
1

Blindfolded Evaluation of Random Forests with
Multi-Key Homomorphic Encryption

Asma Aloufi, Peizhao Hu, Harry W. H. Wong, and Sherman S. M. Chow

Abstract—Decision tree and its generalization of random forests are a simple yet powerful machine learning model for many

classification and regression problems. Recent works propose how to privately evaluate a decision tree in a two-party setting where the

feature vector of the client or the decision tree model (such as the threshold values of its nodes) is kept secret from another party.

However, these works cannot be extended trivially to support the outsourcing setting where a third-party who should not have access

to the model or the query. Furthermore, their use of an interactive comparison protocol does not support branching program, hence

requires interactions with the client to determine the comparison result before resuming the evaluation task.

In this paper, we propose the first secure protocol for collaborative evaluation of random forests contributed by multiple owners. They

outsource evaluation tasks to a third-party evaluator. Upon receiving the client’s encrypted inputs, the cloud evaluates obliviously on

individually encrypted random forest models and calculates the aggregated result. The system is based on our new secure comparison

protocol, secure counting protocol, and a multi-key somewhat homomorphic encryption on top of symmetric-key encryption. This

allows us to reduce communication overheads while achieving round complexity lower than existing work.

Index Terms—Applied Cryptography, Decision Tree, Homomorphic Encryption, Machine Learning, Random Forest

✦

1 INTRODUCTION

D ECISION tree is one of the most widely used nonparametric

machine learning techniques for classification and regres-

sion. The evaluation process is a series of comparison at each

decision node of the tree, which compares the input from a client

with the threshold of the node as specified in the model. The

boolean results decide which descendant node to traverse and

eventually leads to a leaf node representing a result. Similar to

some other machine learning frameworks, relying on a single such

tree may incur the model-overfitting problem. A random forest

(Fig. 1a) which aggregates the results from individual decision

trees can provide more accurate results. The final result is either

a list of classification labels together with counts associated with

each label, or a classification label that most of the trees agreed on.

In this paper, we focus on a scenario where predictive models

from multiple owners are sent to an evaluator for collaborative

evaluation (Fig. 1b). Collaborative machine learning becomes a

commonplace as it provides more accurate prediction due to

the diversity in data [1]. Medical diagnostics is one example

(EU WITDOM project) in which multiple hospitals and medical

laboratories collaborate to offer a better diagnosis. A natural

source for the evaluator is to rely on an external cloud. But, privacy

leakage can occur [2], [3] due to security breaches or insider

attacks. According to the statistics [4], there are around 2 declared

breaches per week, each affecting 500+ people. More importantly,

leaking of sensitive personal data (e.g., genome, fingerprint, eye-

iris-scan) is irreversible. Strict data protection regulations, such as

HIPAA and EU GDPR1, embrace data utility for medical diagnosis

and drug discovery but demand provable security of private data

when it is in storage and being processed.

1. https://www.hhs.gov/hipaa and https://www.eugdpr.org

1.1 Current Solutions

Existing privacy-preserving protocols [5]–[7] follow the client-

server model where the server owns the random forest and the

client inputs encrypted features to start the evaluation. Comparison

at each node is carried out using the secure comparison protocol

proposed by Damgård, Geisler, and Krøigaard (DGK protocol) [8]

which takes inputs in binary and produces a list of intermediate

results that are either encryption of zero or non-zero integer. These

intermediate results cannot be used directly to perform branching

program and traversal through the decision tree because the server

requires the client’s help to determine whether any ciphertext

decrypts to zero. The client then generates and sends back an

encrypted bit to resume the evaluation on the server side. This

process based on the DGK protocol is interactive and makes the

existing works to be a synchronous system design.

These state-of-the-art works [5]–[7] use additive homomorphic

encryption (HE) and cannot be easily extended to work in a

collaborative setting which naturally requires multiplication of

two ciphertexts. A best-effort workaround is to have the client

sends separate requests to each model owner, as illustrated in

Fig. 1c. Leaving aside the communication overhead caused by

the exchange of intermediate results, this naı̈ve extension reveals

the individual decision made by each model owner to the client.

Alternatively, model owners can outsource their models to a

third-party evaluator. This is undesirable due to concerns of secu-

rity breaches. One may encrypt each model under the key of its

respective owner. Yet, such a multi-key usage is not considered in

the existing privacy-preserving decision tree evaluation protocols.

1.2 Our Contributions

We propose a privacy-preserving protocol which allows multiple

model owners to delegate the evaluation of the random forests

(resulted from the implicit collaborative effort of combining in-

dividual models) to an untrusted party. As depicted in Fig. 1b,

2

F (X)

d0

l3d1

d2l0

l2l1

T1

T2

⋮

TN

At di calculate:
bi=1(xi<yi)

1

S
ecC

ount(T
i)

2

(a) Random Forests Evaluation

M1

Evaluator
(Public or Private Cloud)

feature
vector

Collaborative
evaluation of random

forests

offload encrypted
models

return
encrypted
result

send
encrypted
inputs

....

Model Owners (Hospitals)

Client
(Patient)

2

3

1

model

M2 MN

model model

SecCount(Ti)

(b) Collaborative Setting

M1

feature
vector

return encrypted

results

send encrypted

inputs

Model Owners / Evaluators
(Hospitals)

Client
(Patient)

2

3

1 model

MN

model

....
interpret

comparison results

SecCount(Ti)

(c) Two-Party Setting

Fig. 1: System models for collaborative evaluation of random forests F , consisting of N decision trees: Each decision tree Ti with a

depth of δ contains m decision nodes di ∈ D, and (m+ 1) leaf nodes lk ∈ L. Each leaf node contains a classification value vk ∈ V .

individual model owners encrypt their decision trees such that

none of them can get the decision tree of everyone else, while the

cloud remains oblivious to the models or the query.

Our technical contributions are a new secure comparison

protocol SecComp (see Sec. 5.5), a new secure counting protocol

SecCount (see Sec. 5.6), the incorporation of techniques for

computing over data encrypted under different keys, and various

techniques for efficiency improvement.

SecComp directly produces an encrypted bit that is used

for branching in decision tree evaluation. The extra interactions

for processing the list of encrypted integers output by the DGK

protocol (or other DGK-based protocols [9]) in the existing works

are not necessary. It thus achieves a lower round complexity.

SecCount calculates the count of each class label resulted

from the evaluation of individual decision trees and performs

majority voting. To our best knowledge, this method has not been

used in similar works. Recent work only considered a specific

form of random forest evaluation based on the mean of the trees’

results. It is only suitable for regression or binary classification

problems but not for multi-class classification we consider.

A core building block of our system is a somewhat homomor-

phic encryption (SWHE) scheme proposed by Brakerski, Gentry,

and Vaikuntanathan (BGV SWHE) [10]. Our system incorporates

multiple techniques for efficiency improvement: (a) optimization

techniques to speed-up homomorphic evaluation through paral-

lelization, (b) hybrid encryption to lower the communication over-

head, and (c) leveraging threshold encryption such that ciphertext

extension does not grow linearly with respect to the number of

(differnt encryption keys used by different) model owners. This

new design significantly reduces the overhead caused by ciphertext

extension as discussed in the original work [11].

While SWHE is relatively heavyweight, we aim to exploit as

much as SWHE can provide for overcoming multiple limitations

of existing works and at the same time improve the practical

aspects of using SWHE by the aforementioned efficiency im-

provements. A side benefit of using lattice-based SWHE is that

it provides post-quantum protection of user sensitive data, such as

patients’ genomic data. We also performed empirical experiments

over multiple real-world datasets which validated the performance

of our proposed solutions.

1.3 Organization

The next section presents the cryptographic techniques used in our

system. Sec. 3 describes the system design and security model. In

Sec. 4, we discuss the related work in more details. Sec. 5 presents

our protocol and Sec. 6 discusses its correctness and security. After

that, we provide complexity analysis and empirical study of the

system performance. Finally, Sec. 7 concludes the paper.

2 PRELIMINARIES

We give a brief description of the cryptographic primitives used

in our protocol. In particular, we overview the primitives used to

support homomorphic computation with multiple keys. We also

overview hybrid encryption used for efficient communication, and

techniques for privately retrieving information.

2.1 The RLWE Problem

For a security parameter λ, let Φ(x) = xη + 1 be a cyclotomic

polynomial where η = η(λ) is a power of 2, and q = q(λ) ≥ 2
be an integer. Define the ring R over polynomials with integer

coefficients R = Z[x]/(Φ(x)). Let χ = χ(λ) be a Gaussian error

distribution over Rq and bounded by B = B(λ) such that B ≪ q.

Definition 2.1 (Ring-Learning-With-Errors (RLWE) [12]). Let a
and s be uniformly sampled elements from Rq , and let e←χ
be a sampled error term. The RLWE problem is to distinguish

the pair of (ai, bi = ais + e) from any uniformly sampled

pair (ai, b
′
i)←R2

q . The RLWE assumption is that the RLWE

problem is computationally infeasible to solve.

An amortized version of the RLWE problem [12], [13] shows

that it is equivalent to sampling s from a small distribution instead

of the ring Rq . This yield a smaller secret key in an RLWE-based

cryptosystem, e.g., BGV SWHE scheme [10] (Appendix A).

2.2 Multi-Key SWHE Scheme

There are two common extensions of SWHE to support computa-

tion with different keys: threshold HE [14] and multi-key HE [11],

[15], [16]. In threshold HE scheme (Appendix C), n model owners

Mi and p clients Ci leverage key homomorphism to generate a

3

joint key, this yields p distinct joint keys {pkM,C1
, . . . , pkM,Cp

}.
Beside generating these joint keys in advance, model owners

must send p encrypted copies of the models must to the cloud,

one for each distinct joint key, which increases the space and

communication overhead of the system.

Multi-key BGV scheme (MKBGV) [11] (Appendix D) dy-

namically extends a ciphertext encrypted under one key to a

concatenation of keys from all parties. For example, a cipher-

text cC = (c0, c1) ∈ R2
q encrypted under a client’s key pkC

is extended to one under {pkC, pkMi
, . . . , pkMn

}, such that

c̄ = {cC, cM1
, . . . , cMn

} ∈ R
2(n+1)
q . Note the size of the

ciphertext increases linearly with (n+ 1) involved keys.

Observing the inefficiency in these two methods, we propose

a new multi-key HE (MKHE) scheme. The set of model owners

in our collaborative setting in Fig. 1b do not often change; hence,

they can set up one joint key pkM based on their keys pkMi
. They

encrypt their models using this joint key. At time of evaluation,

each ciphertext is extended under the two keys {pkC, pkM},
resulting c̄ = {cC, cM} ∈ R4

q . By leveraging both threshold and

multi-key HE techniques, model owners send one copy of their

encrypted models to the cloud, who extends them when needed to

two keys, reducing the size in ciphertext expansion.

Our new MKHE scheme involves the following algorithms

(Setup,KeyGen,Enc,Ext,EvalKeyGen,Eval,Dec):

- Setup(1λ, 1L, 1K) → pp: A probabilistic algorithm inputs the

security parameter λ, a bound on circuit depth L, a bound on

number keys K, outputs public parameter pp.

- KeyGen(pp) → ((pkC, skC), ek
′
C) and KeyGen(pp) →

((pkMi
, skMi

), ek′Mi
): Each system user (i.e., clients

and model owners, respectively) generates a key-pair

(pkC, skC), (pkMi
, skMi

). They also generate the correspond-

ing evaluation helper element ek′C, ek
′
Mi

, which encrypts

powers-of-two of the secret key skC, skMi
under GSW HE

scheme [17].

