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Three-dimensional and two-dimensional seeded blob simulations are performed with

five different fluid models, all based on the drift-reduced Braginskii equations, and the

numerical results are compared among themselves and validated against experimental

measurements provided by the TORPEX device [A. Fasoli et al., Phys. Plasmas 13,

055902 (2006)]. The five models are implemented in four simulation codes, typically

used to simulate the plasma dynamics in the tokamak SOL, namely BOUT++ [B.

Dudson et al., Comput. Phys. Commun. 180, 1467 (2009)], GBS [P. Ricci et

al., Plasma Phys. Control. Fusion 54, 124047 (2012)], HESEL [A. H. Nielsen et

al., Phys. Lett. A 379, 3097 (2015)], and TOKAM3X [P. Tamain et al., Contrib.

Plasma Phys. 54, 555 (2014)]. Three blobs with different velocities and different

stability properties are simulated. The differences observed among the simulation

results and the different levels of agreement with experimental measurements are

investigated, increasing our confidence in our simulation tools and shedding light

on the blob dynamics. The comparisons demonstrate that the radial blob dynamics

observed in the three-dimensional simulations is in good agreement with experimental

measurements and that, in the present experimental scenario, the two-dimensional

model derived under the assumption of k∥ = 0 is able to recover the blob dynamics

observed in the three-dimensional simulations. Moreover, it is found that an accurate

measurement of the blob temperature is important to perform reliable seeded blob

simulations.

a)Electronic mail: fabio.riva@epfl.ch

2



I. INTRODUCTION

The understanding of the plasma dynamics in the Scrape-Off Layer (SOL) of tokamaks is

of crucial importance as we approach the ITER1 era. Particles and heat cross the separatrix

from the core via turbulent transport to enter this region, whereupon they flow along the

magnetic field lines and are ultimately exhausted to the vessel. The processes taking place in

the SOL govern the performance of the entire fusion device, as they determine the impurity

dynamics, the recycling level, the peak heat loads at the vessel, and have an important role

in setting the overall plasma confinement.

While in the SOL region a wide range of different turbulent phenomena are present, in

this paper we focus on the study of blobs. Blobs, also known as filaments, are structures

with an excess of density and temperature relative to the surrounding plasma, elongated in

the direction parallel to the magnetic field. Blobs detach from the main plasma and move

outwards due to a self-generated E × B field. Experimental evidences point out that the

transport associated with these structures could reach half of the total transport observed

in a tokamak SOL2, leading to significant particle and heat fluxes to the walls. In the recent

past, a large effort has been carried out to improve the knowledge of the blob dynamics,

both experimentally and theoretically, achieving significant progress2,3.

The goal of the present paper is to improve our understanding of the blob dynamics, and

therefore the reliability of their simulations, performing a common validation project in-

volving several plasma turbulence codes used to model the SOL region. In fact, despite

their large use in analyzing the blob dynamics (see, e.g., Refs. [4–12]), a detailed validation

project of seeded blob simulations has not been carried out yet. Herein, two-dimensional

and three-dimensional simulations of seeded blobs, based on five different models imple-

mented in four turbulence codes (BOUT++13, GBS14, HESEL15,16, and TOKAM3X17), are

validated against experimental blob measurements. We assess the consistency of the nu-

merical results with experimental measurements and, at the same time, we investigate the

differences between the simulation results of the five models through a benchmark study.

Thanks to the differences among the models, we identify and assess the key physics elements

that determine the blob motion.

The experimental measurements are taken from the TORPEX18,19 experiment, an ideal de-

vice for the validation of plasma turbulence codes. In fact, the TORPEX configuration
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mimics the main features of the tokamak SOL, while remaining relatively simple, and it is

equipped with a complete set of diagnostics. Conditionally-averaged measurements taken

on TORPEX provide the two-dimensional profiles of plasma density, electron temperature,

and electrostatic potential for the blob, which are needed to accurately initialize seeded

blob simulations. At the same time, it also provides the measurement of the blob velocity

used to validate the numerical results. A parameter scan is performed by detecting blobs

with different density peak values. This allows for a comparison between experimental mea-

surements and simulations of blobs propagating at different velocities and having different

internal stability properties.

Because of the relatively high collisionality of the TORPEX plasma, all models we consider

are based on the drift-reduced Braginskii equations. However, they differ in the assumptions

used to simplify the equations, such as the hypothesis of cold ions, isothermal electrons, or

negligible electron inertia. Some of the models make use of the infinite aspect ratio approxi-

mation. We also consider two-dimensional models, based on different closures of the parallel

currents on the vessel wall. The influence of all these assumptions on the blob dynamics

is analyzed through a benchmark study, where the same scenario is considered for all the

models, and the differences observed in the simulation results are investigated.

This paper is structured as follows. After this Introduction, in Sec. II we illustrate the TOR-

PEX device and the experimental setup used in the present work. Section III introduces the

five models used to simulate the blob dynamics and discusses their main differences. Then,

in Sec. IV we illustrate our simulations, focusing on their initialization. Sec. V present a

sensitivity study performed to investigate the influence of the input parameter uncertain-

ties on the numerical results. The comparison of the experimental measurements and the

simulations are the subject of Sec. VI. The Conclusions follow in Sec.VII.

II. EXPERIMENTAL SCENARIO

The experimental data presented in this work are obtained on the TORPEX experiment,

a toroidal device with major radius R = 1m and minor radius a = 0.2m that features the

simple magnetized toroidal (SMT) configuration. A toroidal magnetic field (Bφ = 76mT on

axis) superposed on a vertical magnetic field (Bv = 1.6mT) results in helical field lines that

wind around the device. The field lines intercept the top and bottom walls of the device in
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the inner half part of the cross section (high field side), while in the outer half of the cross

section (low field size) a poloidal steel limiter provides a region that has a nearly constant

connection length L ≃ 2πR, and near-perpendicular incidence of the magnetic field lines

on the target20. This configuration is schematically shown in Fig. 1(a). The coordinate

system (y, x, z) used in this paper is also represented in Fig. 1(a): x is the radial direction,

z is the direction parallel to B (and coincides approximatively with the toroidal direction),

and y is perpendicular to x and z (and coincides approximatively with the vertical direction).
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FIG. 1. (a) Schematic representation of the TORPEX experiment. The limiter located in the

low-field side region is shown together with the probes used to perform blob conditional sampling.

Note that SLP is not represented at 180o from the limiter as it is in the experiment for draw-

ing convenience. (b-c) Background profiles of n and Te in the low-field side region, where blobs

propagate. The profiles are measured in a poloidal plane 3 cm away from the limiter.

A hydrogen plasma is produced and sustained by microwaves in the electron cyclotron

range of frequencies. On the high-field side of the device, turbulence driven by ideal inter-

change modes21,22 results in blobs, which dominate transport on the low field side. Typical

plasma parameters are n ≃ 1016m−3 and Te ≃ 5 eV in the source region, and are slightly

smaller in the blob region. The ions are typically much colder than the electrons. An ex-

ample of the time averaged profiles measured in the blob region is presented in Figs. 1(b-c).

