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Abstract

Blind image quality assessment (BIQA) for authentically

distorted images has always been a challenging problem,

since images captured in the wild include varies contents

and diverse types of distortions. The vast majority of prior

BIQA methods focus on how to predict synthetic image

quality, but fail when applied to real-world distorted im-

ages. To deal with the challenge, we propose a self-adaptive

hyper network architecture to blind assess image quality in

the wild. We separate the IQA procedure into three stages

including content understanding, perception rule learning

and quality predicting. After extracting image semantics,

perception rule is established adaptively by a hyper net-

work, and then adopted by a quality prediction network. In

our model, image quality can be estimated in a self-adaptive

manner, thus generalizes well on diverse images captured in

the wild. Experimental results verify that our approach not

only outperforms the state-of-the-art methods on challeng-

ing authentic image databases but also achieves competing

performances on synthetic image databases, though it is not

explicitly designed for the synthetic task.

1. Introduction

The goal of image quality assessment (IQA) is to enable

computers to perceive image quality like humans. In the

past decades, huge efforts have been devoted and a variety

of IQA methods have been proposed. Despite the success

they have achieved for assessing laboratory generated syn-

thetically distorted images, IQA for authentically distorted

images remains a challenge. The challenge lies mainly in

three aspects:

Firstly, IQA in the wild is limited to the field of blind

IQA (BIQA) since there exists no access to a reference im-
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Figure 1. Images captured in the wild contain complex distortions

and various contents, resulting in that extracted features differ

from each other, though images showed above share similar qual-

ity scores. Top left: a synthetically distorted image taken from the

LIVE database and GM-Log [38] features extracted, the rest im-

ages are taken from the authentic IQA database LIVE Challenge.

MOS scores from two databases are aligned to the same scale.

age. As widely accepted, the limitation of reference im-

age has made BIQA the most difficult problem among the

three IQA categories, i.e. full-reference IQA (FR-IQA),

reduced-reference IQA (RR-IQA) and BIQA, also known

as non-reference IQA (NR-IQA). Secondly, different from

the common synthetic distortions (e.g. Gaussian blur, JPEG

compression) added to the whole area of image, authen-

tic distortions are more complicated. The captured images

not only suffer from global uniform distortions (e.g. out

of focus, low illumination), but also contain other kinds

of non-uniform distortions (e.g. object moving, over light-

ing, ghosting) in local areas. As a result, algorithms are

challenged to accurately capture both global and local dis-

tortions to merge them into a proper quality prediction.

Thirdly, compared to synthetic IQA databases, image con-

tent variation, which is a typical challenge in IQA task,

presents even more difficulty to authentic IQA databases.

Existing synthetic IQA databases LIVE [34], TID2013 [32]

and CSIQ [21] only include no more than 30 reference im-

ages as limited in the sense of image contents, while au-

thentic IQA database LIVE Challenge [8] and KonIQ-10k

[13] consists of 1169 and 10073 images containing differ-
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ent contents respectively. This great content variation has

raised a big challenge to the generalization ability of exist-

ing IQA methods.

Due to distortion diversity and content variation, IQA

for authentically distorted images still has not been well

solved. As shown in Figure 1, the extracted features vary

when images vary, leading to inconsistent quality predic-

tions with mean opinion score (MOS). In previous work,

neither handcrafted feature based approaches nor networks

with shallow architectures, which both solve synthetic IQA

tasks well, are able in handling realistic distortions. This

indicates low level features are not powerful enough in rep-

resenting complicated distortion in real world. As a result,

attempts have been made to use deep semantic features as

quality descriptors: deep models which are pretrained on

classification tasks are adopted to predict real world distor-

tions. The hypothesis lying behind is that authentic distor-

tions actually exist in photographically generated classifica-

tion databases such as ImageNet [7], and these pre-trained

features are already, to some extent, quality aware.