- JointkeyGen(pkM1
, . . . , pkMn

, ek′M1
, . . . , ek′Mn

) →
(pkM, ek′M): The set of n model owners perform interactive

protocol to establishes a joint key pkM by combining their

keys as discussed. The corresponding evaluation helper element

ek′M must encrypt the bits of the secret key sM, which is

shared among the model owners. The evaluation helper element

can be generated by homomorphically adding all ek′Mi
using a

binary addition BinAdd() that performs a fast full adder on the

encrypted bits [18], [19].

- Enc(pk, µ) → c: A probabilistic algorithm that performs the

standard BGV encryption on given message µ←Rt and a

public key pk and outputs c = (c0, c1) ∈ R2
q . Each ciphertext

is associated with set I that holds the index of the used key. We

indicate the index 1 as the client’s key pkC and the index 2 as

the model owners’ joint key pkM.

- Ext(p̄k, c) → c̄: A deterministic algorithm extends a given

ciphertext c to one encrypted under the concatenated keys

p̄k = {pkC, pkM}. Simply output a concatenated two sub-

vectors c̄ = (cC, cM) ∈ R4
q , such that ci = ci if the index

i ∈ I , and ci = 0 otherwise. We denote [[·]] as an extended

BGV ciphertext.

- EvalKeyGen(ek′C, ek
′
Mi

) → ēk: A deterministic algorithm

generates an evaluation key ēk for the concatenated pub-

lic key p̄k = {pkC, pkM} based on given helper elements

{ek′C, ek
′
M}. The evaluation key is generated as follows. First,

extend each evaluation helper element ek′C (or ek′M) to the other

key pkM (or pkC). Then, perform a homomorphic multiplica-

tion to compute the encryption of s̄⊗ s̄, where s̄ = {sC, sM}.
This encrypts the powers-of-two of the concatenated keys,

which is used in KeySwitch (i.e., relinearization) after each

homomorphic evaluation to bring s̄2 to s̄.

- Eval(c̄, c̄′, ēk) → c̄add or c̄mult: A deterministic algorithm

inputs two extended ciphertexts c̄, c̄′ ∈ R4
q encrypted under

the concatenated keys p̄k, perform homomorphic addition as

element-wise addition c̄add = c̄+ c̄′ ∈ R4
q or the homomorphic

multiplication as the tensor product c̄mult = c̄⊗ c̄′ ∈ R16
q . After

the homomorphic evaluation, perform KeySwitch technique

using the generated evaluation key ēk to output a ciphertext in

R4
q , and the ModulusSwitch technique to reduce the resultant

noise by switching to a smaller ciphertext modulus. Note that

during evaluation, for example in homomorphic addition, the

underlying messages µC and µM do not directly add up. The

sub-ciphertexts are added together after decryption, yielding the

correct evaluation result.

- Dec(s̄k, c̄) → µ or ⊥: An interactive protocol decrypting an

extended ciphertext c̄ = {cC, cM} ∈ R4
q with the concatenated

secret keys s̄ = {sC, sM}. The client and model owners col-

laborate to decrypt the message as 〈c̄, s̄〉 = 〈cC, sC〉+ 〈cM, sM〉.
The client obtains µC through straightforward BGV decryption.

Since sM is shared among n model owners, they perform the

partial decryption 〈cM, sM〉 = (cM,1−cM,0sM) in a threshold

manner (Appendix C). Each model owner Mi computes a

smudged2 component ρMi
= cM,0sMi

+teMi
, then all model

owners compute together cM,1 −
∑n

i=1 cM,0sMi
, yielding

µM. The protocol outputs the message µ = µC + µM for

the client and nothing abort ⊥ for model owners and evaluator.

Definition 2.2 (Correctness and Compactness). Let pp ←
Setup(1λ, 1L, 1K). Consider a correctly generated key pairs

(pkC, skC, ek
′
C) and (pkMi

, skMi
, ek′Mi

) ← KeyGen(pp),
and any two messages µC, µM. Let {cC ← Enc(pkC, µC)}
and {cM ← Enc(pkM, µM)}. Let c̄ ← Ext(p̄k, cC) and

c̄′ ← Ext(p̄k, cM), where p̄k = {pkC,M}. Let f be function

with depth bounded by L, let c̄f ← Eval(c̄, c̄′, ēk) be the

evaluated ciphertext:

• Correctness: For any negligible function ǫ(λ), we have

|Pr[Dec(s̄k, c̄) = f(µC, µM)]| ≥ 1− ǫ

• Compactness: There exists a polynomial p(·) such that |c̄| ≤
p(λ, L,K).

Definition 2.3 (Semantic Security). Let pp ←
Setup(1λ, 1K , 1L), and (pkC, skC, ek

′
C) and

(pkM, skM, ek′M) ← KeyGen(pp). For any polynomial

d = d(λ) and any two messages µ0, µ1 the following

distribution are computationally indistinguishable:

(pp, pkC,Enc(pkC, µ0))
comp
≈ (pp, pkC,Enc(pkC, µ1))

and

(pp, pkM,Enc(pkM, µ0))
comp
≈ (pp, pkM,Enc(pkM, µ1))

2. Smudging noise is added to hide the secret key sMi
(Appendix B.2)

4

2.3 Hybrid Approach of Homomorphic Encryption

Despite the recent advancement, SWHE schemes produce cipher-

texts that are large in size. It is thus more efficient to use a hybrid

approach [20], [21] which firstly uses an efficient block-cipher

(AES) to encrypt the data.

Let EncAES(µ) be a ciphertext of the message µ encrypted

under an AES key k, the cloud encrypts the ciphertext again

using SWHE EncBGV(EncAES(µ)). To decrypt, the cloud homomor-

phically decrypts the AES ciphertext with an SWHE encryption

of the AES key EncBGV(k). We denote this by EncBGV(µ) =
homAESdec(EncBGV(EncAES(µ)),EncBGV(k)), where we use the

homAESdec function of HElib [22].

2.4 Oblivious Transfer

Oblivious transfer (OT) [23] allows the receiver Bob to retrieve

a message µi from a sender Alice who has a set of n messages

(µ1, . . . , µn), without Alice knowing his choice i ∈ N. Further-

more, Bob only knows the message corresponding to his chosen

index i but not the other messages. In our paper, such a 1-out-of-n
OT is denoted by OT

1
n({µ1, . . . , µn}, i) = µi.

3 SYSTEM SETUP

3.1 System Model

Each model owner Mi has a set of decision trees {T1, . . . , Tn}.
We model a complete decision tree as T = (D,L), where D is a

set of m decision nodes and L is a set of (m+ 1) leaf nodes. For

classification, each leaf node lk ∈ L contains a class label vk. In

the case of textual class labels, such as different classes of blood

diseases {“Anemia”, “Leukemia”, . . . , “Hemophilia”} [24], we

hash them into numerical values. We assume that this encoding is

publicly known.

At each decision node di = (fi, yi) ∈ D, there is a

boolean function that takes a user input xi ∈ X , compares

it with a threshold value yi ∈ Y , and produces a result,

such that bi = fi(xi < yi), as illustrated in Fig. 1a. Here,

X = {x0, . . . , xm−1} is a vector of features provided by the

client while Y = {y0, . . . , ym−1} is a vector of threshold values

defined for all decision nodes in a tree. The collections of all (or a

subgroup of) decision trees contributed by all model owners form a

random forest F ⊆ {T1, . . . , Tn}, which is evaluated in the cloud

and produce a classification result such that v = F(X); v ∈ V .

3.2 Threat Model

A client adversary may attempt to learn, through sent queries,

information about the random forest, such as the tree structure,

threshold values, or class labels in the leaf node. A client should

learn nothing other than what is known in public, such as tree

depth δ and number of decision/leaf nodes m. Note that we can

hide the tree structure by adding dummy nodes. On the other hand,

a model owner may try to learn about models contributed by other

model owners, or the client’s sensitive data through the provided

queries, or the (intermediate) evaluation result during decryption.

In our outsourced setting, the (cloud) evaluator is a potential

adversary who may want to learn both of the above, i.e., the query

of the client and its final result, and the models of the owners.

4 RELATED WORK

4.1 Secure Comparison Protocol

A critical part in decision tree evaluation is to compute b =
(x < y) as shown in Fig. 1a. Given two encrypted ℓ-bit in-

puts x, y, many secure comparison protocols, such as those by

Damgård et al. [8], Veugen [9], [25], operate over individual

encryption of bits in x = {xℓ−1, · · · , x0}, y = {yℓ−1, · · · , y0},
and rely on arithmetic computations to determine whether the

specified relation holds.

The DGK protocol [8] is widely used for comparing two

encrypted ℓ-bit inputs without decryption. It has been proven that

the comparison result bit b = 1{x < y} is set to 1 if and only if

there exists an index i ∈ (0, · · · , ℓ − 1) such that for a bit-wise

comparison xi < yi and xj = yj for all leading bits at position

j > i. Thus, DGK performs the following arithmetic computation

zi = xi − yi + 1 +
∑

j>i

(xj ⊕ yj)

which produces ℓ results zi that can either be an encryption of zero

or a non-zero integer. One thus needs to check within a vector of

encrypted integers whether there is a zi that decrypts to zero, that

is, the result is true. Veugen [25] proposed an improvement (based

on the proposition in [26]) to support the comparison relation of

both x < y and x > y by adding a single bit input. The improved

DGK protocol has the following arithmetic form.

zi = xi − yi + β + 3
∑

j>i

(xj ⊕ yj)

where β = 1−2·b′ and b′
$
← {0, 1}, i.e., a uniformly sampled bit.

If b′ = 0 then the protocol is checking x < y, otherwise x > y.

This random flipping of the comparison rule can hide the structure

of the decision tree (and prevent active probing of the threshold

values in the decision nodes). Similarly, the output bit is true if

there exists encryption of zero in zi.
Veugen [9] also proposed an alternative protocol to compare

two encrypted [27], [28] integers. This protocol outputs a single

encrypted bit, which is also adapted by Bost et al. [5] for secure

machine learning. Yet, it incurs three rounds, one of those uses

the DGK protocol [8] to compare two intermediate results. It also

introduces significant communication overheads.

4.2 Secure Evaluation of Decision Trees

We give some technical highlights of the existing protocols for

a better understanding of either their intrinsic weaknesses or

some similar working mechanisms which our protocol shares. A

comparison of recent work will be discussed in Table 3.

The protocol of Wu et al. [6] uses the improved DGK protocol

to evaluate all boolean functions in the decision nodes with

the help of the client as discussed in Sec. 4.1. After that, the

protocol concatenates the encrypted boolean results to assemble

an encrypted binary string b0b1 · · · bm−1 that corresponds to the

index of the leaf node containing the evaluation result. The server

sends this binary string to the client who uses OT (Sec. 2.4) to

privately retrieve the evaluation result.

Bost et al. [5] proposed a set of homomorphic protocols for

common operations such as dot product, argmax, comparison,

which are the building blocks of many machine learning algo-

rithms including hyperplane, naı̈ve Bayes, and decision tree. Their

approach uses two multiple-round secure comparison protocols,

which produce a single encrypted bit at each decision node. This

5

allows the evaluation result to be revealed directly on the server,

instead of relying on an OT protocol [6]. However, the comparison

protocol still requires interaction between client and server. Once

all Boolean functions have been evaluated, the authors proposed

to transform a decision tree, like the example shown in Fig. 1a,

into a polynomial form such as:

b0 · l3 + (1− b0) · (b1 · (b2 · l2 + (1− b2) · l1) + (1− b1) · l0)

where bi = fi(xi ≤ yi) is a boolean function to be evaluated at

each decision node di ∈ D using a secure comparison protocol

and each leaf node has an assignment of a class label lk.

