
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Newcastle University ePrints - eprint.ncl.ac.uk 

 

Hales CA, Murphy T, Curran JR, Middelberg E, Gaensler BM, Norris RP.  

BLOBCAT: software to catalogue flood-filled blobs in radio images of total 

intensity and linear polarization.  

Monthly Notices of the Royal Astronomical Society 2012, 425(2), 979-996. 

 

 

Copyright: 

This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society © 

2012 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society. All 

rights reserved. 

DOI link to article: 

https://doi.org/10.1111/j.1365-2966.2012.21373.x      

Date deposited:   

30/06/2017 

http://eprint.ncl.ac.uk/
javascript:ViewPublication(239038);
javascript:ViewPublication(239038);
https://doi.org/10.1111/j.1365-2966.2012.21373.x


Mon. Not. R. Astron. Soc. 425, 979–996 (2012) doi:10.1111/j.1365-2966.2012.21373.x

BLOBCAT: software to catalogue flood-filled blobs in radio images

of total intensity and linear polarization

C. A. Hales,1,2⋆ T. Murphy,1,3,4 J. R. Curran,3 E. Middelberg,5 B. M. Gaensler1,4

and R. P. Norris2,4

1Sydney Institute for Astronomy, School of Physics, The University of Sydney, NSW 2006, Australia
2CSIRO Astronomy & Space Science, PO Box 76, Epping, NSW 1710, Australia
3School of Information Technologies, The University of Sydney, NSW 2006, Australia
4ARC Centre of Excellence for All-sky Astrophysics (CAASTRO), The University of Sydney, NSW, 2006 Australia
5Astronomisches Institut, Ruhr-Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany
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ABSTRACT

We present BLOBCAT, new source extraction software that utilizes the flood fill algorithm

to detect and catalogue blobs, or islands of pixels representing sources, in 2D astronomical

images. The software is designed to process radio-wavelength images of both Stokes I intensity

and linear polarization, the latter formed through the quadrature sum of Stokes Q and U

intensities or as a by-product of rotation measure synthesis. We discuss an objective, automated

method by which estimates of position-dependent background root mean square noise may be

obtained and incorporated into BLOBCAT’s analysis. We derive and implement within BLOBCAT

corrections for two systematic biases to enable the flood fill algorithm to accurately measure

flux densities for Gaussian sources. We discuss the treatment of non-Gaussian sources in

light of these corrections. We perform simulations to validate the flux density and positional

measurement performance of BLOBCAT, and we benchmark the results against those of a standard

Gaussian fitting task. We demonstrate that BLOBCAT exhibits accurate measurement performance

in total intensity and, in particular, linear polarization. BLOBCAT is particularly suited to the

analysis of large survey data.

Key words: methods: data analysis – methods: statistical – techniques: image processing –

techniques: polarimetric – catalogues – surveys.

1 I N T RO D U C T I O N

In radio astronomy image analysis, for which approximations of

Gaussian noise statistics and Gaussian source morphologies are

suitable, much attention has been paid to least-squares 2D ellip-

tical Gaussian fitting routines (e.g. Condon 1997). Such routines,

for example those implemented within the MIRIAD (Sault, Teuben &

Wright 1995) and AIPS (Bridle & Greisen 1994) packages, are appro-

priate for source extraction when fitting parameters have been care-

fully inspected or constrained. However, when left unconstrained,

the accuracy of these Gaussian fits may become degraded, requiring

significant manual inspection overheads to identify poor fits and en-

sure high-quality source extraction. Gaussian fitting routines may

therefore be unsuited to the general analysis of large survey data.

In this work, we seek to develop a robust alternative to Gaussian

fitting by utilizing the flood fill algorithm (Lieberman 1978; Fishkin

& Barsky 1985). In particular, we seek to develop a source extraction

procedure that incorporates an accurate, objective and automated

⋆E-mail: c.hales@physics.usyd.edu.au

method of background root mean square (rms) noise estimation, and

to develop the first accurate method of source extraction for resolved

sources in linear polarization. Additional factors motivating this

work are described as follows.

First, a number of large radio surveys are planned for the near

future, capitalizing on upcoming new or substantially upgraded

facilities such as ASKAP (Johnston et al. 2008; Deboer et al.