Although these attempts achieved promising improve-

ments, further efforts are still lacked. Specifically, there are

two drawbacks exist by simply adopting network architec-

tures, which are initially designed for learning how to rec-

ognize objects, to the task of IQA. First, current deep mod-

els only learn global features for classification. For authen-

tic IQA, however, distortions diverse in many ways, most

of which exist in local areas. Ignoring local patterns may

lead to an inconsistency between predicted quality and hu-

man visual perception, since human visual system (HVS) is

sensitive to local distortions when the rest part of the im-

age exhibits fairly good quality [21]. Secondly, as image

content varies, the way human percepts quality of different

objects varies. As illustrated in [22], an image of clear blue

sky will be considered of high quality by human inspectors

while mistaken by most of IQA methods to be a blurry im-

age due to large flattened area the image contains. There-

fore, directly predicting image quality before recognizing

image content does not conform to the rule how humans

perceive the world. In HVS, the top-down perception model

indicates that human tries to understand the image before

paying attention to other relevant sub-tasks such as qual-

ity assessment. However, in current models, fusing IQA

task into semantic recognition network forces the network

to learn image content and quality simultaneously, while it

is more properly to let the network learn how to judge image

quality after it has recognized the image content.

In this paper, we aim at developing an authentic IQA

approach by considering the above two challenges which

often appear at real world images: distortion diversity and

content variation. We propose a local distortion aware mod-

ule to extract local features from multi-scale to handle dis-

tortion diversity, and we introduce a hyper network archi-

tecture which dynamically generates weights for a quality

prediction network to cover wide content variation. In our

method, the proposed hyper network can adaptively learn

the rule for perceiving quality according to its recognized

content, and the target network follows this manner to give

a final quality prediction. By judging quality based upon

image content, the network is supposed to give predictions

which are more consistent with human perception. In gen-

eral, the main contributions of the proposed method can be

summarized into three-folds:

• To enhance the ability of assessing image in the wild,

we propose a novel IQA model based on hyper net-

work which adaptively adjusts the quality prediction

parameters. The proposed network predicts image

quality in a content-aware manner, and the perception

after recognition procedure is more consistent with the

way how human realizes the world.

• Since local features are beneficial to handle non-

uniform distortions in the image, we introduce a lo-

cal distortion aware module to further capture image

quality. We aggregate both local distortion features

and global semantic features for gathering fine-grained

details and holistic information, image quality is then

predicted upon this multi-scale representation.

• Experimental results demonstrate that our approach

not only outperforms the other competitors on authen-

tic IQA databases, but also achieves competing results

on synthetic IQA databases, despite we did not specif-

ically design our model to extract synthetic features.

This indicates the powerfulness and generalizability of

our proposed model.

2. Related Work

2.1. IQA for Synthetically Distorted Images

In the past decades, great efforts have been put into

the field of synthetic IQA, the approaches follow either of

the two categories: hand-crafted feature based IQA and

learning feature based IQA. Hand-crafted feature based ap-

proaches generally utilize NSS models to capture distor-

tion. By modeling scene statistics which is sensitive to

the appearance of distortion, degradation level of qual-

ity can be detected and quantified. These quality aware

natural scene parameters include discrete wavelet coeffi-

cients [30], the correlation coefficients across subbands [1],

DCT coefficients [33], locally normalized luminance co-

efficients with their pairwise products [29], image gradi-

ent, log-Gabor responses and color statistics [3]. Distribu-

tion models used to capture the statistics from synthetically

distorted image include generalized Gaussian distribution

(GGD) [29, 30], asymmetric generalized Gaussian distribu-

tion (AGGD) [3, 29], Weibull distribution [3], third order
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polynomial tting [33] and histogram counting [38]. These

hand-crafted features, however, require expertly design and

are time-consuming. In addition, scene statistic features

represent image quality from a global view, thus are not

able to measure local distortions which commonly appear

in authentically distorted images.

Inspired by the successes of machine learning in many

computer vision tasks [9, 10, 39, 40], some learning based

approaches are also proposed. In the early stage, codebook

based learning approaches are introduced [37, 42, 43, 45].

Due to their strong learning power, CNN based methods are

then proposed and achieved significant progress in synthetic

IQA. In [14], a simple CNN with pooling strategy inherited

from [43] is used for quality prediction. Ma et al. [27] pro-

posed a deeper network to learn distortion type and image

quality simultaneously. In [16,23,31], error map of the dis-

torted image is learned to guide quality prediction, the ap-

proaches learning error map include training with residual

error [16], with quality map calculated from FR-IQA meth-

ods [31] and with GAN generated image references [23].