The server homomorphically evaluates the above polynomial

which then reveals the correct classification value. For polynomial

evaluation, SWHE such as the Brakerski–Gentry–Vaikuntanathan

(BGV) scheme [10] is needed. Evaluating a polynomial of a

decision tree with high depth δ impacts the efficiency since the

polynomial performs δ consecutive homomorphic multiplications.

The authors suggested to compute the multiplications in pairs;

thus; the multiplicative-depth decreases to ⌈log2(δ)⌉. We explore

this idea further, develop an algorithm to speed up the evaluation,

and conduct empirical experiments to study its efficiency.

Tai et al. [7] proposed the concept of path cost for transform-

ing the tree into a set of linear equations which is compatible

with efficient cryptographic operation. For each leaf node lk, it

computes the sum of the boolean results bi along the path from

the root to lk as the path cost pck. For example, the path costs

in the decision tree shown in Fig. 1a are: pc0 = b0 + b1, pc1 =
b0+(1−b1)+b2, pc3 = 1−b0, and pc2 = b0+(1−b1)+(1−b2).
The classification values vk to be retrieved by the client via the

conditional OT is randomized if and only if pck is non-zero, which

ensures that the client can only learn the result corresponding

to his inputs. When compared with the use of OT protocols by

Wu et al. [6], it avoids sending a binary string to the client who

then retrieves the final result using the concatenated index.

Recently, Joye and Salehi [29] proposed a new privacy-

preserving decision tree protocol using OT and additive HE.

They proposed a secure comparison protocol by increasing the

interactive rounds in favor of reducing the number of comparisons.

The protocol of Tueno, Kerschbaum, and Katzenbeisser [30]

represents a tree of depth δ as an array. They did not use HE, but

used garbled circuits, OT, or Oblivious RAM, to evaluate the tree

with only δ comparisons which is sublinear in the tree size. Both

protocol works in the two-party setting and do not support data

encrypted under different keys. Moreover, the boolean functions

are evaluated interactively, which leads to high round complexity.

4.3 Other Related Approaches

Other works also considered the learning phase. Emekçi et al. [31]

utilized secret sharing to build a decision tree model based on pri-

vate datasets from multiple parties. Using SWHE, Bos et al. [32]

aim to evaluate known predictive models, such as logistic regres-

sion and proportional hazards models, on encrypted medical data.

Hu et al. [33] aim to support ridge regression.

Some recent works study privacy-preserving machine learning

over other models such as neural networks. The work of Mohassel

and Zhang [34] requires two non-colluding servers. Liu et al. [35]

did not consider the outsourced setting and their protocol is highly

interactive. Using SGX, Ohrimenko et al. [36] proposed a system

which allows multiple parties to load their private datasets into

the enclave, which is an isolated memory region where oblivious

Evaluator

Client

Model
Owners

offload
encrypted

models

 send
encrypted
features

aggregate
results

evaluate
random
forests

Phase 1 Phase 2 Phase 3 Phase 4

decrypt
result

aggregate
decryption

components

partial ciphertext
component generate

decryption
component

Fig. 2: Overview of Different Phases of Our Proposed System

codes can train a machine learning model based on these datasets.

It also supports evaluation. However, tailor-made protocols out-

perform the generic approaches in many cases because of they

exploit the structure of the underlying model.

5 PROPOSED SOLUTION

5.1 Overview

Fig. 2 illustrates the four phases of interactions between different

parties. In the first phase, each model owner Mi encrypts a set

of decision trees {Ti}, includes all the threshold values in their

binary format. Delegating the encrypted models to the evaluator

can be performed as a one-time setup before servicing the clients.

In the second phase, upon receiving a feature vector X
encrypted under the key of the client, the evaluator evaluates every

decision tree in the entire random forest. Once it is done, each

decision tree outputs a class label. The evaluator will perform a

secure counting protocol to obliviously aggregate the number of

occurrences for each unique class label. The evaluator then sends

the class labels with their associated counts to the client.3

In the final phase, each model owner will participate in the

partial decryption, which sends a decryption component to the

evaluator to convert the encrypted result to a ciphertext which is

decryptable by the secret key of the client.

5.2 Notations and Steps in Different Phases

Fig. 3 details our proposed system. Data are sent at first as

AES ciphertexts for efficient transmission. The evaluator homo-

morphically decrypts them into SWHE ciphertexts of decision

tree T , which can then be homomorphically evaluated result-

ing T (X) = v. Similar to many existing work [6], [7], we

convert each feature and threshold value into its binary form

x = {xℓ−1, · · · , x0} ∈ X and y = {yℓ−1, · · · , y0} ∈ Y . Then,

the evaluator computes the final classification result of the random

forest by a joint computation over the individual trees.

Table 1 lists commonly used notations in the proposed system.

We use 〈·〉, [·], and [[·]] to denote AES, SWHE, and MKHE

encryption respectively. Sometimes we may omit these encryption

notations for clarity, but all computations are on ciphertexts.

3. An alternative option is to engage with the client in an additional OT
protocol to return the final class label with the highest vote.

6

Setup phase.

Model ownerMi: (1) Train on the datasets and generate a set of decision trees {T = (D,L)}. Each decision node di = (fi, yi) ∈ D
consists of a threshold value yi ∈ Y . Each leaf node lk ∈ L contains a class label vk ∈ V .

(2) Generate an AES key kMi
.

(3) Generate SWHE key pair and evaluation helper element KeyGen(pp)→ ((pkMi
, skMi

), ek′Mi
).

(4) Generate a joint encryption key and evaluation helper element with all other model owners

JointkeyGen(pkM1
, . . . , pkMn

, ek′M1
, . . . , ek′Mn

)→ (pkM, ek′M).
Client C: (1) Provide a set of features {x1, . . . , xn};xi ∈ X .

(2) Generate AES key (kC).
(3) Generate SWHE public key, secret key and evaluation helper element KeyGen(pp)→ (pkC, skC, ek

′
C).

Phase 1: Outsourcing computations.

Model ownerMi: (1) Convert each threshold yi and label vk into bit-wise representation {yℓ−1, · · · , y0} and {vℓ−1, · · · , v0}.
(2) Encrypt each bit in yi and vk using AES {〈yℓ−1〉, · · · , 〈y0〉} and {〈vℓ−1〉, · · · , 〈v0〉}.
(3) Encrypt the AES key using SWHE joint key: [kMi

]M.

(4) Send (pkM, [kMi
]M, {〈yj〉}, {〈vj〉}) to the evaluator.

Client C: (1) Convert each feature into bit-wise representation of length ℓ: xi = {xℓ−1, · · · , x0} ∈ X .

(2) Encrypt each bit in xi using AES: {〈xℓ−1〉, · · · , 〈x0〉}.
(3) Encrypt AES key using SWHE: [kC]C .

(4) Send (pkC, [kC]C, {xj}) to the evaluator to start the evaluation.

Evaluator: (1) Upon receiving {yj}, convert ciphertexts from AES to SWHE: [yj]M = homAESdec([〈yj〉], [kM]);
(2) Apply similar procedure for {vj} and {xj}, yielding {[vj]M} and {[xj]C}.
(3) Extend each of [yj] and [vj] via [[yj]] = Ext(p̄k, [yj]) and [[vj]] = Ext(p̄k, [vj]) for extended SWHE key p̄k = {pkC, pkM}.
(3) Extend each of [yj] and [vj] via [[yj]] and [[vj]] via the subroutine of Eval for extended SWHE key p̄k = {pkC, pkM}.
(4) Similarly, extend ciphertexts {[xj]} from encryptions under pkC , yielding [[xj]] = Ext(p̄k, [xj]). (4) Similarly, extend

ciphertexts {[xj]} from encryptions under pkC , yielding [[xj]] via the subroutine of Eval.

(5) Generate evaluation key ēk = EvalKeyGen({pkC, pkM}, {ek
′
C, ek

′
M}) via the subroutine of Eval.

Phases 2&3: Evaluating decision trees and random forest.

Evaluator: (1) Evaluate [[bi]] = SecComp([[xi]], [[yi]]); the result is [[bi]] = [[1]]{xi < yi}.
(2) Evaluate the polynomial representation of the tree using all [[bi]], yielding [[Ti(X)]] = [[vk]] for all trees in random forest F .

(3) Invoke SecCount over all [[Ti(X)]] to get [[F(X)]] = {([[v1]], [[z1]]), . . . , ([[vn]], [[zn]])} or [[vk]] where zk is the maximum.

(4) Send the ciphertext element cM,0 from the encrypted result [[F(X)]] to each model ownerMi.

Phase 4: Decrypting result.

Model ownerMi: Use the secret share sMi
to construct ρi = cM,0sMi

+ teMi
and send this ρi back to the evaluator.

Evaluator: Send encrypted results [[F(X)]] and aggregated decryption component ρ =
∑N

i=1 ρi = cM,0sM + teM to the client.

Client C: Use the provided component ρ and the secret key skC to decrypt [[F(X)]] that is under the extended key p̄k.

Fig. 3: Details of Different Phases of Our Proposed System

TABLE 1: Notations used in the proposed system

Notation Description

C,Mi A client and i-th model owner, respectively

F A random forest with the trees {T } of all owners M
Ti,w w-th decision tree of model owner Mi

V A vector of class labels, V = {v0, · · · , vn}
Yi,w A threshold vector of Ti,w; Yi,w = {y0, · · · , ym−1}
X A feature vector of a client C, X = {x0, · · · , xm−1}
pkC SWHE public key of a client C
pkMi

SWHE public key of a model owner Mi

pkM A joint key
∑

n
i=1

pkMi

p̄k An MKHE concatenated key {pkC , pkC}
〈·〉i AES encryption with party i symmetric key ki
[·]i SWHE encryption under pki, also as c

[[·]] MKHE extended encryption w.r.t. {pkC , pkM}, also as c̄

5.3 Establishing Multiple Keys

As shown in our collaborative setting in Fig. 1b, there are two

main roles, client and model owner. Before participating in the

protocol, both must run a key setup to generate SWHE keys.

Each client C independently generates an SWHE key pair

(pkC, skC) and ek′C which encrypts information about the secret

key and used later to generate the evaluation key ekC as in Sec. 2.2.

The model owners set up a joint key as the sum of their

independently generated SWHE keys pkM =
∑n

i=1 pkMi
, once

before the start of the protocol. It is used to encrypt the models

before sending them to the cloud. Similarly, they generate the cor-

responding evaluation helper element ek′M as the combination of

their individual evaluation helper elements ek′Mi
which encrypts

information about the secret keys.

Each client C and model owner Mi also generates their own

AES keys, kC and kMi
respectively, which will be used to encrypt

their data at transmission to lower the communication overhead.

5.4 Outsourcing Computations

As a one-time setup (Phase 1 in Fig. 2), each model owner

sends to the evaluator AES encrypted decision trees with each

represented as a vector of threshold values yi ∈ Y corresponds

7

to decision nodes di ∈ D, and a vector of class labels in leaf

nodes lk = v; lk ∈ L; v ∈ V . Each threshold value and class

label are encrypted bit-wise in the form of 〈yℓ−1〉, . . . , 〈y0〉 and

〈vℓ−1〉, . . . , 〈v0〉. The encrypted models can also be updated.