2009), MEERKAT (Jonas 2009), LOFAR (Rottgering et al. 2010),

ALMA (Wootten & Thompson 2009; Hills, Kurz & Peck 2010),

LWA (Ellingson et al. 2009), WSRT (Oosterloo et al. 2009), EVLA

(Perley et al. 2011) and many others including very long baseline in-

terferometry networks and epoch of reionization instruments. With

these facilities will come a number of large surveys in both total

intensity and linear polarization, for example EMU (Norris et al.

2011), WODAN,1 MIGHTEE,2 POSSUM (Gaensler et al. 2010)

and GALFACTS (Taylor & Salter 2010). The ability to catalogue

1 http://www.astron.nl/radio-observatory/apertif-eoi-abstracts-and-contact-

information
2 Van der Heyden K., Jarvis M. J., 2010, MIGHTEE proposal to MEERKAT.
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objects within the large images produced by these surveys, with as

little manual intervention as possible, will be key to maximizing

scientific output. We seek to develop a robust, automated method

of source extraction that requires only the most complex sources to

be manually inspected.

Secondly, recent polarimetric studies have indicated an increase

in the fractional polarization of faint extragalactic radio sources (e.g.

Taylor et al. 2007; Grant et al. 2010; Shi et al. 2010; Subrahmanyan

et al. 2010), which are difficult to reconcile with population mod-

elling (O’Sullivan et al. 2008). We seek here to subject the process

of polarization measurement to close scrutiny, and to provide the

community with a measurement tool that has been assessed within

a controlled testing environment.

Thirdly, the flood fill algorithm underpins a number of existing

source extraction routines, such as those available in the CUPID
3

(e.g. CLUMPFIND; Williams, de Geus & Blitz 1994) and SEXTRACTOR

(Bertin & Arnouts 1996) packages. However, these routines are

unable to measure flux densities without performing subsequent

Gaussian (or similar) source fitting. Alternatively, the flood fill al-

gorithm has been used without the subsequent least-squares fitting

step for the customized analysis of extended, non-Gaussian sources

in total intensity (Murphy et al. 2007) and linear polarization (Heald,

Braun & Edmonds 2009). However, the raw flood fill algorithm as

implemented in these works is not suitable for use with compact

(unresolved or resolved Gaussian) sources, as their flux density

measurements suffer from two significant systematic biases. In this

work we describe how to correct for these biases in a robust manner,

so as to enable the flood fill approach to handle both Gaussian and

non-Gaussian sources.

We have implemented these bias corrections within a new flood

fill program called BLOBCAT, which catalogues blobs in astronomical

images. We use the term blob in an image-processing sense to rep-

resent an island of agglomerated pixels within a sea of noise, and

to indicate that its properties are not inferred by fitting (e.g. least

squares). We have designed BLOBCAT for use in radio astronomy,

attempting to produce a program capable of encapsulating the en-

tire measurement process between observational image and output

catalogue.

This paper is organized as follows. In Section 2, we describe

the algorithms implemented within BLOBCAT, detailing required pro-

gram inputs, including the minimal set required for operation and

output data products. In Section 3, we assess BLOBCAT’s peak surface

brightness (SB), integrated SB and positional measurement perfor-

mance. We investigate the program’s ability to handle unresolved,

resolved and complex (non-Gaussian) sources in images of total

intensity (Stokes I) and linear polarization (L or LRM; these terms

are defined in Section 2) and discuss issues regarding polarization

bias. For comparison, we also assess the performance of a standard

Gaussian fitting routine. In Section 4, we discuss two examples of

post-processing that may be required to make full use of BLOBCAT’s

output catalogue; these are particularly relevant for data containing

extended non-Gaussian, or multiple blended Gaussian, sources. In

Section 5, we present our summary and conclusions.

2 H OW BLOBCAT WO R K S?

BLOBCAT is written in the scripting language PYTHON. The program

is designed to catalogue blobs in a 2D input FITS (Pence et al.

2010) image of SB. To isolate blobs and determine their properties,

3 http://starlink.jach.hawaii.edu/starlink/CUPID

Figure 1. Overview of BLOBCAT.

BLOBCAT requires an estimate of the background rms noise and de-

gree of bandwidth smearing at each spatial position (pixel) within

the SB image. These two diagnostics may be provided to BLOBCAT as

either uniform (spatially invariant) values or, more generally, as 2D

input FITS images that encode the more realistic scenario whereby

noise and smearing properties vary with spatial position over the

SB image.

