
BLISS: A Language for Systems Programming

W.A. Wulf, D.B. Russell, A.N. Habermann

Carnegie-Mellon University

A language, BLISS, is described. This language is designed so as to be especially suitable for use in
writing production software systems for a speci�c machine (the PDP-10): compilers, operating systems,
etc. Prime design goals of the design are the ability to produce highly e�cient object code, to allow
access to all relevant hardware features of the host machine, and to provide a rational means by which
to cope with the evolutionary nature of systems programs. A major feature which contributes to the
realization of these goals is a mechanism permitting the de�nition of the representation of all data
structures in terms of the access algorithm for elements of the structure.

Introduction

In the fall of 1969, Carnegie-Mellon University
acquired a pdp-10 to support a research project
on computer networks. This research involves
the production of a substantial number of large
systems programs of the type which have usually
been written in assembly language. At an early
stage of this design e�ort it was decided not to
use assembly language, but rather some higher-level
language. This decision immediately led to another
question|which language? In turn this led to a
consideration of the characteristics, if any, which are
unique to, or at least exaggerated in, the production
and maintenance of systems programs. One product
of these deliberations was a new language, which we
call bliss. Clearly, a language is not the only tool
needed; however, it is the one with which we deal in
this paper.

We refer to bliss as an \implementation lan-
guage," although we admit that the term is some-
what ambiguous since, presumably, all computer
languages are used to implement something. To
us the phrase connotes a general purpose, higher-
level language in which the primary emphasis has
been placed upon a speci�c application, namely the
writing of large, production software systems for a

Copyright C
1971, Association for Computing Machinery,
Inc. Reprinted from the December 1971 issue of Communi-

cations of the ACM (Volume 14, Number 12). Permission to
reprint granted by the Association for ComputingMachinery.

speci�c machine. Special purpose languages, such
as compiler-compilers, do not fall into this category,
nor do we necessarily assume that these languages
need be machine-independent. We stress the word
\implementation" in our de�nition and have not
used words such as \design" and \documentation."
We do not necessarily expect that an implemen-
tation language will be an appropriate vehicle for
expressing the initial design of a large system nor
for the exclusive documentation of that system.
Concepts such as machine independence, expressing
the design and implementation in the same notation,
self-documentation, and others, are clearly desirable
goals and are criteria by which we evaluated various
languages.

However, they are not implicit in our de�nition.
There are a few extant examples of languages which
�t our de�nition: epl (a PL/1 derivative which
was initially used on multics [1] but which has
been replaced by full PL/1), B5500 Extended algol
(Burroughs Corporation [2]), PL360 [3], and bcpl

[4].
The various arguments for and against the use

of higher-level languages to write systems software
have been discussed at length. We do not intend to
reproduce them here in detail except to note that the
skeptics argue primarily on two grounds: e�ciency,
and an assertion that the systems programmer must
not allow anything to get between himself and the
machine. The advocates argue on the grounds of
production speed (and cost), maintainability, re-
design and modi�cation, and understandability and

1

correctness. The report of the NATO Conference
on Software Engineering held in Garmish (Octo-
ber 1968) [5] contains several discussions on these
points.

It is our opinion that program e�ciency, except
possibly for a very small number of very small code
segments, is determined by overall program design
and not by locally tricky, \bit-picking" coding prac-
tices. Moreover, the critical code segments are
frequently located only after the system is opera-
tional. This opinion is borne out by many systems
which have experienced substantial performance im-
provements from redesign or restructuring result-
ing from understanding or insight after the system
has been running for some time (see, for example,
E.E. David's comments, [5, pp. 55{57]). One of the
paramount design objectives of bliss was to facili-
tate redesign and recoding. Since this redesign is fre-
quently done by someone other than the program's
original author, there is a corollary objective of
readability. This argues for good documentation|
but also for understandability of the code itself.
Understandability is a function of many things, not
all of which are inherent in the language in which
a program is written|a programmer's individual
style, for example. Nevertheless, the length of a
program text and the structure imposed upon that
text are important factors and argue strongly for the
use of a higher-level language.

Presuming the decision to use an implementa-
tion language, which one should one choose? An
argument might be made for choosing one of the
existing languages, say fortran, PL/1, or apl,
and possibly extending it in some way. We have
chosen to add to the tongues of Babel by de�ning
yet another new language, and some justi�cation is
required. The only valid rationale for creating a new
language is that the existing ones are inappropriate
to the task. It was our judgement that no existing
languages dealt with all of the proper issues and
hence a new language was necessary. What then are
the special characteristics of systems programs for
which existing languages are inappropriate? (Later
we shall discuss how these manifest themselves in
bliss.) The two special characteristics most fre-
quently mentioned are e�ciency and access to all
hardware features of the machine. We add several
things to these; the resulting list forms the design
objectives of bliss.

Requirements of Systems Programs

� space/time economy
� access to all relevant hardware features

� object code must not depend upon elaborate
run-time support

Characteristics of Systems Programming Practice

� control over the representation of data structures
�
exible range of control structures (notably in-
cluding recursion, coroutines, and asynchronous
processes)
� modularization of a system into separately com-
pilable submodules
� parameterization, especially conditional compi-
lation

Overall Good Language Design

� encourages program structuring for understand-
ability
� encourages program structuring for debugging
and measurement
� economy of concepts (involution), generality,

exibility, etc.
� utility as a design tool
� machine independence

The order in the above list is not accidental. Those
items found early in the list we consider to be
absolute requirements, while those occurring later in
the list may be thought of as criteria by which alter-
native designs are judged once the more demanding
requirements are satis�ed.