Hiding model structure. To preserve the privacy of model

structure from the evaluator, the model owner can optionally

introduce dummy nodes [6] to the decision tree T to transform

it to a complete tree, which has a depth δ, (2δ−1) decision nodes,

and 2δ leaf nodes. In this case, the evaluator will obliviously

evaluate each decision node (including the dummy nodes), which

will add overhead on the performance cost. One might add

dummy nodes with no computation requirement, but this method

fails if a malicious evaluator launches a timing attack against

the protocol execution. Hence, for stronger security, we suggest

adding dummy nodes that have random threshold values, and the

resulting branches will point to the same leaf node.

Processing a query. When the client requests an evalua-

tion from the evaluator, the evaluator converts each feature

bit-wise from AES encryption to SWHE, such that [xj] =
homAESdec([〈xj〉], [kC]). Then, the evaluator further extends

each ciphertext under the set of the two keys p̄k = {pkC, pkM}
using the extension function Ext(p̄k, c) described in Sec. 2.2.

The extended client’s ciphertext is [[xj]] = {[xj]C, 0} ∈ R4
q .

Similarly, the evaluator extends each model’s ciphertext from one

under model owners’ joint key pkM to one under p̄k to obtain

[[yj]] = {0, [yj]M} and [[vj]] = {0, [vj]M}.

As mentioned, the concatenated key {pkC, pkM} consists of

the client’s key and all model owners’ joint key. The joint key

is a combination of partial keys of all involved model owners

to prevent information leakage due to collusion between the

evaluator and a malicious model owner/client. It can be revoked

by any model owner simply by refreshing their own new partial

key pair. However, this will require to run the threshold key setup

again and encrypting the models with the new joint key.

This design is both secure and efficient since model owners

do not have to send different encryptions of their models for each

registered client. The evaluator only extends these individually

encrypted models to ciphertexts under the two keys {pkC, pkM}
when it receives the client’s request.

5.5 Evaluating Encrypted Decision Trees

Upon receiving the client’s encrypted feature vector X , the eval-

uator evaluates each decision tree in the random forest Ti ∈ F .

Below, we focus our descriptions on the evaluation of a single de-

cision tree and omit some indexes for clarity. The same evaluation

procedures are applied in parallel to each tree.

Secure Comparison. Given a feature x ∈ X and a thresh-

old value y ∈ Y , the evaluator evaluates a boolean function

b = 1(x < y). We use our new protocol SecComp(x, y) which

computes the single-bit encrypted output b as follows.

b =

(xℓ−1 < yℓ−1)∨
(xℓ−1 = yℓ−1) ∧ (xℓ−2 < yℓ−2)∨
...

(xℓ−1 = yℓ−1) ∧ · · · ∧ (x1 = y1) ∧ (x0 < y0)

(1)

where (xj < yj) ≡ (¬xj ∧ yj) ≡ (1 − xj)yj and (xj = yj) ≡
(xj ⊕ yj + 1) ≡ xj + yj + 1.

The intuition is similar to the DGK protocol [8] (Sec. 4.1),

but we remove the linear dependency on ℓ for transferring and

interactively processing ℓ ciphertexts encrypting zero or non-

zero integers. Our protocol can be extended to support equality

checking if needed, such that:

b′ = (xℓ−1 = yℓ−1) ∧ · · · ∧ (x1 = y1) ∧ (x0 = y0) (2)

The evaluator can then evaluation the comparison b = 1(x ≤ y)
by simply combining Eqns. 1 and 2 to compute b = (b ∨ b′).

Existing works [5]–[7] are using an additional technique to

randomly flip the branches and comparison rules at each decision

node to prevent a malicious client from probing the threshold

value. However, we do not apply this feature because our compar-

ison protocol can be evaluated without interaction with the client.

Optimizing Secure Comparison. The multiplicative depth of

SecComp increases with the increase of bit-length ℓ due to the

increase of consecutive homomorphic multiplications performed

at each bit-comparison. For example, a 4-bit comparison protocol

illustrated in Fig. 4(a) requires 3 OR, 5 AND, 3 bit-by-bit equality

checks, and 4 bit-by-bit less-than comparison checks. We find that

for comparing two ℓ-bit values, we evaluate (ℓ−1) number of OR

gates, (2ℓ−3) number of AND gates, (ℓ−1) equality checks, and

ℓ bit-by-bit less-than comparison checks. So, the multiplicative

depth of an ℓ-bit comparison protocol is (3ℓ − 2). Consecutive

homomorphic multiplication impacts the efficiency greatly.

We speed up the SecComp evaluation through parallelization

at a reduced multiplicative depth. This is done by translating the

comparison into a binary evaluation tree as shown in Fig. 4(b). The

evaluation tree reveals the dependencies between computations

for comparison. All the computations in the same level can be

evaluated in parallel. The tree is arranged in a way for balancing

the computations being assigned to each processors. The result is

acquired by merging the branches of the tree bottom up.

Further, we identify that all bit-by-bit equality checks and less-

than comparisons can be done in parallel. They become inputs

for the subsequent AND and OR gates. Recall that the bit-by-

bit equality checks are performed using homomorphic additions.

From the evaluation tree, we extract all parallelizable computa-

tions at each level into a vector for easier access to different

computations, as shown on the right of Fig. 4(b). With these

observations, evaluating SecComp is highly parallel. The results

are cached in a lookup table. The cached values are reused when

repeated evaluation of the same terms is called. For example, the

second call to evaluate (x3 = y3) ∧ (x2 = y2) is skipped.

All boolean functions can also be evaluated in parallel since

they are independent. The multiplicative depth significantly de-

creases in this parallelized approach. For efficiency, the evaluation

tree can be created once before the start of the protocol as a set of

instructions to evaluate any two inputs of a specific bit-length ℓ.
Using this approach facilitates the extension to use multi-cloud

instances to evaluate multiple decision nodes in parallel.

Although the approach still requires the evaluation of ℓ bit-

by-bit less-than comparison checks (rounded boxes in Fig. 4(b)),

the evaluation tree now requires log2 ℓ consecutive multiplica-

tions for the OR gates and ℓ
2 for the AND gates. Therefore,

the multiplicative depth of the parallel SecComp for ℓ-bit is

(log2 ℓ + ℓ
2 + ℓ). The (ℓ − 1) bit-by-bit equality checks are

evaluated using homomorphic addition; therefore, their evaluation

does not significantly affect the multiplicative depth. For example

in Fig. 4(b), the evaluation tree for comparing 4-bit inputs requires

4 bit-by-bit less-than comparison checks, 2 levels of OR logic

gates and 2 levels of AND logic gates. Thus, the multiplicative

8

1 (x
3
< y

3
)⋁

2 (x
3
= y

3
)⋀(x

2
< y

2
)⋁

3 (x
3
= y

3
)⋀(x

2
= y

2
)⋀(x

1
< y

1
)⋁

4 (x
3
= y

3
)⋀(x

2
= y

2
)⋀(x

1
= y

1
)⋀(x

0
< y

0
)

3 (x
3
< y

3
)⋁

2 (x
3
= y

3
)⋀(x

2
< y

2
)⋁

1 (x
3
= y

3
)⋀(x

2
= y

2
)⋀(x

1
< y

1
)⋁

0 (x
3
= y

3
)⋀(x

2
= y

2
)⋀(x

1
= y

1
)⋀(x

0
< y

0
)

(a) SecComp protocol for 4-bit inputs

⋀
1

x
3
= y

3

x
3
= y

3
 x

2
= y

2
 x

1
= y

1

x
3
< y

3

x
0
< y

0

x
2
< y

2
 x

1
< y

1

⋀,⋀,⋀

 HEOp

⋀,⋀

 ⋁,⋁

 ⋁

3,0,2,1

⋁
3,0

⋁

⋁
2,1

⋀
0

⋀
2

⋀

x
3
= y

3
 x

2
= y

2

⋀⋀

⋁

⋁,⋁

⋀,⋀,⋀

⋀,⋀

5

4

3

2

=,..,<1

Lvl HEOp

(b) Evaluation tree and vector

Fig. 4: An example instantiation of SecComp (Eqn. 1) for 4-bit

inputs, and the corresponding evaluation tree and vector

depth is 8 compared to the sequential approach which requires 10
consecutive homomorphic multiplications.

Once the evaluation of all decision nodes is done in paral-

lel, we got the bits b0, b1, . . . , bm−1. Our system evaluates the

decision tree by plugging in these bits into a polynomial [5], as

discussed in Sec. 4.2. The evaluation of this polynomial outputs

a single ciphertext which decrypts to the classification result,

such that Ti(X) = v. We employ a similar speedup technique

for evaluating SecComp to reduce the multiplicative depth and

to parallelize homomorphic operations. The system evaluates the

polynomial ℓ times, one for each bit of v, to assemble v in the

bit-wise format for our secure counting protocol to be discussed.

Lower multiplicative depth allows us to choose smaller parameters

for the SWHE scheme, hence smaller ciphertext size.

Our approach, in its worst, will only send unique class labels

with their counts. Alternative methods for evaluating the tree [6],

[7] require the server to send the entire list of class labels to the

client who extracts the result through an OT protocol.

5.6 Combining Results of a Forest

After evaluating individual trees, we will get a set of decision

tree results {Ti(X)}. For a regression problem, these results are

numerical values that we can compute the random forest result;

for example, calculating the average of all values. This can be

achieved by homomorphically adding the values output from

decision tree evaluation F(X) = 1
n

∑n
i=1(Ti(X)). The evaluator

then sends the sum to the client who decrypts and divides it by the

number of decision trees in the random forest.

For a classification problem, we normally want to know either

the count of each class label or the class label that has the

maximum count. To achieve this, we propose a secure counting

algorithm — SecCount, which counts the number of times each

unique class label has been chosen as the result.

We associate a vector of counters {z1, z2, . . . , zn} (initially

all zeros) with the vector of class labels V = {v1, v2, . . . , vn}.
For each evaluation result vj ∈ {Ti(X)}, we perform a matching

algorithm using the bit-wise representations of vj and vk:

zj = (vj,ℓ−1⊙ vk,ℓ−1)∧ (vj,ℓ−2⊙ vk,ℓ−2)∧ · · · ∧ (vj,0⊙ vk,0)

where ∧ is logical AND, ⊙ is logical XNOR, and zj = 1 if and

only if vj = vk; otherwise zj = 0. We then calculate the sum

of zk =
∑n−1

j=0 zj for each vk. In other words, zk contains the

total count corresponding to the number of decision trees which

outputs vk as the evaluation result. To maintain correctness of

addition with respect to binary message space, we use a regular

binary full-adder circuit to perform the addition. The result of

the addition is the count encoded in bits and can be decoded by

performing the equation σℓ−1
i=0 (zk,i2

i). Note that the bit length for

the count can be set to be log2(n) instead of ℓ for space efficiency.

After the counting, a simple approach to return the random

forest evaluation result is to have the evaluator return directly the

two vectors for the client to decrypt and obtains the counts for

each class. This incurs a high communication overhead.

Alternatively, if we only want to provide the class label with

the maximum count, the evaluator can permute the vector of coun-

ters and the vector of class labels using the same seed, such that

vk and zk are correlated. This prevents the client from learning the

count of each specific class. Then, the evaluator sends the vector

of encrypted counters to the client who will decrypt and send

back an encrypted permuted index corresponding to the maximum

count as the input to a 1-out-of-n OT protocol to retrieve the class

label. This approach is considered as more efficient despite the use

of OT. As a result of the random forest evaluation, we get either

F(X) = {(v1, z1), (v2, z2), . . . , (vn, zn)} or F(X) = v, which

are encrypted under a joint key of multiple parties.

