conservative as we

loosen the positive integrals in regions RCE and CSQ by
replacing them with zeros.
We now use Lemma 3 to prove the convexity of Lι.˛/

in Lemma 1. Note that the mass-attenuation spectrum ι.�/ is
considered known in Lemma 1. We define �.�/ , ι

L.�/ and the
corresponding first and second derivatives: P�.s/ D .��ι/L.s/

and R�.s/ D
�

�2
ι

�L
.s/. Observe that I

out D
�

I
out
n

�N

nD1
D

�ı.ˆ˛/ D
�

�.�T
n ˛/

�N

nD1
. For notational simplicity, we omit

the dependence of Iout on ˛ and I and use I
out and �ı.ˆ˛/

interchangeably.
We use the identities

@�ı.ˆ˛/

@˛T
D diag

� P�ı.ˆ˛/
�

ˆ (B10a)

@�.�T
n ˛/

@˛@˛T
D R�

�

�T
n ˛
�

�n�T
n (B10b)

to compute the gradient and Hessian of the Poisson NLL in (18):

@Lι.˛/

@˛
D ˆT diag

�

P�ı
�

ˆ˛
�

� h

1 � diag�1
�

I
out�

E

i

(B11a)

@Lι.˛/

@˛@˛T
D ˆT diag�2

�

I
out� diag .E/ diag .x/ˆ (B11b)

where the N � 1 vector x D .xn/N
nD1 is defined as

xn D P�2
�

s
�

C R�
�

s
�

�.s/
�

I
out
n

En
� 1

�

ˇ

ˇ

ˇ

ˇ

sD�T
n ˛

: (B11c)

Since Iout
n � .1 � V /En � 0 according to (21a), we have

Iout
n

En

� 1 � �V (B12)

and

xn �
“

�

�� � �2V
�

ι.�/ι.�/e�.�C�/�T
n ˛ d� d� (B13a)

D
“

�

�� � �2C�2

2
V

�

ι.�/ι.�/e�.�C�/�T
n ˛ d� d� (B13b)

� .qj0 C 1/2

q2j0 C 1
w � 0 (B13c)
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where (B13a) follows by applying inequality (B12) to (B11c),
using the Laplace-transform identity for derivatives (2), and
combining the multiplication of the integrals; and (B13b) is due
to the symmetry with respect to � and �. Now, plug (21b) into
(B13b) and apply Lemma 3 with h.�/ D e���T

n ˛ to conclude
(B13c). Therefore, the Hessian of Lι.˛/ in (B11b) is positive
semidefinite.

Appendix C
Proof of Theorem 2

According to [30], real-analytic and semialgebraic functions
and their summations satisfy the KL property automatically.
Therefore, the proof consists of showing the following two parts:
(a) the NLL in (16) is a real-analytic function of .˛;I/ on
C � dom.f / and (b) both r.˛/ in (25c) and IŒ0;C1/.I/ are
semialgebraic functions.

Real-analytic NLL. The NLL in (16) is in the form of
weighted summations of terms bL.�T

n ˛/I , ln
�

bL.�T
n ˛/I

�

, and
ln2
�

bL.�T
n ˛/I

�

for n D 1; 2; : : : ; N . Weighted summation of
real-analytic functions is real-analytic; hence, we need to prove
that f1.t/ D bL��T .˛ C t
/

�

.I C tJ /; f2.t/ D ln f1.t/,
and f3.t/ D f 2

2 .t/ are real-analytic functions. Since
�

fi .t/
�3

iD1
are smooth, it is sufficient to prove that the mth derivatives,
f

.m/
i .t/, are bounded for all m, .˛;I/, .
;J /, and t such that

.˛C t
;I C tJ / 2 dom.f /.
The mth derivative of f1.t/ is

f
.m/
1 D .�T 
/m

�

.��/mb
�L

.˛C t
/.I C tJ /

Cm.�T 
/m�1
�

.��/m�1b
�L

.˛C t
/J (C1)

which is bounded for any ˛, I , 
 , J , and t such that
.˛C t
;I C tJ / is in one of compact subsets C � dom.f /.
For any compact set C � dom.f /, there exists � > 0 such

that f1.t/ � � for all .˛C t
;I C tJ / 2 C. ln.�/ and .�/2

are analytic on Œ�;C1/. Since the compositions and products
of analytic functions are analytic [41, Ch. 1.4], both f2.t/ and
f3.t/ are analytic. Therefore, the NLL in (16) is analytic.

Semialgebraic regularization terms. According to [30], i) the
`2 norm k�k2 is semialgebraic, ii) the indicator function
IŒ0;C1/.�/ is semialgebraic, iii) finite sums and products of
semialgebraic functions are semialgebraic, and iv) the compo-
sition of semialgebraic functions are semialgebraic. Therefore,
IŒ0;C1/.˛/ and IŒ0;C1/.I/ are both semialgebraic. Since we
can write

s

X

j 2Ni

.˛i � j̨ /2 D kPi ˛k2 (C2)

for some matrix Pi , using i), iii), and iv) leads to semialgebraic
(C2), thus semialgebraic r.˛/ in (25c). Finally, according to [30],
the sum of real-analytic and semialgebraic functions satisfies the
KL property. Therefore, f .˛;I/ satisfies the KL property on a
compact subset of dom f .˛;I/.
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