The experimental results used in this paper are obtained using two diagnostics: (i) a

vertically oriented linear array of Langmuir probes (LPs) with 1.8 cm distance between tips,

located at x = 7 cm and toroidally separated approximatively by 180◦ from the limiter,

referred to as SLP, and (ii) a single-sided LP, positioned approximatively 3 cm away from

the limiter and with the collecting plate oriented perpendicularly to the magnetic field lines.
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Time-resolved two-dimensional measurements associated with blobs are obtained using con-

ditional sampling over many blob events, allowing the reconstruction of the I-V Langmuir

characteristic. This technique is explained in details in Ref. [21], and can be summarized

as follows. The probes of the SLP array, biased at −40V and operated in ion saturation

current mode, are located at fixed positions in the blob region and are used as reference

probes, while the single-sided probe, placed close to the limiter, is operated in swept mode.

Positive bursts in the SLP reference signals are interpreted as blobs moving in front of the

reference probe. When a blob is detected, the voltage V applied to the swept probe and the

corresponding measured current value I are retained. The whole set of voltage and current

values is interpreted as the I-V characteristic associated with blobs, which is evaluated as a

function of time with respect to the detection. To reconstruct the two-dimensional profiles,

the single-sided LP is moved radially in between discharges. This experimental setup has

been used to investigate the parallel current structure associated with blobs, as presented

in Ref. [10].

The TORPEX experiment is an ideal device for the validation of plasma turbulence

codes for two reasons. First, a wide range of observables can be provided with high spatial

resolution, such as the plasma density, the electron temperature, the floating potential, and

the parallel current. This is crucial to perform accurate seeded blob simulations, which

require the profiles of all evolved fields at a certain time to set the proper initial conditions.

Second, the SMT configuration mimics the main features of the tokamak SOL, such as open

field lines, curvature and gradients of the magnetic field, and plasma pressure gradients, but

in a simpler configuration. This facilitates considerably the analysis and the interpretation

of the experimental and simulation results.

III. THE MODELS AND THE SIMULATION CODES

Because of the relatively high collisionality of TORPEX plasmas, we use a fluid approach

based on the Braginskii equations23 to model the blob dynamics. Moreover, since the time

scale of the blob dynamics is such that d/dt ≪ ωci (where ωci = eB/mi is the ion gyrofre-

quency), we can consider these equations in the drift limit24. Finally, we note that, since

in the present scenario magnetic perturbations are negligible, only electrostatic models are
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considered.

Although the drift-reduced Braginskii model is now well established, for practical purposes

several approximations are introduced to simplify the equations. Those approximations

vary from code to code and, in general, their effect on the blob motion is not well known. In

order to evaluate their impact on the blob dynamics, while identifying the physical processes

that play the most important role in setting the blob motion, we perform several seeded

blob simulations by using five different non-linear models, implemented in four different

simulation codes, each of which is used to simulate the plasma dynamics in the tokamak

SOL. The five models are: two isothermal models, one three-dimensional and the other one

two-dimensional, written in the STORM module11 within the BOUT++ framework13 and

named in the following BOUT++3D and BOUT++2D, a three-dimensional cold ion model

implemented in the GBS code14, a two-dimensional model implemented in the HESEL

code15,16, and a three-dimensional isothermal model implemented in the TOKAM3X code17.

In the remainder of this section, each of the simulation models and codes is described and

a discussion of the differences between the models is provided.

All the equations presented in the following of this section are normalized according

to Bohm normalization (tilde denotes a dimensional quantity): ñ = nn0, ṽ∥i = v∥ics0,

ṽ∥e = v∥ecs0, T̃e = Te0Te, and ϕ̃ = ϕTe0/e, where n represents the plasma density, v∥i and v∥e

the ion and electron parallel velocity, Te the electron temperature, and ϕ the electrostatic

potential. Moreover, n0 and Te0 are the reference density and electron temperature, while

the normalization quantities cs0 and ρs0 are defined as cs0 =
√

Te0/mi and ρs0 = cs0/ωci,

where ωci = eB0/mi. The magnetic field B is normalized to its value on axis, B0, while time

and length scales are normalized to ω−1
ci and ρs0, respectively.

Additionally, the following notations are used: j∥ = n
(

v∥i − v∥e
)

is the parallel current,

mi/me is the ion to electron mass ratio, R = R̃/ρs0 is the TORPEX major radius in nor-

malized units, ω = ∇2
⊥ϕ is the vorticity, pe = nTe is the electron pressure, B = 1/(1 + x) is

the magnetic field amplitude in normalized units, b = B/B is the unitary vector parallel to

B, ∇∥ = b · ∇ is the parallel gradient, and [A,B] = b · (∇A×∇B).
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A. BOUT++3D

Assuming cold ions and isothermal electrons, and considering the infinite aspect ratio

limit (in particular ∇ · b = 0), the BOUT++3D drift-reduced Braginskii equations in nor-

malized units can be written as:

d0n

dt
+ nC(ϕ)− C(n) =−∇∥

(

nv∥e
)

+Dn(n) + Sn (1)

d0ω

dt
− C(n)

n
=− v∥i∇∥ω +

∇∥j∥
n

+Dω(ω) (2)

d0v∥i
dt

=− v∥i∇∥v∥i −∇∥ϕ− η∥j∥ −
Snv∥i
n

(3)

d0v∥e
dt

=− v∥e∇∥v∥e +
mi

me

(

∇∥ϕ− ∇∥n

n
+ η∥j∥

)

− Snv∥e
n

(4)

Here d0f/dt = ∂tf + [ϕ, f ] is the convective derivative that takes into account the E × B

drift, C(f) = −g∂yf is the curvature operator, where g = 2/R represents the strength of the

∇B and curvature drifts, Sn is a particle source [see Sec. IV, Eq. (22) for its definition], η∥ =

meνei/(1.96miωci) is the normalized parallel resistivity, νei = n0e
4 ln Λ/

[

3m
1/2
e ϵ20 (2πTe0)

3/2
]

is the electron-ion collision frequency, Dn(n) = Dn∇2
⊥n and Dω(ω) = µi∇2

⊥ω are perpendic-

ular diffusion operators, where Dn = 2meνei/(miωci) and µi = 3νei/(4ωci)
√

me/mi are the

normalized particle perpendicular diffusivity and the normalized ion perpendicular viscosity

respectively. We note that in all the codes the Boussinesq approximation is used to simplify

the evaluation of the divergence of the polarization current (the validity of this assumption

in modelling the SOL plasma dynamics is discussed in Refs. [25–27]).

The system of equations (1-4), supplemented by standard sheath boundary conditions28

[i.e., v∥i = ±1 and v∥e = ± exp (−ϕ) at the target], constitutes the BOUT++3D model,

which is implemented within the BOUT++ framework. A first order upwinding scheme is

employed to evaluate the parallel advection derivatives, while the Arakawa scheme29 is used

for the perpendicular E × B advective derivatives. Other derivatives are computed using

second order central difference schemes. Time integration is carried out with a variable time-

step, variable order, fully implicit Newton-Krylov backwards difference formula solver from

the PVODE library30. We note that only half of the physical domain is evolved, assuming

a symmetric evolution of the blobs with respect to the plane perpendicular to the magnetic

field that is midway between the two limiter surfaces. A more detailed discussion of the
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model is presented in Ref. [11].