5.7 Decrypting the Classification Result

After the evaluation, the evaluator produces results that are

encrypted under p̄k = {pkC, pkM}. Recall that the re-

sults are extended ciphertexts, where each is in the form

c̄ = {(cC,0, cC,1)|(cM,0, cM,1)}. The client can only decrypt

(cC,0, cC,1). Hence, model owners, who have shares of the secret

key sM, have to help in decrypting cM = (cM,0, cM,1) so the

client can decrypt the evaluation result.

Assume that we have an evaluation result [[vk]]p̄k =
{cC|cM} = {(cC,0, cC,1)|(cM,0, cM,1)}. We need to construct

an element ρ using the part cM,0 to decrypt as described in

Sec. 2.2. In our protocol, the semi-honest evaluator sends cM,0

to all model owners. Each model owner Mi will construct

ρMi
= cM,0sMi

+ teMi
, where eMi

is a large smudging noise

(Appendix B.2) for hiding sMi
, and return it back to the evaluator.

After collecting the responses from all model owners, the evaluator

sends the extended encrypted results to the client along with the

aggregated value of ρ =
∑N

i=1 ρi = cM,0sM + teM. The client

then computes:

vk ≈ 〈cC, sC〉+ (cM,1 − ρ)

= (cC,1 − cC,0sC) + (cM,1 − (cM,0sM + teM))

= (vC + teC) + (vM + teM)

= (vC + vM) + (teC + teM)

= vk + te ≈ vk mod t

6 EVALUATION AND DISCUSSION

We analyze the correctness, security, and complexity of the pro-

posed system. We also validate the design through a number of

empirical studies using synthetic and real-world datasets.

9

6.1 Correctness Analysis

The proposed system discussed in Sec. 5 correctly evaluates the

multi-party random forest. The process of evaluating a random

forest is deterministic by its inputs, the feature vector X and the

random forest F . The core of decision tree and random forest

evaluation is the SecComp protocol for evaluating the boolean

function at each decision node, and the SecCount protocol for

computing a vector of counts that are associated with the vector

of class labels. As shown in previous sections, both computations

are made up of logic gates which can be translated into additions

and multiplications. Hence, the proposed system directly evaluates

the random forest using homomorphic addition and multiplication

without having any side-effect that affects the evaluation results.

6.2 Security Analysis

Our proposed system privately evaluates the random forest and

is secure against semi-honest adversaries under the assumption

that the used encryption schemes are secure. While the use of

AES introduces another assumption, it lowers the communication

overhead as can be observed in Fig. 6a; otherwise, SWHE can

be used directly. The AES ciphertexts are transformed to SWHE

ciphertexts under the individual client’s key pkC and the model

owners’ joint key pkM by the cloud. MKHE provides semantic

security unless the adversary compromised all the secret keys.

Beside their own inputs, the view of each model owner in

the decryption protocol consists of only the component cM,0 of a

ciphertext that is encrypted under the joint key derived from pkM.

For the decryption component to be sent to the cloud, the usage

of the skMi
is protected under the RLWE assumption. Moreover,

the ciphertext (cM,0, cM,1) only encrypts a partial µM of the

evaluation result, but does not contain information about µC of the

client. Therefore, the security against an adversarial model owner

is ensured by the encryption and by the fact that the adversary

does not have access to all ciphertext components.

Lastly, the view of a client consists of his feature vector X
and unique class labels with their associated counts, which are

already computed on the cloud. The probability of each models

contribution to the evaluation result is uniformly distributed over

the counts. Therefore, an adversarial client will not be able to learn

information about individual models used in the random forest.

6.3 Complexity Analysis

With the notations in Table 2, we analyze the computation and

communication complexities of the proposed system. Especially,

we focus on the computation complexity of the core operations

that rely on homomorphic multiplications, since an extra step is

required to reduce the dimension of the resulting ciphertext. Fig. 5

shows a comparison of homomorphic operations implemented us-

ing HElib [22] on ciphertext C and plaintext P . Except C+P and

C ×P , other operations are performed over ciphertexts. Note, the

logic gates, OR and AND, contain homomorphic multiplications.

Hence, they are significantly slower than addition and subtraction

that are used in NOT, XOR, and XNOR.

Upon receiving the client’s request, the cloud evaluates each

decision tree in the forest as discussed in Sec. 5. For each of

the τ decision trees, the cloud requires a multiplicative depth

(number of consecutive homomorphic multiplications) of 3ℓ − 2
to sequentially evaluate the boolean function SecComp at each

of the m decision nodes in the tree. For parallel evaluation, the

multiplicative depth decreases to (log2 ℓ + ℓ
2 + ℓ). Evaluating

TABLE 2: Notations for complexity analysis

Notation Description

τ num. of decision trees

δ max. depth of decision tree

m num. of decision nodes; (m+ 1) leaf nodes

ϕ num. of unique class labels known in the system

ℓ bit length of features, thresholds, class labels

10
-5

10
-4

10
-3

10
-2

10
-1

C
 + C

’

C
 + P

C
 - C

’

C
 x C

’

C
 x P

AN
D
O
R

N
O
T
XO

R
XN

O
R

T
im

e
 (

s
)

Homomorphic operations

Fig. 5: A comparison of homomorphic operations

the polynomial representation of a decision tree with depth δ
requires a multiplicative depth of δ in sequential or log2 δ when

multiplying in pairs. Note, we also include the final multiplication

with the leaf node, as discussed in Sec. 4.2. The multiplicative

depth to evaluate a single decision tree of depth δ is set to 3ℓ−2+δ
in the sequential testing or log2 ℓ+

ℓ
2 + ℓ+(log2 δ) in the parallel

testing. Hence, the sequential evaluation of a decision tree requires

at most O(mℓ + δ) homomorphic multiplications, while it costs

O(m(log2 ℓ+ ℓ) + log2 δ) multiplications in parallel.

To securely count the number each of the ϕ class labels

accumulates based on the evaluation results from τ decision trees,

the cloud requires ℓ homomorphic multiplication; the computation

complexity for SecCount is O(ℓ+ ϕ+ τ).

For communication complexity, we analyze the number of

message exchanges between the different parties and the size

of the transmitted messages. In the setup phase, when n model

owners send their models to the cloud, each round transmits 2mℓ
AES encrypted thresholds and class labels for a complete tree.

Because the size of a block-cipher is significantly smaller than that

of SWHE, the use of hybrid encryption offers lower communica-

tion overhead. Figure 6a shows the total size of ciphertexts sent

to the cloud evaluator, where each bit is individually encrypted

under the respective encryption scheme. We have adapted the

implementation of homAESdec provided in HElib [22] to eval-

uate the performance of homomorphic AES decryption, which is

performed once when the evaluator first receives the inputs. The

evaluation is shown in Fig. 6b considers different HELib-specific

parameter sets (indexed from 0 to 5) suggested in HELib and

in [17] to support different multiplicative depths and ciphertext

packing options. The evaluation compares the performance with

and without Bootstrapping. Note that Bootstrapping option has

lower multiplicative depth and is suggested to be used if further

computations are expected to be performed on the ciphertext [22]

as the case in our proposed system.

The model owner also exchanges 2n messages with the cloud

to generate and send the decryption components. The client ex-

changes 2 rounds of communication with the cloud, one during the

request of evaluation, where the client sends mℓ AES encrypted

features, and one SWHE encryption of its own AES secret key.

10

10
1

10
2

10
3

10
4

2 4 8 16

S
iz

e
 (

B
y
te

s
)

Bit-length of inputs

AES
HE

(a) Size of AES and HE ciphertexts

10
0

10
1

10
2

10
3

10
4

0 1 2 3 4 5

T
im

e
 (

s
)

Parameter settings

Bootstrap
No Bootstrap

(b) Homomorphic AES decryption

Fig. 6: Empirical results for hybrid encryption

The other round is when the client receives the evaluation result

from the cloud in the form of either 2ϕ ciphertexts representing

each class label with its corresponding count or as one single

ciphertext of the class label with the maximum count. The latter

option requires an additional round transmitting ϕℓ counts and

performing a 1-out-of-ϕ OT. A comparison of the proposed system

with the state-of-the-art is presented in Table 3.

6.4 Empirical Study

We have developed a proof-of-concept prototype for performance

evaluation. Specifically, we focus on the SecComp and Sec-

Count protocols, which are the core of the proposed system.

These two protocols contain many homomorphic operations which

will dominate the run-time overhead of the overall system. The

communication overhead of our system depends on the network

factors (such as bandwidth) and can be directly estimated given

those factors. Due to the unavailability of a library that implements

the multi-key BGV SWHE scheme [11], we defer the multi-

key version to future work and focus on other core parts of the

proposed solution. The implementation is based on the HElib [22],

which implements the BGV SWHE scheme [10] using Number

Theory Library (NTL) and GNU Multiple Precision Arithmetic

Library (GMP). We run each experiment multiple times on two

systems, one with Intel Dual Core i7, 3.1GHz and 16GB RAM,

and the other with Intel Xeon, 2.00GHz with 8 CPU cores. We

recorded experiments’ average time and standard deviation.

We set the security parameter λ of BGV scheme to be 128 bits,

which corresponds to a 3072-bit asymmetric key [37]. We set the

plaintext modulus t = 2, which means the plaintext messages

are encoded as binary values as our client’s inputs and threshold

values are both encoded in binary. The rest of the BGV scheme

parameters are set to the defaults [22]. The multiplicative depth

L of is configured4 according to what required by the evaluated

circuits in our protocol, for which we derived in Sec. 6.3.

6.4.1 Sub-protocols

First, we evaluate the SecComp protocol and compare the perfor-

mance of the sequential and parallel versions. We randomize the

input values with various bit-lengths in each experiment. Fig. 7

shows the evaluation results in the logarithmic scale. As expected,

the running time increases linearly with the length of inputs

because more homomorphic multiplications will be required.

As described in Sec. 5.5, we speed up the evaluation of the

protocol by pre-computing a lookup table of all leaf nodes and

4. The number of levels in the scheme is set as (20×L) as suggested in the
latest release of the HELib library. https://github.com/shaih/HElib

10
-1

10
0

10
1

10
2

10
3

10
4

2 4 8 16 32

T
im

e
 (

s
)

Bit-length of inputs

Sequential
Parallel(4-core)
Parallel(8-core)

Fig. 7: Empirical results of the SecComp protocol

constructing an evaluation tree and vector to facilitate parallel

computing with OpenMP library [38]. The reduction in running

time is visible in Fig. 7. For a small input size (see 2-bit results),

the parallel approach is not significantly faster. That is because

building the evaluation tree and assigning tasks to threads using

OpenMP introduce additional time that is roughly the same as

performing the comparison sequentially. The ratio of speedup is

approximately 1:log2 ℓ in each experiment, which agrees with the

estimated improvement since we perform multiplications in pairs

using the evaluation tree.

In another experiment, we study the performance gain when

we increase the parallelization from 4-core to 8-core. As shown

in Fig. 7, there is a significant improvement when more processor

cores are available. Comparing two 16-bit inputs requires around

328 s to complete. The running time decreases to 80 s when using

a 4-core system and to 37 s when using an 8-core system. Note,

the rest of the experiments are run using an 8-core system.

We also test the performance of SecCount through three

different experiments. In the first experiment, we set the number

of class labels to 2, mimicking a binary classification problem, and

calculate their counters based on one classification result. Fig. 8a

shows that the running time increases with the bit-length of the

class labels and classification results. For example, the protocol

counts labels and results in 31 s if their bit-length is 16, while it

only needs 6 s if the length is 8 bits. Similar to SecComp, this

is due to the increase of homomorphic multiplications. Hence,

we parallelize the evaluation of this protocol using OpenMP. The

parallel version achieves approximately a speedup by a factor of

×2 when we calculate the counter of 2 class labels simultaneously.