Noticing the limited size of training data from existing IQA

databases, [24] and [26] proposed to generate vast train-

ing samples by labeling their quality rank instead of quality

score. Siamese network [5] and RankNet [4] architectures

are used respectively to learn the rank of images.

Although these IQA methods have achieved great per-

formance improvement on synthetic databases, challenge

exists when facing large scale data [25, 28], indicating the

problem of content variation still not well managed. It has

also been shown that IQA models perform well on syn-

thetic databases give inaccurate predictions on authentic

IQA databases, suggesting the features of diverse distortion

types exist in the wild can not be easily captured by archi-

tectures designed for extracting synthetic distortions.

2.2. IQA for Authentically Distorted Images

While most of the IQA models concentrate on synthet-

ically distorted images, there are relatively few works fo-

cusing on the more challenging problem of authentic IQA.

With the assistant of deep learning, deep semantic features

are shown effective in representing image quality. In [17],

Kim et al. showed that deep features from AlexNet [20] and

ResNet [12] pretrained on classification databases such as

ImageNet exhibit strong relationship with perceived quality

and achieved standout accuracies. In [13], more pretrained

baseline networks are tested, results confirmed the power

of semantic features in solving IQA problem in the wild.

In [46], a two stream network architecture is introduced to

both predict synthetic and authentic image distortions. In

their work, the authentic quality prediction stream adopted

VGG-16 [35] for feature extraction. In [22], Li et al. pro-

posed to use statistics from ResNet50 features of multi-

patches for quality prediction. Recently, Zhang et al. [47]

proposed to use image pairs both in synthetic and authentic

databases for training IQA model, and the backbone used

for feature extraction is ResNet-34. As can be seen, current

models directly use output features from semantic learning

networks for quality prediction, there are, however, mainly

two drawbacks lying behind: first, mixing semantic learn-

ing and quality prediction in one network ignores how im-

age semantics influence the way of quality perception, yet

in HVS, image quality is judged after image content is rec-

ognized. Second, as deep semantic features are extracted

from global scale, local distortions, which commonly exists

in graphically obtained images, are ignored. As a result,

networks are not able to capture detailed quality in an im-

age, leading to inaccurate predictions.

In this work, we propose a novel multi-scale feature

fused hyper network architecture to predict image quality

in the wild. While previous models mix semantic under-

standing and quality prediction in one task, we divide the

quality prediction procedure into two steps: image semantic

features are learned first and quality is predicted based upon

what content the image delivers. This procedure follows the

top-down perception flow of humans, and we design a hy-

per network connection to mimic this mapping from image

content to the manner of perceiving quality. In addition,

instead of simply using global semantic features for con-

tent understanding, we also propose to fuse local distortion

features from multi-scale to better represent image quality.

In this way, our quality prediction procedure becomes self-

adaptive, content-aware and capable of capture both detail

and holistic information from the image.

3. Proposed Method

In this study, we aim at developing a quality assessment

network which adaptively predicts image quality according

to image content. The architecture of our network is shown

in Figure 2. The proposed network consists of three parts:

a backbone network which extracts semantic features, a tar-

get network which predicts image quality and a hyper net-

work which generates a series of self-adaptive parameters

for the target network. We will introduce our self-adaptive

IQA model first and then present details of the three sub-

networks in the following.

3.1. Self­Adaptive IQA Model

Traditional deep learning based quality prediction mod-

els receive an input image and directly map it to a quality

score, the procedure can be described as follows:

ϕ(x, θ) = q, (1)

where ϕ denotes the network model, x is the input image, θ

represents the weight parameters. Note that once the train-

ing stage completes, weight parameters are fixed for all test

3669



ResNet-50

Stage 1, 2, 3, 4

Input 

Image

Local Distortion

Aware Module

Local Distortion

Aware Module

Local Distortion

Aware Module

Conv 3*3

Reshape FC 

GAP

Weights Bais

Conv 3*3

Reshape FC 

GAP

Weights Bais

Conv 3*3

Reshape FC

GAP

Weights Bais

Conv 3*3

Reshape FC

GAP

Weights Bais

Conv 1*1 Conv 1*1 Conv 1*1

FC1 FC2 FC3 FC4

Quality Prediction Target Network

Content Understanding Hyper Network

G

A

P

 