B. BOUT++2D

Assuming k∥ = 0 and linearizing the sheath boundary conditions, such that v∥e =

± exp (−ϕ) ≃ ±(1 − ϕ), the system of equations (1-4) can be integrated in the parallel

direction, in order to evolve line-averaged quantities. Consequently, the three-dimensional

system of equations reduces to the following two-dimensional fluid equations:

d0n

dt
+ nC(ϕ)− C(n) =− 2

n(1− ϕ)

L∥
+Dn(n) + Sn (5)

d0ω

dt
− C(n)

n
=2

ϕ

L∥
+Dω(ω) (6)

Here L∥ = 2πR is the connection length in normalized units and Sn = 2nbg/L∥ is a particle

source [see Sec. IV, Eq. (20) for the definition of nbg]. The quantities n, ω, and ϕ are the

line-averaged plasma density, vorticity, and electrostatic potential respectively, and, taking

n as an example, are defined as n(x, y) =
∫ L∥

0
n(x, y, z)dz/L∥.

Eqs. (5-6) constitute the BOUT++2D model, which is implemented within the BOUT++

framework. For its solution, the same numerical scheme employed in BOUT++3D is used.

For a more detailed discussion of this model see Ref. [11].
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C. GBS

Assuming cold ions and considering the infinite aspect ratio limit, the drift-reduced Bra-

ginskii equations implemented in the GBS code are:

d0n

dt
+ nC(ϕ)− C(pe) =−∇∥

(

nv∥e
)

+Dn(n) + Sn (7)

d0ω

dt
− C(pe)

n
=− v∥i∇∥ω +

∇∥j∥
n

+Dω(ω) +
C(Gi)

3n
(8)

d0v∥i
dt

=− v∥i∇∥v∥i −
∇∥pe
n

− νinv∥i +Dv∥i(v∥i)−
2∇∥Gi

3n

(9)

d0v∥e
dt

=− v∥e∇∥v∥e − νenv∥e +Dv∥e(v∥e)

+
mi

me

(

∇∥ϕ− ∇∥pe
n

− 0.71n∇∥Te + η∥j∥ −
2∇∥Ge

3n

)

(10)

d0Te

dt
+

2

3
Te

[

C(ϕ)− 5

2
C(Te)−

C(pe)

n

]

=− v∥e∇∥Te +
2

3
Te

(

0.71
∇∥j∥
n

−∇∥v∥e

)

+DTe
(Te) + STe

(11)

The normalized ion-neutral and electron-neutral collision frequencies, νin and νen, evaluated

as described in Ref. [31], are introduced here to mimic collisions with the neutral particles

present in a weakly ionized plasma, such as that found in TORPEX. The terms Sn and

STe
are the particle and electron temperature sources, respectively. Small perpendicular

diffusion terms, written in the form Da(a) = Da∇2
⊥a, where Da are constant coefficients,

are introduced mainly for numerical reasons. The two terms representing gyroviscous effects

are given by Gi = −η0i
[

2∇∥v∥i + C (ϕ)
]

and Ge = −η0e
[

2∇∥v∥e − C (pe) /n+ C (ϕ)
]

.

Equations (7-11), supplemented by Bohm’s boundary conditions [i.e., v∥i = ±cs and

v∥e = ±cs exp (Λ− ϕ/Te) at the sheath entrance, where cs =
√
Te and Λ = 3 for hydrogen

plasmas], constitute the GBS model. Spatial derivatives are discretized using a second-order

finite difference scheme, except for the E × B advective terms, which are discretized with

a second-order Arakawa scheme. Time is advanced using a standard fourth-order Runge-

Kutta scheme. For a more detailed discussion of the GBS code, see Ref. [14].

In the present work, all fields have been separated into background and seeded blob
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components, and only the latter component is evolved. This allows us to use arbitrary

background profiles, with no need to find and implement the appropriate plasma source. To

clarify this procedure, we rewrite Eq. (7) in the form that is actually solved by GBS:

∂nbl

∂t
=− [ϕbg, nbl]− [ϕbl, nbg]− [ϕbl, nbl] +Dn(nbl)

+ (Te,bg + Te,bl)C(nbl) + (nbg + nbl) [C(Te,bl)− C(ϕbl)]

− (nbg + nbl)∇∥v∥e,bl − nbl∇∥v∥e,bg − (v∥e,bg + v∥e,bl)∇∥nbl − v∥e,bl∇∥nbg

(12)

where the indexes bg and bl refer to the background and blob components, respectively. In

Eq. (12) it has been assumed that the background profiles are constant in time and inde-

pendent of y. Equations (8-11) and Bohm’s boundary conditions are treated with the same

procedure.

It has been verified with a two-dimensional version of the GBS model that there are no signif-

icant differences between seeded blob simulations carried out by separating the background

and blob quantities with respect to the ones where they are both evolved simultaneously.

D. HESEL

In the HESEL model, the drift-reduced Braginskii equations are reduced to a set of two-

dimensional fluid equations by neglecting the instantaneous parallel currents, while retain-

ing the equilibrium one, and estimating the parallel advection terms under the hypothesis

v∥i∇∥ = v∥e∇∥ ≈ cs/L∥. The resulting model, which is implemented in the HESEL code,

is presented in Refs. [15 and 16]. However, as will be discussed later, the ion temperature

dynamics shows a very small impact on the seeded blob simulation results. Therefore, to

simplify the discussion of the differences between the models considered in the present paper,

we choose to not show here the ion temperature equation and to present only the cold ion

model.

Neglecting electron-ion collisions and assuming cold ions, the system of equation presented
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in Refs. [15 and 16] reduces to:

d

dt
n+ nĈ(ϕ)− Ĉ(pe) =− n

τn
+Dn(n+ ϕ) (13)

∇ ·
(

d0

dt
∇⊥ϕ

)

− Ĉ(pe) =Dω(ω)− νinω +
2cs
L∥

[

1− exp

(

Λ− ⟨ϕ⟩y
⟨Te⟩y

)]

(14)

3

2

d

dt
pe +

5

2
peĈ(ϕ)− 5

2
Ĉ

(

p2e
n

)

=− pe
τ∥,pen

+
3

2
Dn(pe − ϕ) (15)

Here df/dt = ∂tf + [ϕ, f ]/B is the convective derivative and Ĉ(f) = −ĝ∂yf is the HESEL

curvature operator, with ĝ = 1/R. Equilibrium currents to the limiter are approximated by

the sheath dissipation term entering in Eq. (14), where ⟨−⟩y represents the average along

y, with Λ = 2.8 in this case. The perpendicular diffusion terms Dn(a) = Den∇2
⊥a and

Dω(a) = Dω∇2
⊥a are introduced to describe electron-neutral and ion-ion collisions, where

Den = ρ2eνen and Dω = ρ2i νii, ρe and ρi are respectively the electron and ion Larmor radius

in normalized units, and νen and νii are respectively the electron-neutral and the ion-ion

collision frequencies in normalized units. The loss of the plasma density due to the parallel

flow is parameterized by the characteristic time τn = L∥/(2cs), while the electron pressure

parallel dynamics by τ∥,pe = 15L2
∥νen (1 + 4/νes) /(128v

2
e), where νes = L∥νen/(2ve) and ve

is the thermal electron velocity in normalized units. The parallel advection of the vorticity

is neglected here, because of its small amplitude with respect to the ion-neutral collisions

drag term νinω.