In the second experiment (Fig. 8b), we investigate the per-

formance for a classification problem that has multiple class

labels. Specifically, we vary the number of class labels ϕ for each

experiment and set the number of results to 5ϕ. We aim to test the

performance of the SecCount protocol when the number of inputs

(both labels and results) scales up. In this experiment, we fix the

bit-length of each input to 8 bits. The third experiment, as shown in

Fig. 8c, we consider a different number of classification results but

fix the number of class labels to two. From the three experiments,

we demonstrate the feasibility of the SecCount protocol and

validate the technique to speed up the evaluation process.

6.4.2 Decision Trees and Random Forests

Next, we investigate the performance of evaluating the entire

decision tree, consisting of the secure comparison protocol at each

decision node and operating on the polynomial representation

of the tree. Our experiments are over complete trees since they

represent the worst case. There are m = 2δ − 1 invocation of

11

TABLE 3: A comparison with the recent work on privately evaluating one decision tree: n is the number of feature, m is the number

of decision nodes, ℓ is bit-length of input, and δ is the depth of decision tree

Protocol HE scheme Comparison protocol
Computation complexity

Rounds
Client Model owner Cloud

Bost et al. [5] SWHE + Additive HE Veugen’s protocol [9] O((n+m)ℓ) O(mℓ) - 6
Wu et al. [6] Additive HE Improved DGK [25] O((n+m)ℓ+ δ) O(mℓ+ 2δ) - 6
Tai et al. [7] Additive HE Improved DGK [25] O((n+m)ℓ) O(mℓ) - 4
This work SWHE SecComp O(nℓ) O(mℓ) O((m+ n)ℓ+ δ) 2

10
-1

10
0

10
1

10
2

10
3

2 4 8 16 32

T
im

e
 (

s
)

Bit-length of inputs

Sequential
Parallel

(a) Varying bit-length (results=1, labels=2)

10
1

10
2

10
3

10
4

10
5

2 4 6

T
im

e
 (

s
)

Number of class labels

Sequential
Parallel

(b) Varying # of labels ϕ (results=5ϕ)

10
1

10
2

10
3

10
4

10
5

3 5 7 9 15

T
im

e
 (

s
)

Number of results

Sequential
Parallel

(c) Varying # of results (labels=2)

Fig. 8: Evaluation of different aspects of the SecCount protocol

the secure comparison protocol. We use randomized values (for

features, threshold values, and class labels) of 8-bit long.

Fig. 9a shows the results. The running time grows with the

increase of the decision tree depth as the number of decision

nodes increases. Correspondingly, this means there will be more

invocations of SecComp. The performance achieves a speedup of

factor ×7 when evaluating a tree in parallel. The improvement is

largely due to our parallel evaluation of SecComp and processing

of the polynomial representation of the tree discussed in Sec. 5.5.

We also study the performance of evaluating a forest of trees

which have a depth of δ = 2. We use synthetic data with bit-

length of 8 to construct all the tree in the random forest. We

vary the number of trees in each experiment. Fig. 9b shows the

performance. The most expensive part of evaluating the random

forest is SecComp at each decision node of each tree. For

complete trees, it takes τ(2δ − 1) SecComp invocations where τ
is the number of trees. In this experiment, no parallelism has been

exploited to support concurrent evaluation of decision trees. The

parallelization is only applied to speed up the building blocks, i.e.,

SecComp at each decision node, the polynomial evaluation, and

SecCount. There is significant speedup (in the ratio of 1:4.5)

between the sequential and parallel evaluation of the random

forest. The parallel evaluation of random forest with 3 decision

trees requires around 250 s. In total, it is approximately one-fifth

of the time 1307 s needed in the sequential evaluation.

We validate the feasibility and performance of our system

10
1

10
2

10
3

10
4

10
5

2 3 4 6 8

T
im

e
 (

s
)

Decision tree depth

Sequential
Parallel

(a) Evaluation of decision tree

10
1

10
2

10
3

10
4

10
5

3 5 7 9 15

T
im

e
 (

s
)

Number of decision trees

Sequential
Parallel

(b) Evaluation of random forest

Fig. 9: Empirical results using synthetic data

using real-world datasets. Specifically, we use the Heart Disease

(HD), Breast Cancer (BC), and Credit Screening (CS) datasets

from the UCI Machine Learning Repository [39]. For each dataset,

we split that data into training data (50%) and testing data (50%)

and train a collection of decision trees using FFTrees (fast-and-

frugal decision trees) [40]. Note that we verify the ground truth

using the plaintext version in each of the following experiments.

We achieve an accuracy of 100% in our classification results since

the encryption scheme does not affect any computation.

Similar to the empirical study using synthetic data, we first

randomly pick one trained decision tree from each dataset. We

then measure the running time of the homomorphic evaluation of

the three representative trees. In these experiments, we choose the

bit-length 8-bit for HD inputs and the bit-length 4-bit for the BC

and CS inputs. Fig. 10a shows the results. Note that each dataset

has different characteristics (i.e., the tree depth δ and the number

of decision nodes m). Clearly, the running time is correlated to m
and the number of SecComp invocations.

Next, we randomly pick some number of decision trees from

the collection of trained trees to form a random forest of a specific

size. Table 4 summarizes the characteristics of the created random

forests for each dataset, which include the number of decision trees

in the forest, the number of decision nodes in the entire forest, the

maximum depth of each tree, and the bit-length of all inputs.

Figures 10b and 10c show the performance of the sequential

and parallel evaluation as the number of trees varies. Overall, these

results agree with the findings in earlier experiments. In general,

the more decision nodes, the longer the running time is, primarily,

due to the number of SecComp instances. Also, the bit-length of

inputs in the HD dataset is 8-bit, which incurs a longer running

time as shown in Fig. 7. For a random forest of size 15, the

forest for HD takes around 6532 s to evaluate sequentially, and

approximately 1420 s in parallel. The BC forest takes 1645 s, and

the CS forest takes 2213 s to be evaluated sequentially. In the

parallel setting, they run in 668 s and 1073 s respectively.

12

10
0

10
1

10
2

10
3

â��HDâ�� â��BCâ�� â��CSâ��

T
im

e
 (

s
)

Dataset

Sequential
Parallel

(a) Evaluation of one decision tree for 3 datasets:
i) HD (δ = 4,m = 4), ii) BC (δ = 2,m = 2),
and iii) CS (δ = 3,m = 3)

10
2

10
3

10
4

3 5 7 9 15

T
im

e
 (

s
)

Number of decision trees

HD
BC
CS

(b) Varying # of trees (Sequential)

10
1

10
2

10
3

10
4

3 5 7 9 15

T
im

e
 (

s
)

Number of decision trees

HD
BC
CS

(c) Varying # of trees (Parallel)

Fig. 10: Empirical results using real-world datasets

TABLE 4: The numbers of decision nodes in the random forests

we created for different number of trees and datasets

Dataset / Number of Trees τ 3 5 7 9 15

HD (δ = 4, ℓ = 8) 10 16 22 29 49

BC (δ = 2, ℓ = 4) 6 10 14 18 30

CS (δ = 4, ℓ = 4) 11 17 25 31 53

6.4.3 Comparison to Existing Works

We also compare the performance of our protocol with different

state-of-the-art protocols for secure evaluation of decision tree [5],

[7]. Most related works are focused on a two-party setting,

whereas our design focuses on a collaborative setting which

requires multi-key support. For a fair comparison, we compare

the core techniques across the best-known works and consider

a special case where the model owner holds a random forest

consisting of one decision tree. The tree is of depth δ (a variable

in our experiments) with (2δ − 1) decision nodes and 2δ leaves.

In our experiment setup, we use SWHE to encrypt model

information (i.e., thresholds and class labels) and client’s inputs.

We use our non-interactive SecComp protocol for evaluating the

boolean function at each decision node. We focus our testing on

two main approaches used in literature for tree traversal, the OT

approach [6], [7] and the tree polynomial evaluation [5]. Among

the OT approaches, we implemented the path cost [7] because it

is the most efficient among the two works. We compare it to the

polynomial approach, which is used in both [5] and in our work.

In Fig. 11a, we show the performance of evaluating a decision

tree as a polynomial. Recall that a tree of depth δ can be repre-

sented as a polynomial with a multiplicative depth of δ (Sec. 4.2).

Evaluating δ consecutive multiplications is non-optimal, hence we

evaluate them in-pairs instead to achieve optimal performance.

Bost et al. [5] briefly showed the impact of this approach for

evaluating decision trees that have a small multiplicative depth

δ = 4. Here, we further investigate the impact of this optimization

with varying depths. As shown in Fig. 11a, the optimal approach

10
0

10
1

10
2

10
3

2 4 6 8

T
im

e
 (

s
)

Multiplicative Depth

Non-optimal
Optimal

(a) Analysis of multiplicative depth

10
1

10
2

10
3

10
4

2 4 6 8

T
im

e
 (

s
)

Tree Depth

Bost et al.
Tai et al.

This work

(b) Evaluation of decision tree

Fig. 11: Empirical results of comparison with state-of-the-art

performs approximately 7× better compared to the non-optimal

one and the improvement increases as the decision tree depth

(δ = 4, δ = 6, and δ = 8 achieve factors of 1 : 6, 1 : 10,

and 1 : 12 speedup respectively). For example, it takes around

168 s to evaluate a polynomial of depth δ = 6, while it only takes

16 s to evaluate the same polynomial in-pairs.

We also compare the performance of evaluating a decision tree

using the optimized polynomial approach in Bost et al. [5] and our

protocol, and the path cost approach in Tai et al. [7]. As can be

seen in Fig. 11b, the evaluation with the polynomial approach

outperforms the path cost approach of Tai et al. [7] across all

different depths. For example, it takes around 236 s to evaluate

a tree of depth δ = 4 using the path cost approach and 117 s

using our approach. Moreover, the path cost approach [7] sends

back 2δ pairs of encrypted data for each decision tree to the client.

In contrast, our work sends back in the “worst case” ϕ pairs of

encrypted data. Note that the number of labels is less than the

number of all leaf nodes in the random forest (i.e., ϕ≪ 2δ).

7 CONCLUSION AND FUTURE WORK

We proposed a semi-honest protocol that supports privacy-

preserving evaluation of random forest in an outsourcing setting.

In particular, we integrated hybrid homomorphic encryption and

multi-key encryption to reduce the communication overhead in

homomorphic computations on data encrypted using different

keys. We also developed two sub-protocols. The first is a secure

counting protocol that goes beyond the state-of-the-art approaches

to compute the result of the random forest. Our secure comparison

protocol achieves a lower round complexity compared to existing

work. We discussed optimization techniques based on the execu-

tion path to speed up the evaluations of the comparison protocol

and the polynomial associated with the decision tree.

With these new features and improvements, we also developed

a proof-of-concept prototype for asserting the feasibility of our

protocol through experiments. We demonstrated that collaborative

evaluation of multiple models in an outsourcing setting is feasible.

One potential improvement of our proposed solution is to

allow operation on floating-point numbers instead of integers.

Computing homomorphically on floating-point numbers can be

handled using the CKKS scheme [41], which is implemented

in most of the recent HE libraries, such as HELib [22] and

SEAL [42]. Other future works include extending our protocol

for security against malicious adversaries and exploring further

techniques to speed up the homomorphic operations.

13

ACKNOWLEDGMENT

The authors would like to thank Krish Sunil Rohra for his valuable

contributions in protocol implementation and evaluation.