Score 84.78

Score 3.42

Score 43.20

Predictions

FC

GAP

Fully Connection

Globally Average Polling

 Concatenation

Multi-scale content feature

Semantic feature

Figure 2. The pipeline of the proposed network. Given an image, we first extract semantic features from the basic model ResNet50, and

import them to a hyper network which generates weights for a quality prediction target network. The input of the quality prediction target

network is from aggregating multi-scale content features of the image, capturing both local and global distortions. In our module, the hyper

network plays the role of formulating quality perception rule according to image content, and the target network makes quality prediction

based on what an image specifically exhibits.

images. This prediction model implies that the same kind

of quality features are extracted for predicting diverse im-

ages. In practical, however, as image contents vary, using

the same rule for predicting varies images’ quality is not

thorough to cover their differently exhibited structures. As

illustrated in [22], humans will take an image of clear blue

sky as high quality, while for quality prediction models, this

picture is most likely to be regarded as a blur contaminated

one due to large flatten area it contains. The reason for this

mistaken prediction is the ignorance of image semantic. For

humans, under the condition of understanding image con-

tent, corresponding rules are then used to judge image qual-

ity. Therefore, to mimic the perception procedure of hu-

mans, we model the task of IQA as follows:

ϕ(x, θx) = q, (2)

where network parameters θx are dependent on the image

itself instead of being fixed for all inputs. For easier under-

standing, parameters θx can be regarded as quality perceiv-

ing rules. As image content varies, the way of perceiving

image quality varies. In this way, our IQA model becomes

self-adaptive as it extracts different quality indicators with

respect to different contents. Ideally, one can train images

of the same content with an individual network for quality

prediction with more flexibility, however, training a set of

networks covering such widely spread contents is computa-

tion inefficient and not practical. Therefore, we introduce

hyper network to simplify this problem:

θx = H(S(x), γ), (3)

where H stands for a hyper network mapping function and

γ represents hyper network parameters. We define the in-

put of hyper network as S(x), meaning semantic features

extracted from the input image x. Thus the function of hy-

per network is to learn the mapping from image content to

the rule of how to judge image quality. The learned per-

ception rule will further guide our target network to extract

self-adaptive quality features for prediction.

By introducing the intermediate variable θx and hyper

network, we actually divide the task of IQA into three steps:

semantic feature extraction, perception rule establish-

ment and quality prediction. We use a backbone network

to extract image semantic features S(x), a hyper network to

learn the quality perception rule θx and a quality prediction

target network to obtain the final quality score q. Unlike the

quality prediction model in Equation (1), where image qual-

ity is directly estimated without semantic understanding or

content recognition, our proposed model follows the top-

down perception mechanism as it tries to understand image

in the first place, until when it executes the task of qual-

ity judgement. This designation makes our network more

flexible in extracting quality influential factors when facing

content varying images. In addition, the proposed quality

prediction procedure is also more consistent with the way

how human perceives image quality.

In order to reduce the amount of target network parame-

ters θx and also for easier training, we simplify the input of

the target network to a content aware vector vx = Sms(x),
where Sms stands for the meaning that the content aware

vector is also extracted by the backbone semantic extrac-

tion network, but fuses multi-scale features to capture local

distortions in the image. Under this alteration, the whole
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Figure 3. The architecture of the proposed local distortion aware

module.

hyper network based IQA model can be described as:

ϕ(vx, H(S(x), γ)) = q. (4)

Based on the quality prediction model, we then present the

architecture of the three sub-networks in the following.

3.2. Semantic Feature Extraction Network

As shown in Figure 2, the front part of our network archi-

tecture is a common semantic feature extraction network.