An overview of BLOBCAT is presented in Fig. 1. In the follow-

ing sections, we describe the input images and their requirements

(Section 2.1), the core flood fill algorithm used to isolate blobs (Sec-

tion 2.2), the key morphological assumption (Section 2.3) and bias

corrections (Section 2.4) applied to extract blob properties, the input

arguments required to run BLOBCAT (Section 2.5), the output cata-

logue (Section 2.6) and the optional program outputs (Section 2.7).

2.1 Input images

BLOBCAT requires up to three input FITS images, as outlined in Fig. 1.

For flexibility, the images of background rms noise and bandwidth

smearing are optional, and may instead be replaced by spatially

invariant input values.

2.1.1 Surface brightness

BLOBCAT is designed to analyse blobs with positive SB. To detect

negative blobs, the input SB image must be inverted before use.

In this paper, we focus on the analysis of blobs in images of total

intensity and linear polarization (L or LRM). BLOBCAT may also be

C© 2012 The Authors, MNRAS 425, 979–996
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used to analyse images of Stokes Q, U and V intensities, though

we note that resolved sources exhibiting both positive and nega-

tive SB in these images will be incorrectly handled; we do not

attempt to address the analysis of such sources here. We assume

that blobs of interest in total intensity and linear polarization may

be characterized by 2D elliptical Gaussians, though we do consider

the treatment of non-Gaussian blobs later in Section 4.2. Image

pre-processing techniques to remove widespread extended features

prior to the analysis of more compact sources may be required (e.g.

Rudnick 2002; Rudnick & Brown 2009; Oppermann, Robbers &

Ensslin 2011).

We assume that images of LRM are produced following the appli-

cation of rotation measure (RM) synthesis (Brentjens & de Bruyn

2005) and RMCLEAN (Heald et al. 2009) such that for each spatial

pixel located at pixel coordinate (x, y), the polarized emission is

obtained by taking the peak value in the cleaned Faraday dispersion

function, namely

LRM(x, y) = max(||F cleaned(x, y, φ)||), (1)

where φ is the Faraday depth. We note that this definition of LRM

assumes Faraday spectra along each pixel sightline consisting of

no more than a single unresolved Faraday component (additional

components will be ignored); analysis with more advanced models

of LRM is beyond the scope of this work. Analysis involving equa-

tion (1) is demonstrated, for example, by Heald et al. (2009) and

Hales et al. (in preparation). Alternatively, images of standard linear

polarization,

L(x, y) =
√

Q(x, y)2 + U (x, y)2, (2)

may be used. See Leahy & Fernini (1989) and Vaillancourt (2006)

for statistical properties of L, and Hales et al. (2012) for statistical

properties of both L and LRM. For simplicity in subsequent discus-

sion, we neglect the pixel coordinate notation (x, y) affixed to all

spatially variable parameters, unless required for clarity.

2.1.2 Background rms noise

If position-dependent rather than spatially invariant blob detection

thresholds are required, then a background rms noise image must be

specified. The user is required to independently construct a suitable

noise map for the SB image, for example using the rms estimation

algorithm implemented within the SEXTRACTOR package (Bertin &

Arnouts 1996; Holwerda 2005).

Despite having been originally developed for the analysis of op-

tical photographic plate and CCD data, SEXTRACTOR has been found

to be reliable when generating noise maps from radio data (Bondi

et al. 2003; Huynh et al. 2005). SEXTRACTOR determines the rms

noise at each spatial pixel in an image by extracting the distribution

of pixel values within a local mesh, iteratively clipping the most

deviant values until convergence is reached at ±3σ about the me-

dian. The choice of mesh size (in pixel2) is very important. If it

is too small, the local rms estimate may be biased due to the lack

of statistically independent measurements or overestimated due to

the presence of real sources. If it is too large, any true small-scale

variations in local rms noise may be washed out. At least Nb = 80

independent resolution elements (beams) per mesh area are required

in order to reduce the uncertainty in estimates of local rms noise to

below {[1 + 0.75/(Nb − 1)]2[1 − N−1
b ] − 1}0.5 = 8 per cent (using

an approximation to the uncertainty of the standard error estimator,

suitable for Nb > 10; Johnson & Kotz 1970, p. 63). The mesh area,

Hmesh, may be calculated according to

Hmesh =
Nb

d̄
�b, (3)

where

�b =
π

4 ln 2
�maj �min (4)

is the beam volume for a 2D elliptical Gaussian with full width at

half-maximum (FWHM) along the major and minor axes given by

�maj and �min, respectively, and where d̄ = π/
√

12 is the dens-

est lattice packing for congruent copies of any convex shape (e.g.