Not all of the goals mentioned above are com-
patible in practice. For example, e�ciency, access
to machine features, and machine independence are
con
icting goals. In fact, the design of bliss is
not machine independent, although the underlying
philosophy and much of the speci�c design are. The
machine for which the language was being designed,
the pdp-10, was constantly in the minds of the de-
signers. The code to be generated for each proposed
construct, or form of a construct, was considered
before that construct was included in, or excluded
from, the language. Thus the characteristics of the
target machine pervade the language in both overt
and subtle ways. This is not to say that bliss could
not be implemented for another machine; it could.
It does say that bliss is particularly well suited to
implementation on the pdp-10 and that it could
probably not be as e�ciently implemented on most
other machines. We think of bliss as a member
(the only one at present) of a class of languages
that are similar in philosophy and that mirror a
similar concern for the important aspects of systems
programming, but where each is tailored to its host
machine.

2

As another example of the incompatibility of
these goals, consider the requirement for minimal
run-time support and the use of the implementation
language as a design tool. In some sense a design
tool should be at a higher level than the object
being designed|that is, the tool should relieve the
designer from concern over whichever details the
designer deems appropriate only for later consider-
ation. Any language relieves its user from concern
over certain details; even assembly language frees
the coder from the need to make speci�c address
assignments. Assembly language is not a good
design tool, however, precisely because the class of
such facilities is small; a higher-level language is
better because the class is larger. There is a point,
however, beyond which broadening the class of de-
tails which are handled automatically introduces
substantial costs in run-time e�ciency and requisite
run-time support. The design of bliss walks a very
�ne line between generality, e�ciency, and minimal
run-time support. In fact, bliss programs require
no run-time support routines.

Description of BLISS

bliss may be characterized as an \algol-PL/1"
derivative in the sense that it has a similar ex-
pression format and operator hierarchy, a block
structure with lexically and dynamically local vari-
ables, similar conditional and looping constructs,
and (potentially) recursive procedures. As may be
seen from the two simple examples shown below,
the general format of bliss code is quite algol-
like; however, the similarity stops shortly beyond
this glib comparison.

function factorial(n) =
if .n � 1 then 1 else .n � factorial(:n� 1);

function QQ search (K) =
begin register R,Q,A,E;
E R :K=:n; Q :K mod :n;
A :const;
do if :ST [:R] = :K

then return :R
else (R :R+ :A; A :A :Q)

until :R = :E
end;

The �rst of these examples is the familar recursive
de�nition of factorial. The second example is
the \quadratic quotient" hash search described by
J. Bell [9].

We now describe the features of bliss in terms of
its major aspects|(1) the underlying storage, (2)

control, and (3) data structures; �nally, we mention
some other miscellaneous features.

1. Storage
A bliss program operates with and on a number
of storage \segments." A storage segment consists
of a �xed and �nite number of \words," each of
which is composed of a �xed and �nite number of
\bits" (36 for the pdp-10). Any contiguous set
of bits within a word is called a \�eld." A �eld
may be \named"; the value of a name is called
a \pointer" to that �eld. In particular, an entire
word is a �eld and may be named. In practice a
segment generally contains either program or data,
and if the latter, it is generally integer numbers,

oating-point numbers, characters, or pointers to
other data. To a bliss program, however, a
�eld merely contains a pattern of bits. Various
operations may be applied to �elds and bit patterns,
such as fetching a bit pattern (value) from a �eld,
storing a bit pattern into a �eld, integer arithmetic,
comparison, Boolean operations, and so on. The
interpretation placed upon a particular bit pattern
and the consequent transformation performed by an
operator is an intrinsic property of that operator and
not of its operands. That is to say, there is no \type"
di�erentiation as in algol.

Segments are introduced into a bliss program
by declarations, called \allocation declarations," for
example:

global g;
own x, y[5], z;
local p[100];
register r1, r2[3];
function f(a; b) = :a " :b;

Each of these declarations introduces one or more
segments and binds the identi�ers mentioned (e.g. g,
x, y) to the name of the �rst word of the associated
segment. (The function declaration also initializes
the segment named f to the appropriate machine
code.)

The segments introduced by these declarations
contain one or more words, where the size may
be speci�ed (as in local p[100]), defaulted to one
(as in global g;), or defaulted to whatever length
is necessary for initialization (as in the function

declaration). The identi�ers introduced by a decla-
ration are lexically local to the block in which the
declaration is made (that is, they obey the usual
algol scope rules), with one exception|namely,
global identi�ers are made available to other, sep-
arately compiled modules. Segments created by

3

own, global, and function declarations are created
only once and are preserved for the duration of the
execution of a program. Segments created by local

and register declarations are created at the time of
block entry and are preserved only for the duration
of the execution of that block. The register seg-
ments di�er from local segments only in that they
are allocated from the machine's array of 16 general
purpose (fast) registers. Reentry of a block before
it is exited (by recursive function calls, for example)
behaves as in algol, that is, local and register

segments are dynamically local to each incarnation
of the block.

It is important to notice from the discussion
above that identi�ers are bound to names by these
declarations, and that the value of a name is a
pointer. Thus the value of an instance of an
identi�er, say x, is not the value of the �eld
named by x, but rather is a pointer to x. This
interpretation requires a \contents of" operator for
which the symbol \." has been chosen. To a
programmer who is used to the context-dependent
interpretation of identi�ers, it may seem that the
notations x and :x for a pointer to a �eld and value
of that �eld, respectively, might better be replaced
by @x and x. However, a little comparison will soon
show that the dot notation is to be preferred.