References

[1] T. Hofmann and J. Basilico, “Collaborative machine learn-

ing,” in, M. Hemmje, C. Niederée, and T. Risse, Eds. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2005, pp. 173–182.

[2] T. Fox-Brewster, 120 million american households exposed

in ’massive’ consumerview database leak, https : / / www.

forbes . com / sites / thomasbrewster / 2017 / 12 / 19 / 120m -

american-households-exposed-in-massive-consumerview-

database-leak, Dec. 2017.

[3] D. Linthicum, Safer but not immune: Cloud lessons from

the equifax breach, https : / / www. infoworld . com / article /

3225479/cloud-computing/safer-but-not- immune-cloud-

lessons-from-the-equifax-breach.html, Sep. 2017.

[4] U.S. Department of Health & Human Services, Notice to

the secretary of HHS breach of unsecured protected health

information, https://ocrportal.hhs.gov/ocr/breach/breach

report.jsf.

[5] R. Bost, R. A. Popa, S. Tu, and S. Goldwasser, “Machine

learning classification over encrypted data,” in Network and

Distributed System Security Symposium (NDSS), 2015.

[6] D. J. Wu, T. Feng, M. Naehrig, and K. Lauter, “Privately

evaluating decision trees and random forests,” Proceedings

on Privacy Enhancing Technologies, vol. 4, pp. 1–21, 2016.

[7] R. K. H. Tai, J. P. K. Ma, Y. Zhao, and S. S. M. Chow,

“Privacy-preserving decision trees evaluation via linear

functions,” in European Symposium on Research in Com-

puter Security, 2017, pp. 494–512.

[8] I. Damgård, M. Geisler, and M. Krøigaard, “Efficient and

secure comparison for on-line auctions,” in Australasian

Conference on Information Security and Privacy, Springer,

2007, pp. 416–430.

[9] T. Veugen, “Comparing encrypted data,” Delft University

of Technology and TNO Information and Communication

Technology, Tech. Rep., 2011.

[10] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(Leveled)

fully homomorphic encryption without bootstrapping,” in

Innovations in Theoretical Computer Science Conference

(ITCS), ACM, 2012, pp. 309–325.

[11] L. Chen, Z. Zhang, and X. Wang, “Batched multi-hop

multi-key fhe from Ring-LWE with compact ciphertext ex-

tension,” in Theory of Cryptography Conference, Springer,

2017, pp. 597–627.

[12] V. Lyubashevsky, C. Peikert, and O. Regev, “On ideal

lattices and learning with errors over rings,” Journal of the

ACM, vol. 60, no. 6, p. 43, 2013.

[13] B. Applebaum, D. Cash, C. Peikert, and A. Sahai, “Fast

cryptographic primitives and circular-secure encryption

based on hard learning problems,” in Advances in Cryp-

tology – CRYPTO, Springer, 2009, pp. 595–618.

[14] G. Asharov, A. Jain, A. López-Alt, E. Tromer, V. Vaikun-

tanathan, and D. Wichs, “Multiparty computation with low

communication, computation and interaction via thresh-

old FHE,” in Advances in Cryptology – EUROCRYPT,

Springer, 2012, pp. 483–501.

[15] M. Clear and C. McGoldrick, “Multi-identity and multi-

key leveled FHE from learning with errors,” in Advances in

Cryptology – CRYPTO, Springer, 2015, pp. 630–656.

[16] C. Peikert and S. Shiehian, “Multi-key FHE from LWE,

revisited,” in Theory of Cryptography Conference, Springer,

2016, pp. 217–238.

[17] C. Gentry, A. Sahai, and B. Waters, “Homomorphic en-

cryption from learning with errors: Conceptually-simpler,

asymptotically-faster, attribute-based,” in Advances in

Cryptology–CRYPTO 2013, Springer, 2013, pp. 75–92.

[18] M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan,

“Fully homomorphic encryption over the integers,” in Ad-

vances in Cryptology – EUROCRYPT, 2009, pp. 24–43.

[19] J. Basilakis and B. Javadi, Efficient parallel binary opera-

tions on homomorphic encrypted real numbers, Cryptology

ePrint Archive, Report 2018/201, https : / / eprint . iacr.org /

2018/201, 2018.

[20] T. Lepoint and M. Naehrig, “A comparison of the ho-

momorphic encryption schemes FV and YASHE,” in

AfricaCrypt, Springer, 2014, pp. 318–335.

[21] M. Naehrig, K. Lauter, and V. Vaikuntanathan, “Can ho-

momorphic encryption be practical?” In ACM workshop on

Cloud Computing Security Workshop, 2011, pp. 113–124.

[22] S. Halevi and V. Shoup, “Algorithms in HElib,” in Advances

in Cryptology – CRYPTO, Springer, 2014, pp. 554–571.

[23] M. O. Rabin, How to exchange secrets with oblivious

transfer, IACR Cryptology ePrint Archive 2005/187, 2005.

[24] CDC Diseases and Conditions, https : / / www. cdc . gov /

diseasesconditions/index.html, Accessed: 2018-02-15.

[25] T. Veugen, “Improving the DGK comparison protocol,”

in International Workshop on Information Forensics and

Security (WIFS), IEEE, 2012, pp. 49–54.

[26] Z. Erkin, M. Franz, J. Guajardo, S. Katzenbeisser, I. La-

gendijk, and T. Toft, “Privacy-preserving face recognition,”

in Privacy Enhancing Technologies Symposium, Springer,

2009, pp. 235–253.

[27] S. Goldwasser and S. Micali, “Probabilistic encryption,” J.

of Computer and System Sciences, vol. 28, no. 2, pp. 270–

299, 1984.

[28] P. Paillier, “Public-key cryptosystems based on composite

degree residuosity classes,” in Advances in Cryptology –

EUROCRYPT, Springer, 1999, pp. 223–238.

[29] M. Joye and F. Salehi, “Private yet efficient decision tree

evaluation,” in IFIP Annual Conference on Data and Appli-

cations Security and Privacy, Springer, 2018, pp. 243–259.

[30] A. Tueno, F. Kerschbaum, and S. Katzenbeisser, “Private

evaluation of decision trees using sublinear cost,” Proceed-

ings on Privacy Enhancing Technologies, vol. 2019, no. 1,

pp. 266–286, 2019.

[31] F. Emekçi, O. D. Sahin, D. Agrawal, and A. El Abbadi,

“Privacy preserving decision tree learning over multiple

parties,” Data & Knowledge Engineering, vol. 63, no. 2,

pp. 348–361, 2007.

[32] J. W. Bos, K. Lauter, and M. Naehrig, “Private predictive

analysis on encrypted medical data,” Journal of biomedical

informatics, vol. 50, pp. 234–243, 2014.

[33] S. Hu, Q. Wang, J. Wang, S. S. M. Chow, and Q. Zou,

“Securing fast learning! Ridge regression over encrypted

big data,” in TrustCom, 2016, pp. 19–26.

14

[34] P. Mohassel and Y. Zhang, “SecureML: A system for

scalable privacy-preserving machine learning,” in IEEE

Sympposium on Security and Privacy, 2017, pp. 19–38.

[35] J. Liu, M. Juuti, Y. Lu, and N. Asokan, “Oblivious neu-

ral network predictions via MiniONN transformations,” in

Computer and Communications Security, 2017, pp. 619–

631.

[36] O. Ohrimenko, F. Schuster, C. Fournet, A. Mehta, S.

Nowozin, K. Vaswani, and M. Costa, “Oblivious multi-

party machine learning on trusted processors,” in USENIX

Security, 2016, pp. 619–636.

[37] M. Backes, P. Berrang, M. Bieg, R. Eils, C. Herrmann,

M. Humbert, and I. Lehmann, “Identifying personal DNA

methylation profiles by genotype inference,” in IEEE Sym-

posium on Security and Privacy, 2017, pp. 957–976.

[38] L. Dagum and R. Menon, “OpenMP: An industry standard

API for shared-memory programming,” Computational Sci-

ence and Engineering, vol. 5, no. 1, pp. 46–55, 1998.

[39] D. Dua and C. Graff, UCI machine learning repository,

2017. [Online]. Available: http://archive.ics.uci.edu/ml.

[40] N. D. Phillips, H. Neth, J. K. Woike, and W. Gaissmaier,

“FFTrees: A toolbox to create, visualize, and evaluate fast-

and-frugal decision trees,” Judgment and Decision Making,

vol. 12, no. 4, pp. 344–368, 2017.

[41] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomor-

phic encryption for arithmetic of approximate numbers,”

in Advances in Cryptology – ASIACRYPT, Springer, 2017,

pp. 409–437.

[42] Simple Encrypted Arithmetic Library (release 3.1.0), https:

//github.com/Microsoft/SEAL, Microsoft Research, Red-

mond, WA., Dec. 2018.

APPENDIX A

THE BGV SCHEME

Our work uses the Brakerski-Gentry-Vaikuntanathan (BGV)

SWHE scheme [1] which allows an arbitrary number of additions

but limited consecutive multiplications. The scheme consists of the

following algorithms (KeyGen,Enc,Dec,EvalAdd,EvalMult):

- BGV.KeyGen(pp) → (pk, sk): A probabilistic algorithm to

generate public and private keys. Sample a small element

s
$
← χk such that secret key sk = s, and sample a small

noise element e
$
← χe, where χk and χe are two Gaussian

distributions over Rq . Also uniformly sample A
$
← Rq . The

public key is pk = (A,As+ te).
- BGV.Enc(pk, µ)→ c: A probabilistic algorithm inputs a plain-

text message µ ∈ Rt and a public key pk = (A,As + te).

Uniformly sample a random number γ
$
← Rt and encrypt

the message µ as c = (c0, c1) ∈ R2
q where c0 = γA and

c1 = γ(As+ te)+µ. For clarity, we omit the γ associated with

the noise γte and write c1 = γAs+ te+µ. Note, we represent

ciphertext with public key elements which is an encryption of

the secret key s with some noise e. In the BGV scheme, security

relies on the initial noise e and the random element γ [1]. New

γ should be chosen for every encryption to ensure semantic

security.

- BGV.Dec(c, sk) → µ: A deterministic algorithm inputs a

ciphertext c = (c0, c1) ∈ R2
q encrypted under pk and the corre-

sponding secret key sk. Decrypy by computing µ̃ = c1 − c0s.

The decryption of a ciphertext in the BGV scheme is correct if

and only if (µ̃ mod t = µ).
- BGV.EvalAdd(c, c′) → cadd: A deterministic algorithm adds

two ciphertexts c = (c0, c1) = (γA, γAs + µ + te), c′ =
(c′0, c

′
1) = (γ′A, γ′As + µ′ + te′) and outputs cadd = ((c0 +

c′0), (c1 + c′1)) ∈ R2
q , where, (c0 + c′0) = (γ + γ′)A and

(c1 + c′1) = (γ + γ′)As+ t(e+ e′) + (µ+ µ′). Decryption is

still correct because (γ + γ′)A can be canceled with the secret

key s.

- BGV.EvalMult(c, c′)→ cmult: A deterministic algorithm inputs

two ciphertexts c, c′ ∈ R2
q and outputs the result cmult. Their

initial homomorphic multiplication yields

c̃mult = c · c′ = (c0, c1) · (c
′
0, c

′
1)

= (c0 · c
′
0, c0 · c

′
1 + c′0 · c1, c1 · c

′
1)

= (c0, c1, c2) ∈ R3
q

The additional component c2 includes a quadratic element s2

resulted from the multiplication (c0·s+t·e+µ)(c′0·s+t·e′+µ′).
Not only the error noise grows quadratically, but it also in-

creases the number of ciphertext elements. One thus needs to

use key switching [1] after each homomorphic multiplication

to reduce the dimension and yield a correct ciphertext that

is decryptable by the secret key sk. The process requires

generating a special set of evaluation keys {ek} which con-

tains the s2 element. We denote the output of the process by

cmult = KeySwitch(c̃mult, {ek}), which encrypts the product of

two ciphertexts under the secret key sk. For details about the

noise reduction technique for BGV, we refer interested readers

to [1].