circles, ellipses; Pach & Agarwal 1995). It is customary in physi-

cal sciences to treat rms noise4 values, such as those reported by

SEXTRACTOR, as standard errors in order to boost noise estimates

in regions where extended non-signal features are present, namely

by defining that σz = (zrms)SEXTRACTOR. In other words, by using rms

noise estimates to calculate local signal-to-noise ratio (S/N) thresh-

olds for blob detection, it is possible to take into account not only

local variations in image sensitivity, but also the possible presence

of DC offsets due to artefacts (e.g. sidelobes). For this reason, we

recommend the method of using SEXTRACTOR or a similar package

to estimate noise over the method of simply estimating it from, say,

Stokes V because it can take into account features in the data that

may be missed by more theoretically motivated expectations. The

procedure described above, incorporating equation (3), may be eas-

ily automated to provide objective estimates of rms noise for any

noise-dominated image.

Finally, we note that the SEXTRACTOR procedure above is suitable

for determining the rms noise in images of Stokes I, Q, U or V , but

not LRM (nor L). Instead, to determine σ RM at each spatial location

in LRM, SEXTRACTOR should be run on each constituent Qi and Ui

image in each ith of T frequency channels to obtain σ Q,i and σ U,i.

These in turn may then be combined using weighted least squares

as (Hales et al. 2012)

σRM =

[

ξ

T
∑

i=1

1

0.2 min
(

σ 2
Q,i, σ

2
U,i

)

+ 0.8 max
(

σ 2
Q,i, σ

2
U,i

)

]−1/2

,

(5)

where the term ξ represents the correlation correction factor defined

by equation (23) from Hales et al. (2012).

2.1.3 Bandwidth smearing

If corrections for position-dependent bandwidth smearing (chro-

matic aberration) are required, then an image detailing the degree

of smearing at any location within the SB image must be specified.

Bandwidth smearing is due to the finite bandwidth of frequency

channels, resulting in a radially dependent convolution (smearing)

that worsens as a function of positional offset from the phase track-

ing centre of a single-pointed radio observation (Condon et al. 1998;

Bridle & Schwab 1999). The effect is to decrease the peak SB and

to increase the observed size of sources without affecting their in-

tegrated SB. Bandwidth smearing needs to be carefully accounted

for in mosaics consisting of multiple overlapped pointings. This

is because any location in a mosaicked image, even one situated

over a pointing centre, may include multiple contributions from ad-

jacent pointings in which bandwidth smearing is significant (Ibar

et al. 2009). The bandwidth smearing image input to BLOBCAT should

map out the ratio between the observed smeared peak SB, Sp, and

4 The definition of rms noise is z2
rms = z̄2 + σ 2

z .

C© 2012 The Authors, MNRAS 425, 979–996
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the true unsmeared peak SB, SBWS
p , for all spatial positions within

the SB image (using notation consistent with that introduced later

in this work). We denote the local degree of bandwidth smearing as

̟ =
Sp

SBWS
p

(≤1) . (6)

2.1.4 General requirements

All images input to BLOBCAT must have the same dimensions and

be located on the same pixel grid; for cataloguing purposes, we

require that the primary image world coordinate system is expressed

in equatorial coordinates (RA–Dec.). In order to measure fitted

Gaussian peaks to within 1 per cent, at least 5 pixel per resolution

element FWHM should be present (see Appendix A).

BLOBCAT does not calculate the Jacobian of the transformation

between projection plane coordinates and native longitude and lat-

itude (Calabretta & Greisen 2002). Instead, BLOBCAT requires that

input images are gridded to an equal-area projection, so as to ensure

that sky area per pixel is preserved. BLOBCAT supports both zenithal

equal-area (ZEA) projection (the premier scheme for a hemisphere)