First, \." has a unique interpretation as a unary
operator meaning: \take the contents of the �eld
pointed at by x." @x cannot be interpreted as the
inverse of \.x", since the dot function does not have
a unique inverse (there may be many locations with
the same value as that of x). If the occurrence of
x is interpreted as \compute the �eld pointed at
by x and take its contents," one could attach to
@x the meaning: \perform the operation described
above, but suppress the extraction of the contents."
But \@" could still not be used as unary operator,
since @(x + y) or even @@x would be meaningless,
whereas :(x+ y) and ::x both make sense.

Second, one of the major objectives of bliss is
to permit the programmer to de�ne arbitrary rep-
resentations of data structures (as will be discussed
later). In order to accomplish this it is necessary
to not only allow operations on pointers, but also
to allow the value of an arbitrary expression to be
interpreted as a pointer, i.e., a name. Since the
semantic interpretation of identi�ers is independent
of context, and consequently so is that of all expres-
sions, it is possible to do this in a consistent manner.
A consistent interpretation is much more di�cult in
the case of context-dependent interpretations (since
static context is inadequate in expressions involv-

ing function calls, for example). The authors feel
strongly that this context-independent interpreta-
tion of identi�ers simpli�es systems programming.
Experience in using the language for nontrivial pro-
gramming tasks supports this point of view.

There are two additional declarations whose ef-
fect is to bind identi�ers to names, but which do
not create segments; examples are:

external s;
bind y2 = y+ 2, pa = p+ :a;

An external declaration binds one or more identi�ers
to the names represented by the same identi�er
declared global in another, separately compiled
module. The bind declaration binds one or more
identi�ers to the value of an expression at block
entry time. At least potentially the value of this
expression may not be calculable until run time|as
in \pa = p+ :a" above. Examples of the use of bind
will be found in subsequent sections.

2. Control
bliss is an \expression language," that is, every
executable construct, including those which mani-
fest control, is an expression and computes a value.
There are no statements in the sense of algol

or PL/1. Expressions may be concatenated with
semicolons to form compound expressions, where
the value of a compound expression is that of its last
component expression. Thus \;" may be thought
of as a dyadic operator whose value is simply that
of its right-hand operand. Compound expressions
have a similar appearance and function as a list of
statements in algol. The pair of symbols begin
and end or left and right parentheses may be used to
embrace such a compound expression and convert it
into a simple expression. A block is merely a special
case of this construction which happens to contain
declarations; thus the value of a block is de�ned to
be the value of its constituent compound expression.

The operator \ " is a dyadic operator which
should be read as \store into." More precisely, the
expression \�1 �2" means: the (uninterpreted)
bit pattern resulting from the evaluation of the
expression �2 is to be stored into the �eld named by
the pointer resulting from the evaluation of �1. In
algol the statement x := x+ 1 causes the value of
x to be incremented by one. Coupling the de�nition
of \ " given above with the interpretation of
identi�ers and the dot operator, the equivalent bliss
would be x :x+ 1. The value of the assignment
operator is de�ned to be identical to that of its right-
hand operand; thus, the value of x :x + 1 is

4

the incremented value of the cell named by x. The
compound expression \(y x; z ::y+1)" causes
a pointer to x to be stored into y, then computes the
value of the �eld named by x (accessed indirectly
through y) plus one and stores this value in z; in
this case this value is also that of the compound
expression. The important thing to remember about
the assignment operation, e.g. �1 �2, is that it
assigns a value to the �eld named by �1, not �1 itself.

There is the usual complement of arithmetic,
logical, and relational operators. Logical operators
operate on all bits of a �eld; relational operators
yield a value 1 if the relation is satis�ed, and 0
otherwise.

We will describe six forms of explicit control ex-
pressions: conditional, looping, case-select, function
call, coroutine call, and escape. For this discussion it
will be convenient to use the symbols � or e, possibly
subscripted, to represent arbitrary expressions.

The conditional expression is of the form \if �1
then �2 else �3" and is de�ned to evaluate, and have
the value of, �2 just in case the rightmost bit of �1 is
a 1 and evaluates, and has the value of, �3 otherwise.
The abbreviated form \if �1 then �2" is considered
to be identical to \if �1 then �2 else 0".

There are six basic forms of looping expressions:

while �1 do �
do � while �1
until �1 do �
do � until �1
incr hnamei from �1 to �2 by �3 do �
decr hnamei from �1 to �2 by �3 do �

Each form of looping expression implies repeated
execution (possibly zero times) of the expression
denoted � until a speci�c condition is satis�ed.
In the �rst form (while...do) the expression � is
repeated so long as the rightmost bit of �1 remains
1. The second form is similar to the �rst except
that � is evaluated before �1, thus guaranteeing at
least one execution of �. The until forms are similar
to the while forms except that the condition is
negated. The last two forms are similar to the
familiar \step...until" construct of algol, except:
(l) the control variable is local to �; (2) �1, �2,
and �3 are computed only once (before entry to the
loop); and (3) the direction of the step is explicitly
indicated (increment or decrement). Except for
the possibility of an escape expression within � (see
below), the value of a loop expression is uniformly
taken to be �1.