APPENDIX B

CRYPTOGRAPHIC DEFINITIONS

B.1 Key switching

This technique is applied after homomorphic operations to trans-

form a ciphertext from one under the key s to one under a

different key s′. It is also called the relinearization step [1] that

reduces the dimension after each homomorphic multiplication and

yield a normal ciphertext that is decryptable by the secret key

s′. This transformation is accomplished with the aid of auxiliary

information provided as evaluation key ek which encrypts s under

s′. To perform key switching, two essential functions are needed:

- EvalKeyGen(s, s′): Given two keys s ∈ Rk
q , s

′ ∈ R2
q ,

let β = ⌊log q⌋ and compute the powers-of-2 of the old

secret key s̃ = Powersof2(s) = (20s, 2s, . . . , 2βs) ∈ Rkβ
q .

Sample kβ RLWE instances (ai, ais
′ + te′i) and output

ek = {(ai, ais
′ + te′i + s̃[i]) ∈ R2

q}i=1,...,kβ

- KeySwitch(ek, c) Given a ciphertext c ∈ Rk
q under s

and the evaluation key ek, decompose the ciphertext to its

binary such that c̃ = BitDecom(c) = (u0, . . . , u⌊log q⌋)

where c =
∑⌊log q⌋

i=0 (ui2
i) and output the new ciphertext

as c′ =
∑k

i=0(c̃[i]ek[i]) ∈ R2
q which is encrypted under the

new key s′.

B.2 Smudging Noise

In the threshold decryption protocol, each model owner uses their

own secret share to generate a decryption component. If the error

terms in these components were small, it may reveal information

about the secret shares due to their different distributions. To

15

make sure that no secret shares can be learned, we need to

add larger errors following the Smudging Lemma presented by

Asharov et al. [2], which states that adding large noise smudges

out the small values in the ciphertext.

Lemma B.1 (Smudging Noise [2]). Let B1 = B1(λ), and

B2 = B2(λ) be positive integers and let e0 ∈ [−B1,B1]
be a fixed integer. Let e1← [−B2,B2] be chosen uniformly

at random. Then the distribution of e1 is statistically indistin-

guishable from that of e1 + e0 as long as B1/B2 = ǫ, where

ǫ = ǫ(λ) is a negligible function.

In our work, threshold decryption is held by model owners to

produce a decryption component that helps the client decrypting

the evaluation result. Each model owner uses their own secret

share to produce this component; hence, we apply the smudging

lemma to add a large noise to the component such that it prevents

leaking information about the secret share.

APPENDIX C

THRESHOLD HOMOMORPHIC ENCRYPTION

One approach to support computation over data encrypted under

multiple-key is to use the threshold extension [2] of the BGV

scheme. The scheme is key homomorphic, which means adding a

set of different individual keys produces a valid “joint key”. The

individual keys then become “partial keys” of the newly created

joint key.

Definition C.1 (Threshold Homomorphic Encryption (THE)).

Let P = {P1, . . . , , Pn} be a set of parties. A threshold

homomorphic encryption scheme is a tuple of PPT algorithms

THE = (Setup, JointkeyGen,Enc,Eval,Dec).

- THE.Setup(1λ, 1L) → ((pk1, sk1) . . . , (pkn, skn)): Given a

security parameter λ and a bound on circuit depth L, the setup

algorithm outputs a set of n key pairs (pki, ski).
- THE.JointkeyGen(pk1, . . . , pkn)→ pk∗, ek∗: Given the input

of n public keys (pk1, . . . , pkn), the interactive algorithm

outputs a joint public key pk∗ and the evaluation key ek∗.

- THE.Enc(pk∗, µ) → c: Given a joint public key pk∗ and a

message µ, the encryption algorithm outputs a ciphertext c.

- THE.Eval(pk∗, c, c′) → ceval: Given a joint public key pk∗

and two ciphertexts c, c′, the evaluation algorithm outputs the

evaluated ciphertext ceval.
- THE.Dec(sk1, . . . , skn, c) → µ: Given a set of secret shares

(sk1, . . . , skn) and a ciphertext c, the interactive decryption

algorithm performs decryption and outputs the message µ

Formally, given a set of n public keys pki = (A,Asi + tei)
where i ∈ {1, . . . , n} and the element A ∈ Rq is assumed to

be shared, the joint public key is pk∗ = (A,A
∑

si + t
∑

ei).
Likewise, given a key pair (pk∗, sk∗), the corresponding n partial

keys can be produced by dividing the joint secret key into n secret

shares {s1, . . . , sn}, such that si = s∗ −
∑n

j=1 sj ; i 6= j.

During decryption, each party contributes its partial key si by

computing c0si + tei. Then, all parties collaboratively produce a

component that contains the sum of all partial secret keys, that is

(c0s
∗+te∗) = (c0

∑

si+t
∑

ei). The message can be decrypted

correctly when we compute c1 − (c0s
∗ + te∗).

Multiplying two ciphertexts results in a ciphertext of dimen-

sion increased quadratically. One needs a key switching tech-

nique (Appendix B.1) which takes in an evaluation key ek∗ to

transform the resulting ciphertext. The evaluation key encrypts

the powers-of-two of (s∗)2, i.e., {20(s∗)2, 2(s∗)2, . . . , 2β(s∗)2}
where β = ⌊log q⌋.

For more details on the generation of the evaluation

key, we refer readers to the setup protocol [2]. Below we

quickly review some details. In the multi-key setting, the value

(s∗)2 = (s∗[k] · s∗[u]), where k, u ∈ {0, . . . , |s∗| − 1}, has

to be homomorphically generated based on the secret shares

{s1, . . . , sn}. Hence, the n parties run a two-round proto-

col to generate the evaluation key in a threshold manner.

In the first round, each party i shares the encryptions {2ℓ ·
si[k]}ℓ∈{0,...,⌊log q,i∈{1,...,n},k∈{0,...,|s∗|−1}⌋} under s∗. Then

in the second round, each party i computes and shares the encryp-

tions {2ℓ ·si[k] ·sj [u]}ℓ∈{0,...,⌊q⌋,i,j∈{1,...,n},k,u∈{0,...,|s∗|−1}}.

Combining all encryptions yields the evaluation key ek∗ =
{ek∗

ℓ } = {2
ℓ · s∗[k] · s∗[u]} encrypted w.r.t. s∗.

APPENDIX D

MULTI-KEY BGV SWHE SCHEME

Chen, Zhang, and Wang [3] extended the BGV scheme to a multi-

key homomorphic encryption scheme, where each participant has

a unique index i ∈ {1, . . . , n} and holds a key pair (pki, ski).
This new scheme extends a ciphertext linearly in the number of

participants’ keys, which is predetermined at setup.

Definition D.1 (Multi-Key BGV (MKBGV)). The multi-key

BGV scheme is a tuple of PPT algorithms MKBGV =
(Setup,KeyGen,Enc,Ext,EvalKeyGen,Eval,Dec).

- MKBGV.Setup(1λ, 1L, 1K)→ pp: Given a security parameter

λ, a bound on circuit depth L, and a bound on the number of

keys, the setup algorithm outputs the public parameters pp.

- MKBGV.KeyGen(pp) → (pk, sk, ek′): Given the public pa-

rameters pp, the key generation algorithm outputs a public key

pk, a private key sk, and a, evaluation helper element ek′.

- MKBGV.Enc(pk, µ)→ c: Given a public key pk and a message

µ, the encryption algorithm outputs a ciphertext c.

- MKBGV.Ext({pk1, ·, pkn}, c) → c̄: Given a set of public

keys pk1, ·, pkn, and a ciphertext c, the output is the extended

ciphertext c̄ under the concatenated public key p̄k.

- MKBGV.Eval(p̄k, c)→ ceval: Given a concatenated public key

p̄k and two ciphertexts c̄, c̄′, the evaluation algorithm outputs

the evaluated ciphertext c̄eval.
- MKBGV.Dec({sk1, . . . , skn}, c̄)→ µ: Given a set of concate-

nated secret shares {sk1, . . . , skn} and an extended ciphertext

c̄, the interactive decryption algorithm performs decryption and

outputs the message µ

A message µ is encrypted under a public key pki following the

standard BGV encryption (Appendix A), outputting a ciphertext

[µ]i = ci = (ci,0, ci,1) ∈ R2
q . Each ciphertext is associated with

an ordered set I that stores the indices of participants, indicating

the ciphertext is encrypted under their keys. For example, a fresh

ciphertext encrypted under pk1 is associated with I = {1}.
Extending this ciphertext to a set of other keys {pk2, . . . , pkn}
yields a concatenated n sub-vectors c̄ = (c1|c2| . . . |cn) ∈ R2n

q

such that ci equals to the ciphertext of participant i if i ∈ I ,

otherwise, ci = 0. The associated set is updated to include the

new indices, such that I = {1, 2, . . . , n}. We denote [·] as a

standard BGV ciphertext and [[·]] as an extended BGV ciphertext.

Decryption of an extended ciphertext c̄ that is encrypted under

p̄k = {pk1, . . . , pkn} requires the concatenated secret keys s̄ =

16

{s1| . . . |sn}. All n participants collaborate to decrypt the message

as 〈c̄, s̄〉 =
∑n

i=1〈ci, si〉 = te+ µ ≈ µ mod t.
Similar to the standard BGV scheme, the multi-key scheme

requires an evaluation key to perform key switching after ho-

momorphic computations. The evaluation key is generated based

on the different keys that encrypt the given extended ciphertext.

Since the set of keys can be changed during computations, the

evaluation key cannot be pre-generated. Instead for secret key si,
an evaluation helper element ek′i is generated at key setup. This

helper element encrypts the powers-of-two of the secret key si
and the randomness values using a ring-variant of GSW encryp-

tion [3], [4]. Before performing homomorphic computation on the

extended ciphertext c̄, which is encrypted under {pk1, . . . , pkn},
the corresponding evaluation helper elements {ek′1, . . . , ek

′
n} are

used to generate the evaluation key ek. Each helper element ek′i is

extended to the other keys {sj}j∈{1,...,n},j 6=i. Then, the extended

values are multiplied to produce the evaluation key that encrypts

the concatenated secret key (s̄)2.

References

[1] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(Leveled)

fully homomorphic encryption without bootstrapping,” in

Innovations in Theoretical Computer Science Conference

(ITCS), ACM, 2012, pp. 309–325.

[2] G. Asharov, A. Jain, A. López-Alt, E. Tromer, V. Vaikun-

tanathan, and D. Wichs, “Multiparty computation with low

communication, computation and interaction via thresh-

old FHE,” in Advances in Cryptology – EUROCRYPT,

Springer, 2012, pp. 483–501.

[3] L. Chen, Z. Zhang, and X. Wang, “Batched multi-hop

multi-key fhe from Ring-LWE with compact ciphertext ex-

tension,” in Theory of Cryptography Conference, Springer,

2017, pp. 597–627.

[4] C. Gentry, A. Sahai, and B. Waters, “Homomorphic en-

cryption from learning with errors: Conceptually-simpler,

asymptotically-faster, attribute-based,” in Advances in

Cryptology–CRYPTO 2013, Springer, 2013, pp. 75–92.