and Hammer–Aitoff (AIT) equal-area projection (suitable for all-

sky images) (Calabretta & Greisen 2002). Failure to use an equal-

area projection will lead to systematic biases in BLOBCAT’s extracted

flux densities and visibility area (sky density) calculations (see

Section 2.6). However, there are two common situations where this

equal-area requirement may be relaxed. The first is when measuring

flux densities for unresolved sources by obtaining their peak pixel

or fitted peak value (cf. Appendix A). The second involves the use

of images with non-equal-area projections; for example, the north-

celestial-pole (NCP) projection (Greisen 1983). For such images,

flux density measurements for resolved sources, which require in-

tegration over SB (i.e. over pixels), will only be suitable for sources

situated close to the image reference point where distortion effects

are minimal (Calabretta & Greisen 2002). To enable such analysis,

BLOBCAT also supports images in NCP projection or the more general

slant orthographic (SIN) projection. Regridding of input images to

one of the ZEA, AIT, NCP or SIN projection schemes may be com-

puted using, for example, the WCSLIB
5 package. Finally, we remark

that equal-area projections do not preserve shape; it is not possi-

ble to conserve both angles and areas when mapping portions of a

sphere to a plane.

2.2 Flood fill algorithm

BLOBCAT uses the flood fill, or thresholding, algorithm (Lieberman

1978; Fishkin & Barsky 1985; Sonka, Hlavac & Boyle 2008) to

isolate individual blobs (islands) of pixels from within an S/N map.

The S/N map is formed by taking the pixel-by-pixel ratio between

the input SB and background rms noise images. In units of dimen-

sionless S/N, we denote the threshold for detecting blobs as Td and

the cut-off threshold for flooding down to as Tf . By applying thresh-

olds in the S/N map rather than the SB image, local variations in

sensitivity can be accommodated. We do not take into account band-

width smearing at this initial flooding stage (see Section 2.6). We

have implemented the highly optimized flood fill algorithm from

Murphy et al. (2007) within BLOBCAT, which operates as follows.

5 http://www.atnf.csiro.au/people/mcalabre/WCS/wcslib/

(i) Locate all pixels in the S/N map that have value ≥Td, in-

cluding those pixels that would meet this detection threshold if it

were not for pixellation attenuation (see Appendix A and comments

below).

(ii) Form blobs about each of these pixels by ‘flooding’ adjacent

pixels that have value ≥Tf .

(iii) For each isolated blob, perform bias corrections (Sec-

tion 2.4) and catalogue properties (Section 2.6).

We denote the peak SB observed within the peak pixel for each

blob by SOBS
p (with units Jy beam−1), and the resulting observed

peak S/N by AOBS = SOBS
p /σ . To minimize the attenuating effect

of pixellation on SOBS
p , BLOBCAT calculates a fitted peak SB for each

blob by applying a 2D parabolic fit to a 3 × 3 pixel array about

the raw peak, as described in Appendix A. We denote this fitted

peak by SFIT
p , and the resulting fitted peak S/N by AFIT = SFIT

p /σ .

We denote measurements of integrated SB by SOBS
int (with units Jy),

which are obtained for each blob by summing their flooded pixel

intensities and dividing by the beam volume (�b).

BLOBCAT attempts to perform its internal calculations, as described

in the following sections, using the fitted peak quantities SFIT
p and

AFIT. However, if SFIT
p < SOBS

p , as may occur for heavily pixellated

images (namely for small values of Nα and Nδ as defined in Ap-

pendix A), then for consistency BLOBCAT sets SFIT
p = SOBS

p (and thus

AFIT = SOBS
p /σ ) to ensure that blobs with SFIT

p < Td yet SOBS
p > Td

are not unfairly rejected from the output catalogue. For notational

simplicity in subsequent discussion, we will use the superscript

OBS to refer to both unfitted and fitted peak quantities; we will

not distinguish between OBS and FIT quantities unless required for

clarity.

We now turn to the key morphological assumption used to infer

physical properties of these isolated blobs from their raw observed

measurements.

2.3 Blob morphology assumption

In aperture synthesis imaging, individual resolution elements are

described by the morphology of the dirty beam (the Fourier trans-

form of the sampling distribution). Provided that the central core

of the dirty beam can be suitably approximated by an elliptical

Gaussian, the individual resolution elements in the resulting images

can be described by 2D elliptical Gaussians. In other words, point

sources will appear as Gaussians in an image.