We shall treat somewhat simpli�ed versions of the
case and select expressions here; these forms are:

case e of set �0; �1 ; : : : ; �n�1 ; �n tes
select e of

nset �0 : �1; �2 : �3 ; : : : ; �2n : �2n+1 tesn

The value of a case expression is �e ; that is, the
expression e is evaluated, and this value is used
to select one of the expressions, �i (0 � i � n),
to evaluate. The value of �i becomes the value of
the entire case expression. The value of a case

expression is unde�ned if e is not in the range
0 � e � n. The select expression is somewhat
similar to the case expression, with the distinction
that the value of e is not restricted to the range
0 � e � n. Execution of the select proceeds as
follows: (l) the value of e is computed; (2) the values
of the expressions �2i (0 � i � n) are evaluated; (3)
for each i such that e = �2, the expression �2i+1 is
evaluated. If there is no i such that e = �2i, the
value of the select expression is de�ned to be �1.
In the event that one or more values of i exist such
that e = �2i, each of these expressions is evaluated
in ascending order of the values of i; in this case the
�nal value of the select expression is taken to be
that of the last of these expressions to be evaluated.

The particular choice of �1 as the value of
loop expressions and select expressions is almost
but not entirely arbitrary. It might have been
preferable to have them return a unique \unde�ned"
or \nil" value, but no such value was available
for the particular machine for which bliss was
implemented. The value �1 was chosen principally
because it is marginally cheaper (in code produced)
to generate this value and test the sign of a value
in the pdp-10. Also, zero-relative indexing is
common, and a negative value is clearly illegal in
such contexts. Beyond these minor justi�cations
the only important property of this choice is its
uniformity.

It should be noted that the set of control ex-
pressions presented thus far is not minimal. All of
the loop expressions could be constructed from the
\while...do" form, and case and select expressions
could be constructed from conditional expressions,
for example. The decision to include a fairly rich
collection of control structures in part resulted from
another decision, to be discussed shortly, not to
include the familar go to statement form of control.
This decision suggests that the designers must pay
far more attention to the range of control forms
included, since there is no way for the user to synthe-
size his own control from the more primitive (go to)
control form. In the case of bliss two criteria were

5

applied to determine whether a proposed control
form should be included:

1. Was there a reasonable application for which
the mode of expression without the proposed
construct was awkward and/or obscure?

2. Was it possible to compile better code utilizing
the additional information provided by the new
construct than would have been possible other-
wise?

All of the control expressions discussed above satisfy
at least one and usually both of these criteria.
The select expression, for example, both produces
more e�cient code and is a more natural, obvious
mode of expression than the equivalent case or
if formulation when the selection criteria involves
noncontiguous values.

A function call expression has the form \� (�1,
�2, : : : , �n)". This expression causes activation
of the segment named by � as a subprogram with
an initialization of the formal parameters named in
the declaration of the function to the values of the
actual parameters �1, : : : , �n . Only call-by-value (in
the algol sense) parameters are allowed; however,
call-by-reference is implicitly available since names,
pointer values, may be passed. The value of a
function call is that resulting from execution of the
body of the function. Thus, for example, the value
of the following block is 120.

begin
function factorial(n) =

if :n � 1 then 1 else :n � factorial(:n� 1);
factorial(5)
end

Note that a function call need not explicitly name
a function by its associated identi�er; all that is
required is that � evaluate to the name of a segment.
Thus expressions such as the following are valid and
useful:

(case :x of set P1; P2; P3 tes)(.z)

Note in this example that the occurrence of a param-
eter list enclosed in brackets triggers a function call.
An identi�er by itself merely denotes a pointer to the
named segment; thus P1, P2, and P3 are the names
of functions (not the result of executing them) and
the value of the case expression is the name of one of
these functions. The value of the entire expression
above is the result of executing one of the functions
P1, P2, or P3 with actual parameter :z. Function
calls with no parameters are written \� ()".

The body of any function may be activated as
a coroutine and/or asynchronous process. An ar-
bitrary number of distinct incarnations of a single
body are allowed; indeed, arbitrarily many incar-
nations of a function body as both coroutines and
subroutines may exist simultaneously. In order to
permit any of several useful styles of coroutine mech-
anism, only two primitive operations are provided
directly in the language:

create � (�1, �2, : : : , �n) at �2 length �3 then �4
exchj (�5, �6)

More complex coroutine call conventions can easily
be constructed from these primitives. (Note that
any of the expressions represented by �'s above may
evaluate at execution time.)

The e�ect of the create expression is to establish
a new, independent context (that is a stack) for
the function named by � with actual parameter
values �1, : : : , �n. The stack is set up beginning
at the word named by �2 and is of size �3 words
(to provide over
ow protection). The activation
point for the newly created coroutine is set to the
head of the function named by �. The value of the
create expression is a \process name" for the new
coroutine. Control then passes on to the expression
following the create|in particular, the expression
�4 is not executed at this time and the body of � is
not activated. When two or more such contexts have
been established, control may be passed from the
currently executing one to any other by executing an
\exchange jump," exchj, expression. An expression
\exchj(�5, �6)" will cause control to pass to the
coroutine named by �5 (the value of an earlier
create expression). The value �6 becomes the value
of the exchj operation which last caused control
to pass out of the coroutine named by �5. Thus,
e�ectively, �6 may be passed as a parameter to the
coroutine being reactivated.

The expression �4, one will note, is not executed
at the time at which a coroutine is created. Instead
this expression is executed only when and if control
passes out of the body of the coroutine by a normal
subroutine-type return (e.g. \falling through the end
of its body"). The normal minimal action to be
expected of �4 is to return the stack space used by
the coroutine and to exchj to some other, active,
coroutine. In such a case, a subroutine-type return
from a coroutine corresponds to the coroutine killing
its own existence.