The HESEL model is implemented in the code using the Arakawa scheme to discretize

the E ×B advective terms, a finite difference scheme to discretize the x and y derivatives,

and a stiffly-stable third-order scheme32 for time integration. A more complete discussion

of this code is presented in Refs. [15 and 16].
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E. TOKAM3X

Assuming cold ions and isothermal electrons, the version of the drift-reduced Braginskii

equations evolved by TOKAM3X can be written as follows:

dn

dt
+ nC(ϕ)− C(n) =−∇ ·

[(

Γ− j∥
)

b
]

+Dn(n) + Sn (16)

dΩ

dt
+ ΩC(ϕ)− 2C(n) =∇ ·

[(

j∥ − Ω
Γ

n

)

b

]

+DΩ(Ω) (17)

dΓ

dt
+ ΓC(ϕ) + C(Γ) =−∇ ·

(

Γ
Γ

n
b

)

− 2∇∥n+DΓ(Γ) (18)

n∇∥ϕ−∇∥n+ η∥nj∥ =0 (19)

where Ω = ∇ · (∇⊥ϕ/B
2) is the plasma vorticity that takes into account magnetic field

variations, Γ = nv∥i is the ion parallel momentum and Sn is a particle source [see Sec. IV,

Eq. (22) for its definition]. Small perpendicular diffusion terms of the form Da(a) = Da∇2
⊥a,

where Da are constant coefficients, are introduced to dissipate turbulent structures of size

comparable to the grid spacing.

Equations (16-19), completed by the linearized Bohm’s boundary conditions [i.e., Γ = ±n

and j∥ = ±n [1− exp (Λ− ϕ)] ≃ ±n (ϕ− Λ) at the target], are solved by the TOKAM3X

code with a first order operator splitting. Advection terms and source terms are first ad-

vanced explicitly, using a shock-capturing algorithm (i.e, the Roe-Marquina scheme based on

the WENO interpolation33). Parallel current terms are advanced using a fully implicit three-

dimensional solver in order to capture the associated fast dynamics without considerably

constraining the time step. Finally, perpendicular diffusion terms are advanced implicitly.

The latter choice (versus an explicit treatment) is actually not mandatory for the seeded blob

simulations considered here, where low diffusion coefficients are used. The spatial discretiza-

tion is done based on conservative finite differences evaluated on a structured flux-surface

aligned mesh. A more detailed discussion of the TOKAM3X code is presented in Ref. [17].

F. Summary of analogies and differences among the physical models

Besides the differences related to the numerical schemes used to evolve the five models,

which are neglected here as we consider simulations that are numerically converged, the five
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models differ because of several assumptions made to simplify the drift-reduced Braginskii

equations. The remainder of this section is dedicated to a discussion of these differences.

To examine the differences between the models, we note that Eqs. (16-19) can be recast in

the GBS and BOUT++ form by expressing Ω, Γ and j∥ in terms of the quantities evolved

by these codes. Moreover, we note that it has been verified with the TOKAM3X code that,

in the considered blob scenarios, the Boussinesq approximation has a negligible influence on

the numerical results.

(i) Two-dimensional closures. In order to reduce the three-dimensional model to a two-

dimensional set of equations, in BOUT++2D we impose the sheath dissipation closure, that

is k∥ = 011, while in HESEL we impose the vorticity advection closure by approximating

v∥i∇∥ = v∥e∇∥ ≈ cs/L∥
11. By imposing the sheath dissipation closure, one assumes that

the parallel gradients are negligible, and that the filament extend from target to target. On

the other hand, by applying the vorticity advection closure, instantaneous sheath currents

are neglected11. In Ref. [11] the influence of these approximation on the blob dynamics is

discussed, showing that they can have a very strong impact on the simulation results. This

analysis will be used in Sec. VI to interpret the numerical results.

(ii) Boundary conditions. The BOUT++3D and GBS models are supplemented by the

full Bohm’s boundary conditions, the TOKAM3X and BOUT++2D employ the linearized

Bohm’s boundary conditions, while the HESEL model makes use of the weak sheath for-

mulation, and therefore the equilibrium currents to the limiter are described by the sheath

dissipation term entering in Eq. (14). It has been verified with BOUT++3D that the

linearization of the boundary conditions has negligible impact on the simulation results

presented herein.

(iii) Temperature effects. In the present work the BOUT++2D, BOUT++3D, and

TOKAM3X models assume isothermal electrons and cold ions, GBS assumes cold ions,

while HESEL evolves the ions dynamics, assuming ions initially at room temperature

(Ti = 0.025 eV at t = 0). A detailed investigation of the Te effects on the simulation results

is presented in Sec. V. The Ti influence on the simulation results has been investigated with

HESEL, showing negligible impact on the blob dynamics, and will not be further discussed.
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(iv) Magnetic field equilibrium and background profiles. First, regarding the magnetic

geometry, we note that BOUT++2D, BOUT++3D, and GBS are written in the infinite

aspect ratio limit, while TOKAM3X retains the ∇ · b terms. Moreover, in TOKAM3X

and HESEL the variation of the magnetic field is retained in the E × B advective terms,

while it is neglected in BOUT++2D, BOUT++3D, and GBS. Due to the TORPEX large

aspect ratio, these approximations have a negligible influence on the results. We also note

that in BOUT++2D, BOUT++3D, GBS, and TOKAM3X models, the curvature operator,

C(−), is twice as large as the curvature operator Ĉ(−) appearing in HESEL (i.e., g = 2ĝ).

Therefore, in HESEL, the ballooning instability drive is halved with respect to the one

present in the other four models (a reduced ballooning drive leads to slower blob radial

motion20). Finally, we note that, in the version of GBS used here the background profiles

are time-independent and can be arbitrarily imposed because of the separation between

background and blob components, in BOUT++2D, BOUT++3D, and TOKAM3X the full

quantities are evolved, and the equilibrium profiles are sustained by appropriate source

terms, while in HESEL the full quantities are evolved, but, assuming slow variation of the

plasma background with respect to the time-scale evolution of blobs, no source terms are

introduced to sustain the background profiles (this is justified a posteriori by the simulation

results).

(v) Electron inertia. In BOUT++3D the electron inertia is retained in both the parallel

ion and electron momentum equations [Eqs. (3-4)], in GBS it is neglected in the ion par-

allel momentum equation [Eq. (9)], while in TOKAM3X it is neglected in both equations

[Eqs. (18-19)]. As a matter of fact, the simulations presented in Sec. VI show that the

electron inertia has negligible influence on the blob motion.

(vi) Dissipative terms. In BOUT++2D, and BOUT++ 3D, the perpendicular diffusion

coefficients are set using the physical values of the electron-ion and ion-ion collision fre-

quencies, whilst in HESEL, electron-neutral and ion-neutral collisions are also taken into

account. These classical diffusion coefficients are computed accordingly to Ref. [34]. In

contrast, in GBS and TOKAM3X arbitrary perpendicular dissipative terms are introduced

(Da ≃ 5 · 10−4 − 10−3), and we have ensured that they have a negligible influence on the
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simulation results using GBS to perform a sensitivity scan of the diffusion coefficients over

two orders of magnitude, i.e., decreasing and increasing the value of the diffusion coefficients

used for the simulation by a factor of ten. Moreover, in GBS the νen and νin terms are

introduced to mimic the electron-neutral and ion-neutral collisions, while the Ge and Gi

terms model the plasma viscosity. A sensitivity scan of these dissipative coefficients over

two orders of magnitude show that they have a negligible impact on the simulation results.