In BLOBCAT we assume that each isolated blob is described by a 2D

elliptical Gaussian characterized by a peak S/N, A and representative

major and minor FWHMs ψ r and ψ s, respectively (representative

because these FWHMs are never individually measured, as we dis-

cuss shortly). In Sections 3.3 and 4.2, we discuss situations where

this assumption of Gaussian blob morphology is poor. The general

equation for a 2D elliptical Gaussian, located at the origin of an ar-

bitrary coordinate frame (r, s) that is aligned with the major/minor

axes, is given by

f (r, s) = A exp

[

−4 ln (2)

(

r2

ψ2
r

+
s2

ψ2
s

)]

. (7)

This equation is valid for Gaussian blobs in noise-free images of

either total intensity or linear polarization. The volume of this 2D

Gaussian is

�G =
πA

4 ln 2
ψrψs . (8)

This general set-up, including detection thresholds as defined in

Section 2.2, is shown in Fig. 2.

C© 2012 The Authors, MNRAS 425, 979–996
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Figure 2. Flood fill algorithm applied to a noise-free 2D elliptical Gaussian

blob with peak S/N A. The detection threshold is Td. The blob is flooded

from the peak down to the detection threshold Tf . Flood fill can only measure

a fraction of the blob’s total volume, η (equation 16), as indicated by the

shading. The width of the blob at A/2 (the FWHM) is ψ .

2.4 Blob bias corrections

BLOBCAT applies two important corrections to each isolated Gaussian

blob in order to prevent systematic biases from affecting its peak

and integrated SB measurements. These corrections account for the

following.

(i) The positive peak SB bias exhibited by SOBS
p for resolved

blobs.

(ii) The negative integrated SB bias exhibited by SOBS
int caused

by the limited blob volume accessible to flooding before the cut-off

threshold Tf is reached.

2.4.1 Peak surface brightness bias

An illustration outlining the need for the first correction is presented

in Fig. 3. To understand this bias and how to correct for it, we

first examine the following experiment. Consider for simplicity that

blobs are represented by tophat functions rather than 2D elliptical

Gaussians, that images are produced with 1 pixel per resolution

Figure 3. Idealized representation of the positive bias encountered when

measuring the peak SB of a resolved Gaussian blob embedded in noise.

Shown are two resolved Gaussian blobs, each with (true) peak SB Sp and

seven resolution elements per FWHM. For visual and conceptual simplicity,

noise is represented by a sine wave and it is assumed that a large number of

pixels populate each resolution element (such that pixellation effects may

be ignored, i.e. SFIT
p = SOBS

p ). Two equally likely noise superpositions are

shown. The left blob encounters a positive noise contribution to its peak SB,

while the right blob encounters a negative noise contribution (trough). In

both cases the observed peak SB overestimates the true peak SB, leading

to a systematic positive bias for resolved sources. BLOBCAT corrects for this

bias with equation (14), as parametrized by the area sliced at λσ below the

observed peak. If λ is too small, the bias correction itself may become biased

due to volatility in the small area sliced, as illustrated.

element and that noise is Gaussian in character. Noise is always

resolved on the same spatial scale as unresolved sources. Therefore,

the peak SB of an unresolved blob, here observed as the magnitude

of a single pixel, will be affected by a single noise sample which

may be positive or negative. For an ensemble of such unresolved

blobs, each with identical true peak SB but different noise sample,

the average observed peak SB will be an unbiased tracer of the

true peak SB. Now consider a resolved tophat blob, over which M

independent noise samples will be present. The observed peak SB of

this resolved blob will depend on the maximum of M independent

noise samples, rather than M = 1 for an unresolved blob. Thus,

the more resolved the blob becomes, the larger M becomes and the

less likely it is that a negative noise sample will be selected as the

observed peak SB. The average observed peak SB for an ensemble

of identically resolved blobs will therefore be positively biased from

its true value. Before returning to 2D elliptical Gaussians, we will

describe how to correct for this positive bias in the context of order

statistics using the simpler tophat blob morphology.

For a sample of M independent and identically distributed variates

X1, X2, . . ., XM ordered such that X(1) < X(2) < ··· < X(M) (using

notation Xj for unordered variates and X(j) for ordered variates),

then X(k) is known as the kth order statistic and X(M) = max(Xj).

If X has density function f (X) and distribution function F(X), then

David & Nagaraja (2003) give the density function for X(k) as

f
(

X(k)

)

=
M!