The coroutine mechanism described above is il-
lustrated by the following skeletal example. (The

6

exit operations in this example are instances of an
\escape expression" (which is explained in the sub-
sequent material). In this case, if (when) executed
they will cause control to pass to the end of the
block.)

begin
own pa, pb, s1[100], s2[100];
function a =

begin local la, x;
...
x exchj(:pb, la);
...
end;

function b(z) =
begin local lb, y;
...
y exchj(:z, lb);
...
end;

pa create a() at s1 length 100 then exit;
pb create b(:pa) at s2 length 100 then exit;
exchj(:pa, 0);

end

Execution of the main body of this block creates two
coroutine contexts, one for the function a and one
for b, and stores process names for these in pa and
pb, respectively. The function b has one formal
parameter whose value is initialized to :pa, i.e. to
the process name of an incarnation of a. The main
body then causes control to pass, via the exchj, to
the coroutine named by :pa|that is, an incarnation
of a, in this case. The activation point of both
coroutines at this time is at the head of their bodies.
At some point in the execution of a the execution of
\x exchj(:pb, la)" will cause control to pass to
the coroutine named by :pb, leaving the activation
point of a at the store operation. Similarly, at some
later time the execution of \y exchj(:z, lb)" will
cause control to return to a (since :z � :pa � a
process name of a) at its activation point and leave
the activation point of b at its store-operation. The
value of the exchj operation in a is de�ned to be
that of the parameter in the exchj operation which
caused control to return to a; hence in this case a
pointer to the local variable lb will be stored in x.

The familiar \go to...label" form of control has
not been included in bliss. There are two reasons
for this: (1) unrestricted go to's require consider-
able run-time support (principally due to the pos-
sibility of jumping out of functions and/or blocks),

and (2) the authors feel strongly that the general
go to, because of the implied violation of program
structure, is a major villain in programs which are
di�cult to understand, modify, and debug. There
are \good" and \bad" ways to use a go to, and there
are restrictions which could be imposed which elim-
inate the need for run-time support. Consideration
of the nature of \good" ways, and of the restrictions
necessary to eliminate run-time overhead, led us to
eliminate the go to altogether, and to the inclusion
of a rich collection of conditional, looping, and case-
select expressions. These alone, however, are not
su�ciently general, or convenient, and consequently
the \escape" expressions were introduced. There are
eight forms of the escape mechanism, one for each
form of control environment:

exitblock � exitcase �

exitcompound � exitselect �

exitloop � exit �

exitset � return �

Each escape expression causes control to exit from
a speci�ed control environment (a block, a loop, or
a conditional expression, for example) and de�nes
a value (�) for that control expression (exit exits
from any form of control expression, return exits
from a function). Essentially the escape mechanism
provides a highly structured form of forward branch
which is awkward to obtain with the other control
expressions.

Consider a linked list of two word cells, the �rst
of which contains a link (pointer) to the next cell
(the last cell has link = 0) and the second of which
contains data. The following expression illustrates
one use of an escape expression; the expression has a
value which is the pointer to the �rst negative data
item, or a value of �1 if no such item is found. The
address of the head of the list is contained in a �eld
called head.

(register t; t head; while (t ::t) 6= 0 do
if :(:t+ l) < 0 then exitloop :t);

Note that the initialization of (t head) sets the
value of t to a pointer to head, not the contents of
head.

It is interesting to note that the decision to
remove the go to from bliss and the decision
to make bliss an expression language are closely
related. The presence of the go to presents some
awkward situations in the implementation of an
expression language|for example,

7

go to L; : : : ; x a+ b � (L : C � d); : : :

or

x a�(if b then c else go to L); : : :

With the go to eliminated from the language
it becomes desirable to implement an expression
rather than a statement oriented language. Part
of the burden carried by the go to in conventional
languages shifts to numeric values which control
conditional, loop, case, or select expressions.

3. Data Structures
One of the outstanding characteristics of systems
programs is their concern with the wide variety of
data structures and schemes for representing these
structures. Observation of what systems program-
mers do reveals that a large fraction of their design
e�ort is spent in constructing representations for
e�ciently encoding the information to be processed.
It is frequently the case that the most di�cult task
in making a modi�cation to an existing program
is that of representing the additional information
required (e.g. the infamous \�nd another bit" prob-
lem). Consequently the issue of representation was
one of the central design considerations in bliss.

Two principles were followed in the design of the
data structure facility of bliss:

� the user must be able to specify the accessing

algorithm for elements of a structure,
� the structure de�nition and the algorithms which
operate on the elements of a structure must
be separated in such a way that either can be
modi�ed without a�ecting the other.

The �rst principle is in accordance with the
exibil-
ity and e�ciency the bliss programmer should be
provided with in utilizing the machine features. It
expresses our strong feelings that we cannot|and
should not try to|predict which kind of structures
a system programmer will need, so that a given set
of primitive structures and other statically de�ned
structures is inadequate. The feature of a structure
declaration, on the other hand, in which the user
himself speci�es the way in which elements are
accessed, provides the user with the full
exibility
and e�ciency he needs. This point is illustrated
below by taking as an example the well-known ar-
ray structure. The di�erence with the static array
structure of algol is demonstrated by discussing
several varieties of accessing an array.

In order to achieve a language in terms of which it

is possible to write large systems that may be easily
modi�ed, it is imperative that the speci�cations of
the representation of a data structure be separated
from the speci�cation of algorithms which manipu-
late data in that structure. This principle is severely
violated in assembly languages where, typically, the
code to access an element of a structure, for exam-
ple, simply a contiguous �eld of bits within a word,
is coded \in line" at the point where the element is
needed. A comparatively trivial change which alters
the size or position of the �eld may require locating
and modifying all references to the �eld. This simple
problem could be solved by following good coding
practice and, perhaps, by the use of macros; not all
changes are of such a trivial nature, however.