The semantic extraction network focuses on understanding

image content, and outputs two streams of features for qual-

ity prediction. The semantic feature S(x) is directly fed to

hyper network for weight generation, and the multi-scale

content feature stream Sms(x) is treated as the input of the

target network. The reason why we extract multi-scale con-

tent features is that semantic features extracted from the last

layer merely represent holistic image content. In order to

capture local distortions in real world, we propose to extract

multi-scale features through a local distortion aware mod-

ule. As illustrated in Figure 3, our designed local distor-

tion aware module consists of a series of operations includ-

ing dividing multi-scale feature maps into non-overlapping

patches, stacking the patches along the channel dimension,

conducting 1×1 convolution and globally average pooling

them into vectors. The proposed module can be regarded to

serve as an attention based patch extractor, which is aware

of feature patches corresponding to local distortions for bet-

ter capturing its quality.

Specifically, we use ResNet50 [12] as the backbone

model for semantic feature extraction. The pretrained

model on ImageNet [7] is used for network initialization.

In our network, the last two layers of the origin ResNet50,

i.e. an average pooling layer and a fully connected layer are

removed to output feature stream. We extract multi-scale

features from conv2 10, conv3 12, conv4 18 layers as the

input to the local distortion aware module, which outputs

multi-scale content vector vx.

3.3. Hyper Network for Learning Perception Rule

Inspired by [19], our hyper network consists of three

1×1 convolution layers and several weight generating

branches. Since in the proposed network, fully connected

layers are used as basic target network component (see Sec-

tion 3.4), two types of network parameters, i.e. fully con-

nected layer weights and biases, should be generated. For

different types of parameters, we use different weight gen-

erating approaches. Fully connected layer weights are gen-

erated from convolution followed by reshape operation of

extracted features, while fully connected layer biases are

generated by simply average pooling and fully connection,

as bias weights have much less amount of parameters. The

output channels of convolution and fully connected layers

are decided based upon dimensions of corresponding layers

in target network for size match. The generated weights are

regarded as the rule of perceiving image quality and will

further instruct target network for predicting image quality.

3.4. Target Network for Quality Prediction

As multi-scale features extracted by the semantic extrac-

tion network are content-aware, the function of the target

network is simply mapping learned image contents to a

quality score. Therefore, we use a small and simple network

for quality prediction. As shown in Figure 2, our target

network consists of four fully connected layers, it receives

multi-scale content feature vector as input, and propagates

through weight determined layers to get the final quality

score. In the target network, we choose sigmoid function

as the activation function.

3.5. Implementation Details

We implemented our model by PyTorch and conducted

training and testing on the NVIDIA 1080Ti GPUs. Fol-

lowing the training strategy from [17], we randomly sam-

ple and horizontally flipping 25 patches with size 224×224

pixels from each training image for augmentation. Training

patches inherited quality scores from the source image, and

we minimize L1 loss over the training set:

ℓ =
1

N

N∑

i

||ϕ(vpi
, H(S(pi), γ))−Qi||1, (5)

where pi and Qi refers to the i-th training patch and the

ground truth score, respectively. We used Adam [18] opti-

mizer with weight decay 5 × 10−4 to train our model for

15 epochs, with mini-batch size of 96. Learning rate is first

set to 2 × 10−5, and reduced by 10 after every 5 epochs.

For faster convergence, un-pretrained layers of our model,

which are Xavier initialized, applied learning rate 10 times

larger. During testing stage, 25 patches with 224×224 pix-

els from test image are randomly sampled and their cor-

3671



responding prediction scores are average pooled to get the

final quality score.

4. Experiments

4.1. Datasets

We used three authentically distorted image databases

including LIVE Challenge (LIVEC) [8], KonIQ-10k [13]

and BID [6] for evaluation. LIVEC contains 1162 images

taken from different photographers with varies camera de-

vices in the real world, hence these images contain complex

and composite distortions. KonIQ-10k consists of 10073

images which are selected from the large public multime-

dia database YFCC100m [36], the sampled images try to

cover a wide and uniform quality distribution in the sense

of brightness, colorfulness, contrast and sharpness. BID is

a blur image database containing 586 images with realistic

blur distortions such as motion blur and out of focus, etc.

Except for authentic image databases, we also tested our

model on synthetic image databases LIVE [34] and CSIQ

[21]. There are 779 and 866 synthetically distorted images

included in each database.