(k − 1)! (M − k)!
f (X)

× [F (X)]k−1 [1 − F (X)]M−k . (9)

The density function for the maximum of M independent Gaussian

variates with variance σ 2 is obtained from equation (9) by setting

k = M, giving

f
(

X(M)

)

=
M

σ
√

2π

exp

(

−
X2

2σ 2

){

1

2

[

1 + erf

(

X

σ
√

2

)]}M−1

,

(10)

where erf is the error function defined by

erf(z) =
2

√
π

∫ z

0

e−t2

dt . (11)

The expectation value for equation (10) is given by

E
[

f
(

X(M)

)]

=
∫ ∞

−∞
f
(

X(M)

)

dX, (12)

which is plotted for a range of M samples in Fig. 4. Equation (12)

represents the average positive bias existing between measurements

of observed peak SB and true peak SB for a tophat blob. Given

measurement of M, namely the number of independent resolution

Figure 4. Expectation value in noise units of σ for the largest of M in-

dependent Gaussian variates (equation 12). The expectation value is 0 for

M = 1. A polynomial fit to the curve is given by equation (14).

C© 2012 The Authors, MNRAS 425, 979–996
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elements present over the extent of the blob, an estimate for the bias

can be obtained. The bias is most pronounced for low-S/N resolved

blobs; for a tophat blob of extent ∼4 resolution elements, the bias

for a 5σ blob is ∼1.0σ/5σ = 20 per cent (see Fig. 4).

We now return to the scenario whereby blobs are assumed to

represent 2D elliptical Gaussians. Instead of obtaining M from the

full spatial extent of a tophat blob, M needs to be estimated from

the observable properties of a 2D Gaussian embedded in noise. In

BLOBCAT we estimate M by approximating that the relevant number

of independent resolution elements contributing to the positive bias

can be extracted from the cross-sectional area contained within a

slice of constant S/N at a few σ below the peak, as parametrized

by λ in Fig. 3. BLOBCAT measures the cross-sectional area for each

blob at S/N = (AOBS − λ), which we denote Hλ, by flooding from

the peak to this threshold and simply counting the number of pixels

present. M is then estimated using (cf. equation 3)

M =
d̄

�b

Hλ. (13)

To determine the positive bias between SOBS
p and Sp for resolved

blobs, BLOBCAT uses the following fifth-order polynomial fit to the

curve in Fig. 4 to form a simple lookup table (rather than solving

for equation 12),

M = 1 +
5
∑

i=1

aiβ
i, (14)

where

β = E
[

f
(

X(M)

)]

≈
SOBS

p

Sp

(

=
AOBS

A

)

, (15)

and where a1 = 0.89, a2 = 0.27, a3 = 3.75, a4 = −3.67 and a5 =
1.61.

To illustrate the constraints on selecting λ, imagine trying to

correct the raw observed peak SB for a resolved Gaussian blob,

detected with peak S/N = 50, by arbitrarily defining that the relevant

spatial extent be measured at λ = 20. Choosing M in this way will

overestimate the peak’s positive bias, because not even a 10σ noise

spike located at the S/N = 30 contour of the blob could be mistaken

for the true peak. Alternatively, choosing too small a value of λ

will not only underestimate the peak bias in the opposite manner to

above, but also render M vulnerable to additional negative bias due

to Hλ being fooled (limited in spatial extent) by noise troughs near

the blob’s peak.

We performed simulations to empirically determine the most

suitable range of values for λ. We found that choosing λ = 3.5 best

corrected for the positive bias exhibited by SOBS
p for resolved blobs

in images of either total intensity or linear polarization (L or LRM).

We discuss the simulations used to determine this optimum λ, as

well as the general performance of the peak SB bias correction from

equation (14), in Section 3.

2.4.2 Integrated surface brightness bias

To prevent the flood fill algorithm from cascading into noise features

adjacent to real blobs, flooding is terminated at the cut-off thresh-

old, Tf . The integrated SB measured for each blob, SOBS
int , therefore

underestimates the true integrated SB, Sint, because only a limited

fraction of the total volume for each blob is ever directly accessed.

We denote this fraction η, as indicated in Fig. 2.

By integrating the volume flooded between A (true peak S/N)

and Tf for a 2D elliptical Gaussian blob, and dividing this result by

the total volume of the blob (equation 8), the fraction of flooded

volume η is found to be

η =

(

erf

√

− ln
Tf

A

)2

. (16)

BLOBCAT corrects the observed integrated SB for each detected blob

(regardless of blob dimension) by simply dividing by η, namely

Sint =
SOBS

int

η
. (17)

It is important to note that A in equation (16) is the true peak S/N. For

resolved blobs, the peak bias correction from equation (14) needs

to be applied first, so as to debias the observed peak S/N, AOBS, and

return an estimate for the unbiased peak S/N, A. The effect of using

uncorrected peak S/N values for resolved sources in equation (16)

is demonstrated in Section 3.