The concept of a \pointer" to a �eld (of bits
within a word) was mentioned earlier. Actually,
in bliss a pointer is a 5-tuple consisting of: (l) a
word address, (2) a �eld position, (3) a �eld size,
(4) an (index) register name, and (5) an \indirect
address" bit. These �ve quantities are encoded
in a single word and as such are a manipulatable
item in the language (a prerequisite of algorithmic
representational speci�cation). For simplicity, we
discuss only the �rst three of these quantities; the
reader is referred to the bliss reference manual [6]
for more detail. The word address, wa, �eld of a
pointer designates the physical machine address of
the word; the position, p, and size, s, designate a
�eld within a word in terms of the number of bits to
the right of and within the �eld. The notation used
in bliss to specify a pointer (taking only the simple
wa, p, s case) is \wahp; si".

Assume that the declaration \own x[100]" has
been made. The identi�er x is bound by this
particular declaration to a pointer to the 36-bit �eld
which is the �rst word of this 100-word segment.
That is, the word address of the pointer x is that
of the location allocated to the segment, and the
position and size �elds have values of 0 and 36,
respectively. If we denote the address of the segment
by �x, then an occurrence of x in a bliss program
is identical to an occurrence of \�xh0; 36i". If �0,
�1, and �2 are expressions, then the syntactic form
\�0 (�1, �2)" is by de�nition a pointer whose word
address is the value of �0 (modulo 218) and whose
position and size speci�cations are the values of �1
and �2 (modulo 26) respectively. Thus \Xh3; 4i" is
a pointer to a four-bit �eld three bits from the right
end of a word namedX. The word address, position,
and size information are encoded within a pointer in
such a way that adding small integers to a pointer
increments the word address. Thus \X + 1" is a

8

pointer to the word following X (unless the address
�eld over
ows).

In order to satisfy the objectives set out above
for data structures, it is desirable to extend the
allocation declarations (global, own, local, etc.)
described above. However, for exposition we shall
�rst describe the structure mechanism in terms of
the allocation declarations already available, then
describe the extensions when more motivation is
possible.

The de�nition of a class of structures, that is,
of an accessing algorithm to be associated with
certain speci�c data structures, may be made by a
declaration of the form:

structure hnamei[hformal parameter listi] = �

Particular names may then be associated with a
structure class, that is with an accessing algorithm,
by another declaration

map hnamei hname listi,

where a hname listi is a sequence of names separated
by colons.

Consider the following example:

begin
structure ary2[i; j] = (:ary2 + :i � 10 � :j);
own x[100], y[100], z[100];
map ary2 x:y:z;
...
x[:a; :b] :y[:b; :a];
...

end;

In this example we introduce a very simple struc-
ture, ary2, for two-dimensional (10 � 10) arrays,
declare three segments with names x, y, and z

bound to them, and associate the structure class
ary2 with these names. The syntactic forms x[�1; �2]
and y[�3; �4] are valid within this block and denote
evaluation of the accessing algorithm de�ned by the
ary2-structure declaration (with an appropriate
substitution of actual for formal parameters).

Although they are not implemented in this way,
for purposes of exposition one may think of the
structure declaration as de�ning a function with one
more formal parameter than is explicitly mentioned.
For example, the structure declaration in the previ-
ous example,

structure ary2[i, j] = (:ary2 + :i � 10 + :j);

conceptually is identical to a function declaration

function ary2(f0, f1, f2) = (:f0 + :f1 � 10 + :f2);

The expressions x[:a; :b] and y[:b; :a] correspond to
calls on this function, i.e. to ary2(x, :a, :b) and
ary2(y, :b, :a).

A function declaration such as that shown above
implicitly declares identi�ers and allocates storage
for its formal parameters. These are functionally
equivalent to those declared local (in scope and
extent), and are initialized to the positionally equiv-
alent actual parameter when the function is invoked.
Consistent with the interpretation of identi�ers, the
value of a formal parameter identi�er, say f0, is a
pointer to the location allocated for the formal (on
this, possibly recursive, invocation), and :f0 denotes
its value.

Since, in a structure declaration, there is an
implicit, unnamed formal parameter, the name of
the structure class itself is used to denote this
\zero-th" parameter. This convention maintains the
positional correspondence of actuals and formals.
Thus, in the example above, :ary2 denotes the value
of the zero-th parameter, that is the name of the
particular segment being referenced, and x[:a, :b] is
equivalent to (x + :a � 10 + :b). The value of this
expression is a pointer to the designated element of
the segment named by x.

In the following example the structure facility and
bind declaration have been used to e�ciently encode
a matrix product (zi;j =

P9

k=0 xikykj). In the inner
block the names xr and yc are bound to pointers
to the base of a speci�ed row of x and column of
y respectively. These identi�ers are then associated
with structure classes which allow one-dimensional
access.

begin
structure ary2[i; j] = (:ary2 + :i � 10 + :j);

row[i] = (:row+ :i);
col[j] = (:col+ :j � 10);

own x[100], y[100], z[100];
map ary2 x:y:z;
...
incr i from 0 to 9 do

begin bind xr = x[:i;0], zr = z[:1;0];
map row xr:zr;
incr j from 0 to 9 do
begin
register t; bind yc = y[0; :j]; map col yc;
t 0;
incr k from 0 to 9 do

t :t+ :xr[:k] � :yc[:k];
zr[:j] :t;

end;

9

end;
...

end

Suppose now that one wishes to alter the representa-
tion of the structure ary2, and access to the array is
to be made through a dope vector to de�ne the rela-
tive base of each row. The major change required is
to replace the current structure declaration for ary2
by

own i1[10]; map row i1;
structure ary2[i; j] = (:ary2 + :i1[; i] + :j);

With this representation, the use of a special ac-
cessing algorithm (structure) for accessing columns
becomes

structure col[j] = (:col+ :i1[:j]);

As can be seen, these fairly simple changes in the
program completely change its representation of the
data. No changes in the processing algorithm are
required.