4.2. Evaluation Metrics

Two commonly used criteria, Spearman’s rank order cor-

relation coefficient (SRCC) and Pearson’s linear correla-

tion coefficient (PLCC) are adopted to measure prediction

monotonicity and prediction accuracy. The two criteria both

range from 0 to 1 and a higher value indicates better perfor-

mance. Before calculating PLCC, logistic regression is first

applied to remove nonlinear rating caused by human visual

observation, as suggested in the report from Video Quality

Expert Group (VQEG) [11].

For each database, 80% images are used for training

and the rest 20% are used for testing. For synthetic image

databases LIVE and CSIQ, the split is implemented accord-

ing to reference images to avoid content overlapping. We

run 10 times of this random train-test splitting operation and

the median SRCC and PLCC values are reported.

4.3. Comparison with the State­of­the­art Methods

Eight state-of-the-art BIQA methods are selected for per-

formance comparison. The comparison methods including

hand-crafted based approaches [3, 29, 37], deep learning

based synthetic IQA approaches [2, 15] and deep learning

based authentic IQA approaches [22, 44, 46].

Single database evaluations. We first analyze experi-

mental results on single databases. As shown in Table 1, our

approach outperforms all the state-of-the-art methods on all

three authentic image databases (LIVEC, BID and KonIQ-

10k) for both SRCC and PLCC evaluations. This suggests

that learning image content firstly assists in perceiving im-

age quality, when image data covers a wide range of variety.

Table 1. Overall performance evaluation on five image databases.

SRCC LIVEC BID KonIQ LIVE CSIQ

BRISQUE [29] 0.608 0.562 0.665 0.939 0.746

ILNIQE [3] 0.432 0.516 0.507 0.902 0.806

HOSA [37] 0.640 0.721 0.671 0.946 0.741

BIECON [15] 0.595 0.539 0.618 0.961 0.815

WaDIQaM [2] 0.671 0.725 0.797 0.954 0.955

SFA [22] 0.812 0.826 0.856 0.883 0.796

PQR [44] 0.857 0.775 0.880 0.965 0.873

DBCNN [46] 0.851 0.845 0.875 0.968 0.946

Ours 0.859 0.869 0.906 0.962 0.923

PLCC LIVEC BID KonIQ LIVE CSIQ

BRISQUE [29] 0.629 0.593 0.681 0.935 0.829

ILNIQE [3] 0.508 0.554 0.523 0.865 0.808

HOSA [37] 0.678 0.736 0.694 0.947 0.823

BIECON [15] 0.613 0.576 0.651 0.962 0.823

WaDIQaM [2] 0.680 0.742 0.805 0.963 0.973

SFA [22] 0.833 0.840 0.872 0.895 0.818

PQR [44] 0.882 0.794 0.884 0.971 0.901

DBCNN [46] 0.869 0.859 0.884 0.971 0.959

Ours 0.882 0.878 0.917 0.966 0.942

Though we did not especially add modules for synthetic

image feature extraction, our approach achieved compet-

ing performance with the state-of-the-art methods on two

synthetic image databases LIVE and CSIQ. Note that com-

pared with PQR and SFA, which also utilize backbone clas-

sification networks to extract deep semantic features, our

approach significantly outperforms PQR on CSIQ database

and outperforms SFA on both LIVE and CSIQ dataset.

We further present performance comparison of our ap-

proach on individual distortion types. Since distortion types

are of high diversity on authentic image databases, we

only evaluate the performance on synthetic image databases

LIVE and CSIQ, as shown in Table 2. Compared with other

methods which introduce specific module to handle syn-

thetic IQA task, our proposed method uses a simply net-

work to obtain competing performances on individual dis-

tortion types. This proved that the effectiveness of image

content understanding based IQA method.

Generalization ability test. We first run cross database

tests for performance comparison, the tests are conducted

on intra databases belonging to either authentic or syn-

thetic distortions. We select the most competing two ap-

proaches PQR and DBCNN for comparison, and the re-

sults are shown in Table 3. Among six authentic cross

database tests, our approach achieves four times of top per-

formance. For synthetic cross database tests, our approach

still performs competitively to other algorithms, indicating

the strong generalization power of our approach.

To further evaluate the generalization ability of our ap-

proach, we train competing models on the whole LIVE
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Table 2. SRCC comparisons on individual distortion types on the LIVE and CSIQ databases.