In Sec. V and VI we discuss the influence of the approximations listed above on the blob

dynamics, comparing the simulations performed with the five models among themselves

and against experimental data. In particular, we identify the modeling of the electron

temperature and the parallel current closure used to derive the two-dimensional models as

the most important differences among the models, and therefore, we focus our attention on

those.

IV. SEEDED BLOB SIMULATIONS

Using the five models presented in Sec. III, we perform simulations of seeded blob motion

with three different sets of initial conditions. This allows us to compare the simulations

among themselves and validate them against experimental observations over a set of differ-

ent conditions. The three different cases correspond to considering three different amplitude

windows for the blob detection in the Isat reference signal provided by the SLP tips. More

precisely, we consider trigger events for which the Isat peaks of the reference signal fall

in (i) the interval 2.0σ − 2.75σ, where σ is the standard deviation of the reference sig-

nal (σ/⟨Isat⟩t ≈ 0.5, where ⟨Isat⟩t is the time average of the Isat signal), (ii) the interval

2.75σ − 3.5σ, and (iii) the interval 3.5σ − 4.25σ. In the following, these three scenarios are

dubbed “case 1”, “case 2”, and “case 3”, respectively. The three trigger windows result in

blobs with different density peak values n0, with n0/nbg ≈ 0.85, 1.0, 1.9 for the three cases,

where nbg is the background plasma density at the reference probe position. These blobs

are found to have different velocities and internal stability properties. For the three cases,

the blob profiles at the detection time t = 0 are shown in Figs. 2.

The simulations are initialized according to the experimental measurements. The back-
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FIG. 2. Plasma density (first column), electron temperature (second column), and floating potential

(third column) at detection time t = 0, for “case 1” (first row), “case 2” (second row), and “case

3” (third row) conditionally averaged blobs, from which have been subtracted the backgrounds.

ground profile of n and Te are evaluated as the median value of the time-dependent signal

reconstructed from the fit of the I − V curves, and are shown in Fig. 1(b-c). As the depen-

dence of the background profiles on the y coordinates is weak, they are fitted with expressions

that depend only on x;

nbg(x) =α(βx)γ + δ (20)

Te,bg(x) = ϵ · exp (ζx) (21)

where α = −4.2 · 1017 m−3, β = 1m−1, γ = 2.9, δ = 2.5 · 1015 m−3, ϵ = 2.8 eV, and ζ =

−5.9m−1. We note that the measurements of the plasma quantities are taken on a poloidal

plane at a distance of approximatively 3 cm from the limiter and no experimental information

is available on the parallel dependence of the profiles. This introduces an uncertainty in

setting the z dependence of the equilibrium profiles (and blob initial conditions) in the
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three-dimensional codes. However, in previous TORPEX experiments it has been observed

that the plasma density background profile is approximatively flat along z, except for a drop

in the proximity of the limiter35. Therefore, as suggested in Ref. [11], a density source

S(x, z) = nbg(x) ·
10 exp (10|z − π|/π)

π [exp (10)− 1]
(22)

is introduced in BOUT++3D and TOKAM3X. It follows that the source term to be used

in BOUT++2D is Sn = nbg(x)/π. In GBS we linearize the model equations, and, therefore,

there is no need to introduce plasma sources. On the other hand, we have to impose the

density background, and we choose to impose the one that is produced by using the source

of Eq. (22) in BOUT++3D. In HESEL there are no plasma sources, and nbg is imposed at

t = 0 accordingly to Eq. (20). For the electron background temperature profile, we note

that in BOUT++2D, BOUT++3D, and TOKAM3X, the electron dynamics is assumed to

be isothermal. Therefore, in these models, a uniform background temperature is imposed,

and a sensitivity study of Te,bg is performed (see Sec. V). On the other hand, in GBS and

HESEL, Te,bg is expressed accordingly with Eq. (21), and it is assumed constant along z.

Moreover, we note that HESEL describes finite ion temperature effects. Assuming the ion

temperature as the ambient temperature (which approximatively corresponds to the neutral

temperature), an uniform Ti = 0.025 eV is imposed at t = 0.

Finally, the background profiles of ϕ, ω, v∥i and v∥e are obtained by imposing Bohm’s

boundary conditions at the limiter plate and assuming no net background current flowing

to the limiter, as discussed in Ref. [11].

The blob initial conditions are set by using the conditionally averaged profiles at the

detection time t = 0. The experimental profiles of nbl, Te,bl, and Vfl,bl have been fitted,

imposing a monopolar structure in the poloidal plane for nbl and Te,bl, and a dipolar structure
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for Vfl,bl:

nbl(x, y) = n0 · exp
[

−
(

(x− x0)

σn,x

)2

−
(

y

σn,y

)2
]

(23)

Te,bl(x, y) = T0 · exp
[

−
(

(x− x0)

σT,x

)2

−
(

y

σT,y

)2
]

(24)

Vfl,bl(x, y) = V1 · exp
[

−
(

(x− x0)

σV,x,1

)2

−
(

y − y1
σV,y,1

)2
]

+ V2 · exp
[

−
(

(x− x0)

σV,x,2

)2

−
(

y − y2
σV,y,2

)2
] (25)

where x0 = 0.07m and the value of the other parameters appearing in Eqs. (23-25) are

summarized in Table I for the three cases.

case 1 case 2 case 3

n0 [10
15m−3] 1.975± 0.135 2.335± 0.325 4.395± 0.855

σn,x [cm] 2.20± 0.20 2.40± 0.30 1.65± 0.45

σn,y [cm] 2.40± 0.20 2.10± 0.20 1.75± 0.25

T0 [eV] 0.345± 0.065 0.960± 0.250 1.730± 0.280

σT,x [cm] 1.05± 0.15 1.05± 0.25 0.80± 0.20

σT,y [cm] 3.65± 1.05 1.45± 0.25 2.85± 0.95

V1 [V] 2.330± 0.170 4.600± 0.740 4.715± 0.405

σV,x,1 [cm] 3.55± 0.25 3.25± 0.25 4.95± 0.35

y1 [cm] 2.55± 0.25 2.60± 0.20 1.15± 0.35

σV,y,1 [cm] 2.95± 0.05 3.10± 0.20 4.90± 0.60

V2 [V] −1.540± 0.140 −2.350± 0.550 −6.155± 0.965

σV,x,2 [cm] 3.10± 0.20 2.75± 0.35 2.95± 0.45

y2 [cm] −2.10± 0.40 −0.50± 0.80 −2.45± 0.15

σV,y,2 [cm] 4.00± 0.30 4.75± 0.45 2.50± 0.30

TABLE I. Parameters used to initialize the seeded blob simulations, derived by fitting the experi-

mental measurements using Eqs. (23-25).

The expressions of nbl and Vfl,bl in Eqs. (23) and (25) are relatively well supported by the
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experimental measurements. On the other hand, the fitting of Te,bl using Eq. (24) is only

partially justified, due to the high uncertainties affecting the measurements (see Fig. 2).

Because of these uncertainties, we also impose ϕbl ≈ Vfl,bl, neglecting the ΛTe term (previous

studies show that the ΛTe term increases the blob spinning36). The three-dimensional initial

profiles are obtained by using Bohm’s boundary conditions at the limiter, and assuming

that nbl, Te,bl, and ϕbl are constant along the parallel direction, while v∥e,bl and v∥i,bl are a

linear function of z. We note that in the isothermal models Te,bl = 0 is imposed. Finally,

we enforce ωbl = ∇2
⊥ϕbl. The influence of the approximations introduced to initialize the

seeded blob simulations on the numerical results is discussed in Sec. V.