4. More on Data Structures
The example above has the disadvantage of using
the size of the array explicitly in the access algo-
rithm, so that separate structure declarations would
be required for arrays of di�erent size. It should
be possible for obvious reasons to parameterize the
dependency of the size of the information onto which
the structure is going to be mapped. The required

exibility is achieved by observing that until now
it only makes sense to use \dotted formals" in the
access algorithm, because bliss has a strict value
substitution of parameters. Thus, if we wish (and we
do so wish), another interpretation can be placed on
the occurrence of \undotted formals" in the access
algorithm. In particular, we shall use the undotted
formal parameter names to denote the value of
parameters associated with particular instances of
a structure (as distinct from instances of accesses to
that structure).

Using \f" and \g" to embrace optional syntax
(i.e. \zero or one instance of"), the bliss structure
declaration is of the form

structure hnamei[hformal parameter listi]
= f[�1f; �2g]g�3

where �3 is the accessing algorithm as before, �1
is an expression whose value determines the size
(in words) of an instance of this structure, and
�2 is an expression whose value is the name of

a user de�ned dynamic allocation function. Any
of the expressions �1, �2, or �3 (but especially �1
and �3) may involve undotted formals and thus be
instance speci�c. Consider the following example,
which also illustrates the extension to the allocation
declarations:

begin
structure ary2[i; j] = [i � j](:ary2 + :i � j + :j);
own ary2 x:y:z[10; 10];
...

end;

This is essentially the same example as has already
been presented of three, two-dimensional, 10�10 ar-
rays. However, the information previously contained
in a map declaration has now been included in the
allocation declaration. More importantly, note that
undotted formal names, which correspond to the
\instance actuals: 10,10" are used to compute the
size of the instances|as well as in the accessing
algorithm itself. (As in algol declarations, the
instance-actuals distribute over the names to their
left.) Thus the single structure declaration, ary2,
may be used for other instances of similarly struc-
tured segments which happen to be of a size other
than 10� 10.

The form of allocation and structure declarations
illustrated previously are instances of the extended
syntax in which the obvious defaults are chosen.

Dynamic allocation, of an admittedly simple
kind, is illustrated by the following example:

begin
own space[10000]; own spaceptr; external error;
function locspacemgr(tog; numb; base) =
if :tog
then
begin
if (spaceptr :spaceptr+:numb) > 10000 then

return error();
space+ :spaceptr � :numb;
end

else (if (space+ :spaceptr) > :base then
spaceptr :base� space);

structure lary[i; j] =
[i � j; locspacemgr](:lary + :i � j + :j);

local lary x[:n; :m+ 1], y[3; 5];
...

end

The local allocation declaration in this example,
local lary x : : :, contains expressions which must
be evaluated at run-time as instance-actuals; hence
dynamic allocation is required. Note that the

10

structure declaration for lary contains the name of
the function locspacemgr in the position denoted
�2 in the extended structure declaration syntax.
In fact the value of �2 is required to be that of
a function with three formal parameters, say pl,
p2, and p3. This function is automatically called
(possibly several times) at entry and exit from a
block containing an allocation declaration which
speci�es a structure declaration which mentions it.
The interpretation of the parameters is:

p1 = 1 The function is to allocate a segment of
size p2 (words), and return a pointer to this segment.
p2 will be the value of the size expression in the
structure declaration. p3 has no meaning.

p1 = 0 The function is to deallocate a segment
of p2 words whose beginning is pointed to by p3 (p3
is the value returned by a previous call with p1 = 1).
The value of the function in this case is immaterial.

Thus, in the example instances of structures of
type lary are allocated from the segment named
space. Examination of the function locspacemgr

reveals that it allocates on a last-in-�rst-out basis,
and hence this particular allocation function is only
suitable for local (stack discipline) variables. It
should also be noted that the example above is
similar to the following block, which uses only the
simpler declarations of the previous section. (Note
that the example is not completely equivalent due
to possible identi�er con
icts.)

begin
own space[10000]; own spaceptr;
function locspacemgr(tog; numb; base) =

% same as above %
bind i1 = :n; j1 = :m+ 1;
structure lary1[i; j] = (:lary1 + :i � j1 + :j);
bind i2 = 3, j2 = 5;
structure lary2[i; j] = (:lary2 + :i � j2 + :j);
bind x = locspacemgr(1; i1 � j1; 0); map lary1 x;
bind y = locspacemgr(1; i2 � j2; 0); map lary2 y;
...
locspacemgr(0; i1 � j1; x);
locspacemgr(0; i2 � j2; y);

end

This example illustrates that the extended decla-
rations introduce no additional power; however, the
extensions do permit considerable simpli�cation and
clarity.

The requirement that the programmer provide
his own dynamic allocation function was introduced
principally to avoid prerequisite run-time support.
However, the e�ect is that the user may de�ne
allocation policies particularly appropriate to his

own application. Indeed, one might expect di�erent
allocation policies to be associated with di�erent
structures, or even di�erent instances of the same
structure, in a single program.