Database LIVE CSIQ

Type JP2K JPEG WN GB FF WN JPEG JP2K FN GB CC

BRISQUE [29] 0.929 0.965 0.982 0.964 0.828 0.723 0.806 0.840 0.378 0.820 0.804

ILNIQE [3] 0.894 0.941 0.981 0.915 0.833 0.850 0.899 0.906 0.874 0.858 0.501

HOSA [37] 0.935 0.954 0.975 0.954 0.954 0.604 0.733 0.818 0.500 0.841 0.716

BIECON [15] 0.952 0.974 0.980 0.956 0.923 0.902 0.942 0.954 0.884 0.946 0.523

WaDIQaM [2] 0.942 0.953 0.982 0.938 0.923 0.974 0.853 0.947 0.882 0.979 0.923

PQR [44] 0.953 0.965 0.981 0.944 0.921 0.915 0.934 0.955 0.926 0.921 0.837

DBCNN [46] 0.955 0.972 0.980 0.935 0.930 0.948 0.940 0.953 0.940 0.947 0.870

Ours 0.949 0.961 0.982 0.926 0.934 0.927 0.934 0.960 0.931 0.915 0.874

Table 3. SRCC evaluations on cross database tests.

Training Testing PQR DBCNN Ours

LIVEC
BID 0.714 0.762 0.756

KonIQ 0.757 0.754 0.772

BID
LIVEC 0.680 0.725 0.770

KonIQ 0.636 0.724 0.688

KonIQ
LIVEC 0.770 0.755 0.785

BID 0.755 0.816 0.819

LIVE CSIQ 0.719 0.758 0.744

CSIQ LIVE 0.922 0.877 0.926

Table 4. D-Test, L-Test and P-Test results on the Waterloo Explo-

ration Database.

Model D-Test L-Test P-Test

BRISQUE [29] 0.9204 0.9772 0.9930

GM-Log [38] 0.9203 0.9106 0.9748

CORNIA [43] 0.9290 0.9764 0.9947

HOSA [37] 0.9175 0.9647 0.9983

dipIQ [26] 0.9346 0.9846 0.9999

deepIQA [2] 0.9074 0.9467 0.9628

MEON [27] 0.9384 0.9669 0.9984

Two Stream CNN [41] 0.9301 0.9765 0.9952

DB-CNN [46] 0.9387 0.9527 0.9984

Ours 0.9006 0.9747 0.9971

Dataset and test them on the large scale synthetic database

Waterloo Exploration Database [25]. Firstly, three testing

criteria, D-Test, L-Test and P-Test are calculated, which re-

spectively measure pristine-distortion discriminability, con-

sistency with distortion levels and pairwise quality discrim-

inability. As shown in Table 4, our approach achieves com-

peting performance, though it is not specifically designed

for synthetically distorted IQA.

Then, we conducted gMAD competition [28] on the Wa-

terloo Database for a direct visualization. gMAD efficiently

selects image pairs with maximum quality difference pre-

dicted by an attacking IQA model to challenge an other de-
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Best GM-LOG

Worst GM-LOG

Fixed 
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Best GM-LOG

Worst GM-LOG

Fixed 

GM-LOG

Best Proposed

Worst Proposed

Fixed 

GM-LOG
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Best DBCNN

Worst DBCNN
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Best DBCNN

Worst DBCNN

Fixed 

DBCNN

Best Proposed

Worst Proposed

Fixed 

DBCNN

Best Proposed

Worst Proposed

Figure 4. gMAD competition results on the Waterloo Database

against GM-LOG [38] and DBCNN [46].

fending model which considers them are of the same level

of quality. The selected pairs are shown to the observer to

determine whether the attacker or the defender is robust. In

Figure 4, we fix our model as a defender in the first two

columns, image pairs selected from a bad quality level and

a good quality level are presented respectively. In the last

two columns, our model attacks other competing methods

where each column represents images selected from a bad

and a good quality level predicted by the defender.