The seeded blob motion is simulated on a time interval that is equal to the experimental

blob correlation time, i.e. approximatively 50µs. Longer simulations are not useful for

comparison with the experiments, because the coherence of the conditionally averaged blob

is completely lost on longer timescales.

To compare the numerical simulations against experimental measurements, we focus our

attention on the blob radial and vertical motion. The position of the blob is computed as

follows. First, for the simulation results, the blob ion saturation density current profile is

computed as

jbl(x, y, t) =
1

2
[nbg(x) + nbl(x, y, t)]

√

Te,bg(x) + Te,bl(x, y, t)−
1

2
nbg(x)

√

Te,bg(x) (26)

while for the experimental results it is simply given by

jbl(x, y, t) =
Isat(x, y, t)− ⟨Isat(x, y, t)⟩t

A
(27)

where Isat(x, y, t) is the measured ion saturation current, ⟨−⟩t denotes the median value in

time, and A is the projected area of the single-sided LP probe. Second, the jbl signal is

averaged in space, jbl(t) = ⟨jbl(x, y, t)⟩x,y, where ⟨−⟩x,y denotes averaging along the x and y

coordinates on the entire physical domain. Third, we identify the surface S(t) which satisfies

⟨jbl(x, y, t)⟩S(t) = 0.2 · jbl(t), where ⟨−⟩S(t) denotes the average carried out on the domain

defined by S(t). Finally, the position of the blob is identified as the geometric center of the
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surface S:

xbl(t) =

∫∫

S(t)
xdxdy

∫∫

S(t)
dxdy

ybl(t) =

∫∫

S(t)
ydxdy

∫∫

S(t)
dxdy

(28)

The use of this procedure allows us to reduce the sensitivity of the results to the noise

present in the profiles. The radial and vertical velocities of the blob are simply defined as

vx(t) = dxbl(t)/dt and vy(t) = dybl(t)/dt. To exemplify the use of this procedure, in Fig. 3

we consider the experimental measurements associated with blobs at the three times t = 0,

t = 24µs, and t = 48µs. The black contours represent the boundaries of the surfaces S and

the black crosses denote the blob positions, xbl and ybl.
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FIG. 3. Experimentally measured Isat profiles, from which have been subtracted the background,

at t = 0 (first column), t = 24µs (second column), and t = 48µs (third column), for the “case 1”

(first row), “case 2” (second row), and “case 3” (third row) blobs. The black contours represent the

boundaries of the surfaces which satisfy ⟨jbl(x, y, t)⟩S(t) = 0.2 · jbl(t) and the black crosses denote

the blob positions xbl and ybl.

In order to justify the approach of validating seeded blob simulations against conditionally-
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averaged experimental measurements, we have to ensure that the velocity of conditionally-

averaged, turbulence-generated blobs does not significantly differ from the velocity of a

seeded blob. This is achieved as follows. Applying the conditional average technique de-

scribed in Sec. II to a long two-dimensional fully turbulent GBS simulation, we obtain the

conditionally-averaged profiles associated with blobs, and we use these profiles to initialize

a two-dimensional seeded blob simulation. The comparison of the velocities obtained from

the seeded blob simulation and the conditionally-averaged blob, which is not displayed here,

show that the difference between the two velocities is to within an error of 10%.

V. SENSITIVITY STUDIES

In order to compare the simulation results among each other and against the experi-

mental measurements, four sensitivity scans have been performed. We first investigate the

sensitivity of the simulation results to the input parameters and initial conditions. Second,

we focus our attention on the influence of the equilibrium electron temperature profiles on

the numerical results. Third, we analyze the impact of the electron temperature dynamics

on the blob motion. Finally, we study the sensitivity of the simulation results to the nu-

merical parameters, such as the diffusion coefficients introduced in GBS and TOKAM3X.

To estimate the effect of the uncertainties found in setting the initial conditions (dis-

cussed in Sec. IV) on the simulation results, we first estimate the confidence intervals of the

fitting parameters (Table I). Second, we perform a sensitivity scan of the blob size (σx and

σy coefficients) and of the peak-to-peak value of its dipolar potential, as they are expected

to be the parameters that affect the blob velocity the most. More precisely, we perform five

simulations for each of the three cases: one simulation, dubbed standard simulation, initial-

ized with the centered fitting parameters, two simulations setting the size of the blob using

the minimum and maximum values within the confidence interval of the fitting parameters,

and two other simulations with the minimum and maximum peak-to-peak values of the

dipolar profile of the plasma potential. Third, we compute the maximum of the difference

between the standard simulation and the other four simulations, and we use this as the

measure of the uncertainty affecting the numerical results.
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FIG. 4. Radial (left) and vertical (right) position of the blob as function of time for “case 1”, with

errorbars representing the uncertainties affecting the numerical results due to the uncertainties on

the initial conditions.

The results of the sensitivity scan for the “case 1” blob are shown in Fig. 4, where the

errorbars represent the evaluated uncertainties. It is evident that the uncertainties affecting

the radial and vertical position of the blobs are relatively small, which ensures that the

uncertainties on the blob initial conditions do not strongly affect the simulation results.

Similar results (not shown) are obtained for “case 2” and “case 3”.

Next, we perform a sensitivity scan of the electron temperature background value. This

is motivated by the fact that, while BOUT++3D, BOUT++2D, and TOKAM3X assume

a uniform Te,bg, the experimental temperature background profile shows a strong radial

variation.

The results of this sensitivity study are presented in Fig. 5. BOUT++3D, BOUT++2D,

and TOKAM3X are used to carry out two simulations each, one with Te,bg = 2.8 eV (Te,bg

value at x = 0.0 cm, corresponding to the maximum value of Te,bg over the considered

domain) and one with Te,bg = 1.85 eV (Te,bg value at x = 0.07 cm, corresponding to the Te,bg

value at the position where the blob is initialized). Moreover, two simulations are performed

with GBS, one imposing a uniform Te,bg = 2.8 eV, and one with Te,bg set according to

Eq. (21).

Figure 5 shows that the radial velocity of the blob is strongly affected by Te,bg (a larger Te,bg
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curves represent the simulation results with Te,bg = 2.8 eV, dashed curves consider Te,bg = 1.85 eV

for BOUT++3D, BOUT++2D, and TOKAM3X and Te,bg given by Eq. (21) for GBS.

leads to a larger radial velocity). Furthermore, GBS simulations point out that the blob

radial motion is faster for Te,bg = 2.8 eV than for the experimental Te,bg profile. Regarding

the vertical motion of the blob, we observe that the radial variation of Te,bg strongly impacts

the blob dynamics, while varying a uniform Te,bg value has a minor impact. In fact, when

a radial dependent profile of Te,bg is considered, by imposing Bohm’s boundary conditions

at the limiter and no net parallel background current flowing to the target, we obtain a

radially dependent electrostatic background potential, which leads to a positive vE×B in

the vertical direction. Similar results are obtained for the “case 2” and “case 3” blobs.

Consequently, the Te,bg profile considerably affects the simulation results. In Sec. VI this

has to be taken into account in the comparison of the simulation results among each other

and with experimental measurements.