Conclusions

We have attempted to present above the main fea-
tures of bliss, a language we feel especially suited
to that application area usually called \systems
programming." At least one possible interpretation
of this description is as an indirect de�nition of
the system programming \problem area." In the
simplest case, this manifests itself in our break with
the traditional interpretation of identi�ers in higher-
level languages as the consequent demand on the
programmer to be consciously aware of the distinc-
tion between name and value. Similarly, the struc-
ture mechanism may be interpreted as a statement
of our judgement as to the extreme importance of
the representation, modi�cation, allocation issues in
systems programming|and hence that these issues
must be explicitly at the programmer's attention
and control. The decision to exclude the go to state-
ment is similarly a consequence of our judgement
as to the importance of writing highly structured
programs so that they may be read, understood, and
modi�ed.

Considerable experience has been gained in the
use of bliss for writing systems. The bliss compiler
itself, an apl system, a watfor-like fast fortran
compiler, simula-like event based simulation sys-
tem, chess playing programs, input-output routines,
debugging aids, parts of an operating system, and
so on, have been written in bliss. This represents
on the order of 100,000 lines of code, and forms a
reasonable base for forming some conclusions about
the language. By such measures as readability and
modi�ability, lines of (debugged) code produced per
programmer per day, quality of code produced by
the compiler, and user reaction, the language has
been a success.

Of more interest, perhaps, are the things which
we have learned which will cause us to extend the
language or do things di�erently if we were to do
them over again. We mention three, one of which is
currently being implemented.

1. The implementation presumes a stack which
is used for parameters to functions, return links,
and local variables. The user does not have direct
control over the implicit structure. Since the im-
plementation is quite e�cient, there is little reason
for the user to override it so long as his entire

11

system is written in bliss. However, if one wishes
to use bliss to rewrite parts of an existing system
(for example, we are rewriting parts of the pdp-

10 operating system), one �nds that con
icts in
parameter passing conventions, register conventions,
etc., arise.

A partial solution to these problems is imple-
mented in the current compiler in that the user
may control the compiler's register allocation pol-
icy. Another partial solution (not yet implemented)
would permit a structure to be associated with a
function to specify how parameters are accessed.
The most di�cult aspect of the problem is to devise
a means by which the user may specify the schema
for generation of prologue and epilogue code.

2. The \escape" mechanism is essential in the
context of a \go to-less" language. It is unfortunate
that we have eight separate operations (exitloop,
exitblock, etc.), all of which perform essentially
the same function. Our mistake was in assuming
that there is no need for a label once the go to

is removed. It would have been better to permit
a control environment (a block, a loop, or what-
ever) to be labeled, and to use a single operation,
say \leave hlabeli �", to cover all of these cases.
A simple extension to this notion, \leave hfunction
namei �", could cause an exit from several (nested)
calls.

3. An assumption made by advocates of imple-
mentation languages, including the authors, is that
systems written in a higher-level language will be
ultimately more e�cient than those produced in
assembly language. The reasoning behind this as-
sumption is simply that the cost of redesigning and
recoding \critical" portions of a system is smaller
when it is written in a higher-level language than
when it is written in assembly code, and hence it is
more practical to polish the �nal product. The cor-
rectness of this assumption depends upon knowing
which portions of the system are the \critical" ones.
Experience indicates that our intuition about such
things is poor.

It might be argued that programmers should
build mechanisms into their system to measure its
e�ciency|indeed the same argument may be made
for built-in debugging tools. In practice, however,
given the decision of how to expend today's e�ort,
a programmer will usually opt for pushing the main
line of the project rather than building these support
tools. On the other hand, he will use such tools
if they already exist. One such tool installed in

the bliss compiler will, under control of a compile
time toggle, cause a user-de�ned function to be
called on each entry (and exit) from a control
environment (block, conditional, loop, function,
etc.). Parameters to this function specify the
(source) line number, type of control environment,
etc. The user may, of course, do whatever he pleases
in this function; however, standard functions have
been written which count the frequency of execution
of the various expressions and accumulate the time
spent in these expressions. Very simple analysis of
the data collected by these routines can so helpful
in determining when further e�ort will be fruitful.

Acknowledgments. We would like to express our
deep gratitude to Messrs. Geschke, Wile, and Ap-
person (graduate students at Carnegie-Mellon Uni-
versity), each of whom has made valuable contribu-
tions to both the design and implementation of the
language.

References

1. epl reference manual, Project mac, April 1966.

2. Burroughs B5500 Extended algol reference
manual. Burroughs Corp., Detroit, Mich.

3. Wirth, N. \PL/360, A programming language
for the 360 computers." J. ACM 15, 1 (Jan.
1968), 37{74.

4. Richards, M. \bcpl: A tool for compiler writing
and system programming." Proc. afips 1969
sjcc, Vol. 34, afips Press, Montvale, N.J.,
pp. 557{566.

5. Naur, P., and Randell, B. (Eds.) \Software
engineering." Scienti�c A�airs Div., nato,
Brussels, Belgium (Conference held in Jan. 1969
in Garmish).

6. bliss reference manual. Computer Science
Dept. Rep., Carnegie-Mellon University, Pitts-
burgh, Pa., Jan. 15, 197O.

7. pdp-10 reference handbook. Digital Equipment
Corporation, Maynard, MA, 197O.

8. Lang, Charles A. \SAL|Systems Assembly
Language." Proc. afips 1969 sjcc, Vol. 34,
afips Press, Montvale, N.J., pp. 543{555.

9. Bell, J. \The quadratic quotient method: A hash
code eliminating secondary clustering." Comm.

ACM 13, 2 (Feb. 1970), pp. 107{109.

12