As can be seen from Figure 4, when our model plays as

defender, image pairs selected by the attacker do not vary

much in perceived quality, while our model successively

selects image pairs with huge quality difference when acts

as attacker. This indicates our model is both powerful in

defending and attacking. In addition, it is worth mention-

ing that our model successfully recognizes high quality im-
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ages with flatten contents, despite they deceive the defend-

ing models to have low quality (the image “sky” and the

image “sunset” on the third column). These results further

demonstrate that our proposed model has a strong general-

ization ability regarding the challenge of content variation.

gMAD results against more IQA models can be found in

our supplementary material.

Figure 5. Generated weights of different images are plotted in the

3D space after PCA transformation. This figure shows the weights

extracted from the first layer of the target network, weights from

other layers also exhibits similar distribution.

4.4. Visualization of Self­Adaptive Weights

In order to verify the effectiveness of the weight generat-

ing procedure, we extract generated weights of the quality

prediction network from several images of varies contents.

We then do PCA transform to the weights and plot them in a

3D space for visualization. In Figure 5, we plot transformed

weights from the first layer of the target network, weights

from other layers also show similar characteristics. From

Figure 5, several interesting findings can be discovered:

First, for images of different contents, the generated

weights vary. This indicates our network adopts distinct

weights for evaluating image quality in a self-adaptive man-

ner. Whereas for traditional IQA models, weights of the

model are fixed for all input images, which will coincide in

the same location in the weight space if we plot them.

Second, images of the same object generate similar

weights despite they exhibit distinct levels of quality. As

can be seen from Figure 5, though their quality varies,

images of the same class “dog” or “vase” generate sim-

ilar weights for quality prediction. This verifies that our

model successfully learns image contents to instruct quality

prediction. We believe this predicting after understanding

scheme makes our model self-adaptive, thus is able to eval-

uate image quality more flexibly and more precisely when

facing the challenge from a large diversity of images.

Third, for flatten images “snow footprint” and “sky”, the

corresponding weights distinguish from each other. This

suggests our network indeed learns to understand high-level

Table 5. Ablation results on LIVE Challenge and LIVE databases.

Components
LIVE Challenge LIVE

SRCC PLCC SRCC PLCC

Res50 0.827 0.852 0.923 0.947

Res50+MS 0.836 0.859 0.954 0.963

Res50+Hyp 0.854 0.879 0.944 0.959

Res50+MS+Hyp 0.859 0.882 0.962 0.966

image content though they exhibit similar low-level quality

indicators such as smoothness. Therefore, our model is pre-

vented from mistaking image quality due to content vari-

ation, such as confusing a flatten image with blurriness or

mistaking an image abundant of textures to a noisy one.

4.5. Ablation Study

To evaluate the efficiency of our proposed components,

we conduct several ablation experiments on the LIVEC and

LIVE database. We first use a pretrained ResNet50 with

fine-tuning as our backbone model and analyze the effect of

each individual component by comparing both SRCCs and

PLCCs. The results are shown in Table 5.

We first examine the effectiveness of our proposed lo-

cal distortion aware module by concatenating them with

ResNet50 output features (Res50+MS). The SRCC slightly

improved on the LIVE Challenge Database and obviously

improved on the LIVE Database with around 1.6% and 3%.

Then, we add hyper network and target network mod-

ule to the backbone network. The input and weights of

the target network are both from the last feature layer of

ResNet50. By modifying the hyper network to our pro-

posed architecture, we can see major SRCC and PLCC im-

provements on both LIVE Challenge and LIVE databases.

On LIVE Challenge, SRCC and PLCC increased both 2.7%

and on LIVE, they increase 2.1% and 1.2% respectively.

At last, we add multi-scale features to the target net-

work’s input, and SRCC and PLCC further improved to

the highest value of 85.9%, 88.2% on the LIVE Challenge

Database and 96.2% and 96.6% on the LIVE Database.

5. Conclusion

In this paper, we propose a novel network to overcome

two challenging problems that appear in the task of au-

thentic IQA: distortion diversity and content variation. The

proposed network separates quality prediction from content

understanding to mimic how humans perceive image qual-

ity. We employ hyper network architecture to accomplish

this perception flow, and further introduce a multi-scale

local distortion aware module to capture complex distor-

tions. Experimental results showed that our proposed ap-

proach possesses strong generalization ability which offers

the prospect of more extensive applications of IQA task.
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