Then, we simulate with the GBS code an isothermal blob (i.e., we impose Te,bl = 0 at

all times), an initially thermalized blob (i.e., we impose Te,bl = 0 at t = 0 and then let

the blob temperature evolve), and an initially hot blob [i.e., we impose Te,bl = Te,bl(x, y)

at t = 0, accordingly to Eq. (24), and then let the blob temperature evolve]. A uniform

Te,bg = 2.8 eV is imposed. This is motivated by two things. First, as discussed in Sec. IV,

high uncertainties are affecting the experimental measurements of the electron temperature.
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Second, in BOUT++3D, BOUT++2D, and TOKAM3X the blob is assumed isothermal,

while in GBS and HESEL the electron temperature is evolved. In Fig. 6 we present the

0 2 4

x 10
−5

0.06

0.07

0.08

0.09

0.1

0.11

0.12

t [s]

x
 [
m

]

0 2 4

x 10
−5

−5

0

5

10

15
x 10

−3

t [s]
y
 [
m

]

hot blob

cold blob
T

e
freeze

FIG. 6. Radial (left) and vertical (right) position of the blob as function of time, obtained from

GBS simulations of “case 1” with Te,bg = 2.8 eV. The blue curves correspond to an initially hot

blob [i.e., Te,bl = Te,bl(x, y) at t = 0, as in Eq. (24)], the green curves correspond to an initially

thermalized blob (i.e., Te,bl = 0 at t = 0 and then letting the blob temperature evolve), and the

red curves correspond to an isothermal blob (i.e., imposing Te,bl = 0 at all times).

results of this study. Considering the radial motion, we observe that the isothermal blob

is the slowest one, while the hot blob is the fastest. However, the motion of the blob is

only slightly affected by temperature effects. Moreover, Fig. 6 shows that the impact of the

isothermal blob assumption on the blob vertical velocity is very small. This indicates that

the presence of a radially-varying Te,bg profile is the main drive of the vertical motion, as

discussed above.

Finally, we note that all the simulations used for this paper are converged with respect

to the temporal and spatial discretization. Moreover, performing several sensitivity scans,

it has been verified that the values of the numerical parameters, such as the diffusion coef-

ficients introduced in GBS and TOKAM3X, do not significantly affect the simulation results.
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VI. ANALYSIS AND VALIDATION OF THE SIMULATION RESULTS
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FIG. 7. Plasma density and electrostatic potential, for the “case 1”, “case 2”, and “case 3” blobs,

simulated with BOUT++2D, BOUT++3D, GBS, HESEL, and TOKAM3X, at t = 48µs. We

note that for BOUT++2D and for HESEL the line averaged quantities n(x, y)/2 and φ(x, y) are

represented, while the profiles of n(x, y, z) and φ(x, y, z) are displayed for the three-dimensional

models at the simulated poloidal plane closest to the limiter.
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First, focusing our attention on the qualitative analysis of the blob simulation results, we

present in Fig. 7 the two-dimensional poloidal profiles of plasma density and electrostatic

potential associated with “case 1”, “case 2”, and “case 3” blobs at t = 48µs, for the five

simulation models. We consider Te,bg = 2.8 eV in the isothermal and Eq. (21) in the non-

isothermal models. Several observations can be made from these results.

(i) Noticeable differences exist between the “case 1” and “case 2” blobs, and the “case

3”. In particular, the size of the “case 3” blob is significantly smaller than in the two other

cases. This leads to steeper gradients and stronger secondary instabilities, consistent with

the numerical results.

(ii) The BOUT++2D results are qualitatively similar to the ones from BOUT++3D,

the main difference being the amplitude of the density profiles. This is due to the fact that

in BOUT++2D line-averaged quantities are evolved and plotted, while for BOUT++3D

snapshots on a poloidal plane close to the limiter are shown, where the blob density is

smaller than at the center of the device.

(iii) Comparing the results of BOUT++3D, GBS, and TOKAM3X, although we observe

a similar global evolution of the blobs, some differences in the details of the structures are

apparent. In TOKAM3X the blobs are subject to fingering effects, not visible in the other

simulations. The shape of the BOUT++3D blobs is rounder than in GBS and the blob tails

are less pronounced in GBS (tests show that this is related to the plasma-neutral collisions,

not taken into account by the other three-dimensional models). Moreover, we note that the

blobs simulated with GBS show an upward motion, and are spinning counterclockwise. The

upward motion is related to the E×B vertical motion due to the radial dependence of the

electron temperature background, as discussed in Sec. V. The spinning occurs because of

effects of the evolving electron temperature on the blob plasma potential, which is consistent

with the observations in Ref. [36].

(iv) Focusing on the HESEL results, we note that the blobs are more “mushroom-like”

and show a completely different evolution than in the other four models. As discussed in

Ref. [11], one can infer that this is related to the HESEL assumption that diamagnetic
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currents are predominately closed through polarization currents.

The analysis of the differences among the five models helps us understand the results

of the validation of the simulation results against the experimental measurements. The

radial and vertical blob velocities produced by the simulations and as measured from the

experiment are plotted versus time in Figs. 8 and 9.
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FIG. 8. Radial velocity of the blob as function of time for “case 1” (left), “case 2” (middle), and

“case 3” (right), obtained from numerical simulations and experimental measurements (the gray

shaded region represents the experimental uncertainty due to the finite spatial resolution of the

probes).

Regarding the experimental measurement of the radial velocity, despite some fluctua-

tions mainly due to experimental uncertainties, it is visible that blobs decelerate as they

move outwards, for each of the three cases. The radial velocity of the blobs simulated with

BOUT++3D, BOUT++2D, GBS, and TOKAM3X also decreases in time. However, par-

ticularly in “case 1” and “2”, the blob decelleration is weaker in the simulation results than

in experiments, and the initial velocity peak is not well captured. On the other hand, the

radial blob velocity simulated with HESEL shows a completely different evolution. In fact,

while moving outwards, the HESEL “case 1” and “case 2” blobs accelerate significantly,

while the “case 3” blob decelerates.

To perform a quantitative comparison between experiments and numerical results, and to
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probes).

gain a deeper insight on the blob dynamics, we average the experimental and the simulated

radial blob velocities between t = 0 and t = 48µs, for the three cases, and we theoretically

predict the radial blob velcity according to Ref. [20]:

vx =

√

2a
R
cs

1 + 1
ρ2sL∥

√

R
2
a5/2 + νin

√
Ra√

2cs

n0

nbg + n0

(29)

where a =
√
ln 2σn,y is the vertical size of the blob, ρs ≈

√

Te,bgmi/(eB) is the ion Larmor

radius, cs ≈
√

Te,bg/mi is the ion sound speed, and n0/(nbg + n0) is the ratio between the

peak density value of the blob, n0, and the total density, nbg + n0. The three terms in the

denominator represent possible closures of the diamagnetic current due to, respectively, the

ion polarization current, the parallel current to the sheath, and the ion-neutral collisions

(the latter is neglected in the following due to the low value of νin). The n0/(nbg +n0) term

represents the slowing down of the blob due to a finite background density. Equation (29)

is derived under the assumption of isothermal evolution.

In Table II we summarize the results of our analysis. First, considering the two back-

ground electron temperatures Te,bg = 1.85 eV and Te,bg = 2.8 eV, we compute the velocities

theoretically predicted by using Eq. (29). We compute both the expected velocity from

the full scaling in Eq. (29) (“Analytical scaling”), and the expected velocity from the ion-
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polarization closure scaling when an halved ballooning instability drive is considered, which

corresponds to vx =
√

a/Rcsn0/(nbg + n0) (“Polarization closure”). Second, averaging in

time the radial velocities, we list the BOUT++2D, BOUT++3D, and TOKAM3X results

corresponding to Te,bg = 1.85 eV and Te,bg = 2.8 eV. For GBS, simulations with a uniform

Te,bg = 2.8 eV background and considering an isothermal blob (i.e., Te,bl = 0 at all times) are

listed. Moreover, we present the GBS and HESEL results when the experimental background

temperature profile are used and the blob temperature is evolved. Finally, the experimental

radial velocity measurements are averaged in time, to obtain the values presented in the

last row of Table II. Several observations can be made from these results.

(i) The velocities obtained for Te,bg = 2.8 eV from BOUT++3D, GBS with isothermal

electrons, and TOKAM3X are very similar. It follows that the three models are equally able

to predict the radial velocity of the blobs. Within the uncertainties affecting the measured

quantities used as input parameters, they are consistent with experimental observations for

“case 1” and “case 2”, while the “case 3” experimental measurements do show a smaller

velocity with respect to the simulations. This difference is due to the blob motion in late

part of the considered time interval, when the blob loses its coherence and the difference

between experimental measurements and simulation results increases, as shown in Fig. 8.

(ii) BOUT++2D gives a radial velocity that is slightly smaller than the one com-

puted with the three-dimensional isothermal models. Previous comparisons between two-

dimensional and three-dimensional simulation results12 have shown that the density drop

in the three-dimensional simulations is larger than the one estimated to derive the two-

dimensional models. This leads to smaller parallel sheath currents and, therefore, faster

blob dynamics in the three-dimensional simulations. However, the difference between

BOUT++2D and BOUT++3D results are relatively small, indicating that the sheath

dissipation closure represents well the considered experiments. This is consistent with

previous experimental investigations, from which it has been concluded that for similar

TORPEX experimental scenarios the parallel currents play an important role in setting the

blob motion20,37,38.

(iii) The “case 1” and “case 2” blobs simulated with HESEL produce radial velocities
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that are much larger than the ones observed experimentally. This leads us to conclude

that, for the present experimental scenario, the weak sheath formulation combined with the

vorticity advection closure is not a good representation of the plasma dynamics, consistently

with point (ii). It is emphasized that this result concerns only the considered experimental

scenario, and it is not generally true.

(iv) The analysis of “case 3” HESEL results shows a velocity that is smaller than both

the experimental velocity and the velocity resulting from the other models. This may be

due to the fact that the blob completely loses its coherence through the simulation, as can

be observed in Fig. 7.

(v) The simulation results obtained with GBS considering the experimental temperature

background show a radial velocity that is slightly smaller than the measured one for “case

1” and “case 2”, while it is slightly higher for “case 3”. It could appear surprising at first

sight that the experiments agree better with the isothermal models than with the results

of the non-isothermal GBS simulations. However, Fig. 8 shows that this is due to a fortu-

itous event: the differences in the radial velocity between experimental measurements and

isothermal simulations in the first and second halves of the simulations are canceling out,

giving an apparently better agreement of the averaged radial velocities.

(vi) Comparing our isothermal simulation results with the analytical scaling derived from

the isothermal estimate presented in Ref. [20], we observe that Eq. (29) underestimates the

blob radial velocity. In the appendix of Ref. [37] and in Ref. [39] other possible blob velocity

scalings are discussed, for which it is assumed that the blob is subject to a Kelvin-Helmholtz

instability. These scalings produce results which differ from Eq. (29) when low values of

n0/(nbg+n0) are considered. In particular, they give larger velocities than the ones predicted

by using Eq. (29), which are closer to the numerical results of the isothermal simulations.

Additionally, assuming that the analytical scaling of Eq. (29) underestimates the blob radial

velocity because of the small value of n0/(nbg + n0), and comparing the HESEL results

with the “Polarization closure” row in Table II, we conclude that the HESEL model should

be able to properly describe the blob dynamics in cases where diamagnetic currents are

predominantly closed through polarization currents.
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Considering the experimental vertical motion, we observe that the blobs move in TOR-

PEX with positive, almost constant, velocity. The dynamics of the blobs simulated with

GBS is consistent with the experimental measurements; the HESEL model, which assume a

non-isothermal background accordingly with Eq. (21), presents a vertical velocity that is ini-

tially consistent with experimental measurements and diverges later from the experimental

results; while the other models are not in agreement with the experimental measurements.

This reflects the fact that the vertical blob motion is mostly driven by a background vE×B

flow, as discussed in Sec. V.

VII. CONCLUSIONS

In this paper we present numerical results obtained from seeded blob simulations carried

out with five different models, which are validated against the experimental data obtained

from the TORPEX device. The models differ because of a number of assumptions used

to simplify the drift-reduced Braginskii equations, such as the hypothesis of cold ions,

isothermal electrons, or negligible electron inertia. Moreover, some of the models make use

of infinite aspect ratio approximation. In addition to three-dimensional models, we also

consider two-dimensional models, based on different closures of the parallel currents on the

vessel walls.

The comparison between the results of the different models and the experiments allow us to

identify the most important physics elements that play a role in setting the blob velocity.

For the present experimental scenario, we show that the vorticity advection closure, such

as the one implemented in HESEL, is not able to correctly reproduce the plasma dynamics

associated with the blobs, while the sheath dissipation closure, such as the one implemented

in BOUT++2D, is in agreement with the three-dimensional simulations and experimental

results. This is consistent with previous experimental analysis, whereby it has been showed

that, in typical TORPEX hydrogen plasmas, parallel currents are important in setting the

radial velocity of blobs. To properly validate the HESEL model, one would need to consider

plasmas with higher ion mass or blobs with a smaller size, for which it has been shown that

the parallel current contribution is negligible37.

Moreover, we also observe that the value of the background electron temperature is impor-
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tant in setting the radial velocity of blobs, meaning that an accurate measurement of this

quantity is necessary to perform reliable simulations. Moreover, comparing the results of

the five codes between each other, we conclude that the radial dependence of the electron

temperature background plays a role in determining the correct vertical motion of the blobs,

while the evolution of the electron temperature is only necessary to describe its spinning.

We also showed that the electron inertia, the Boussinesq approximation, and the infinite

aspect ratio limit have a minor importance in determining the blob velocity.

The results presented in this paper provide us with a better understanding of the blob

dynamics, and increase the reliability of the models used to carry out the seeded blob

simulations. The experimental scenario presented in this paper constitutes an ideal test

bed also for future benchmarks and the validation of seeded blob simulations, thanks to the

measurements available, which allow accurate initialization of the simulations and detailed

comparisons with the numerical results. The magnetic configuration that we consider facil-

itates considerably the analysis and the interpretation of the experimental and simulation

results.

This work represents a fundamental step towards the validation of full turbulence simula-

tions against experimental measurements in more complex geometries, such as a tokamak

SOL.
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TABLE II. Blob radial velocity for the three cases, computed with Eq. (29) and time-averaging

simulations and experimental results.
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