The choice of Tf affects the maximum volume that can be flooded

within a faint blob. To recommend a minimum value, we performed

simulations of integrated SB recovery for 2D elliptical Gaussian

blobs embedded within images of total intensity and linear polariza-

tion; the details of these simulations are discussed in Section 3. We

incrementally reduced Tf in these simulations, seeking a balance

between the measurement of as much volume as possible within

faint blobs, and the need to avoid bias from potential overflooding

of neighbouring noise features.

In total intensity images for blobs as faint as A = 5, we found that a

cut-off threshold of Tf = 2.6 was required in order to robustly flood

as many true blob pixels as possible whilst avoiding overflooding

of adjacent non-blob (noise) pixels. In linear polarization images

(L or LRM), non-Gaussian noise statistics typically limit detection

thresholds to Td � 6 (Vaillancourt 2006; Hales et al. 2012). These

images thus require higher flooding thresholds than those for total

intensity; we note that a comparison between the average cross-

sectional profile of a Gaussian blob embedded in images exhibiting

Gaussian, L, and LRM statistics is presented by Hales et al. (2012).

In images of LRM for blobs as faint as A = 6, we found that a cut-

off threshold of Tf = 4.0 was suitable. We note that this value of

Tf is dependent on the observational set-up used to produce LRM.

To determine an equivalent value of Tf for any L or LRM image, a

cut-off with equal statistical significance to our suggested Tf = 4.0

value should be calculated (e.g. see Hales et al. 2012).

For a detection threshold of Td = 5 in an image of total intensity,

equation (16) with Tf = 2.6 implies that the maximum correction

factor for any blob is 1/η � 1.8. In linear polarization, for a detection

threshold of Td ∼ 6 and Tf = 4.0, the maximum correction factor

is 1/η � 2.5.

2.5 Program inputs

If accurate error estimates are not immediately required, BLOBCAT

does not require many inputs to run. Preliminary analysis can be

performed on a single input SB image by specifying three parame-

ters: a background rms noise value (simply so that S/N values can

be computed at any spatial location within the image), a blob de-

tection S/N threshold (Td) and a cut-off S/N threshold for flooding

(Tf). However, to make full use of the output catalogue, particularly

errors, additional input parameters are required. For completeness,

we list all BLOBCAT input arguments in Appendix B.
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2.6 Output catalogue

BLOBCAT produces an output catalogue containing 41 entries for each

detected blob. In this section we list and define these entries, which

include final measurements of peak and integrated SB, corrected for

bandwidth smearing and clean bias, errors and the ‘visibility’ area

for each blob. The catalogue entries, some of which require various

BLOBCAT input arguments to be specified (see Appendix B), are as

follows.

Column 1: ID

Blob identification number, ordered by decreasing observed peak

S/N (see column 26).

Column 2: npix

Number of flooded pixels comprising blob.

Columns 3 and 4: x_p, y_p

RA and Dec. of peak pixel in pixel coordinates.

Columns 5 and 6: RA_p, Dec_p

RA and Dec. of peak pixel in degrees.

Column 7: RA_p_err

Total position error in RA of peak pixel, which we define as

σα =
√

σ 2
α,cal + σ 2

α,frame + σ 2
α,blob. (18)

The first term, σ 2
α,cal, represents the positional uncertainty of the

phase calibrator, for example with reference to the International

Celestial Reference Frame, that was used to produce the SB im-

age. The second term, σ 2
frame, represents the positional uncertainty

of the image frame about the (assumed) position of the phase cal-

ibrator. Given that image positional errors correspond to Fourier-

plane phase errors, σ 2
frame may be estimated by measuring σ SEM, the

standard error of the mean (SEM) of the variation in the phase

corrections resulting from phase self-calibration6 (Cornwell &

Fomalont 1999). By estimating the fraction of a resolution ele-

ment by which positions may be in error as σ SEM/180◦, BLOBCAT

estimates the frame error as

σα,frame ≈
1

√
2

σSEM

180◦ �α, (19)

where the factor of
√

2 projects the 2D SEM along one of the

two orthogonal axes and �α is the projected resolution along the

RA-axis. �α is given by

�α =
�maj �min

√

(

�maj cos χ
)2 + (�min sin χ )2

, (20)

where χ is the position angle of the major axis east of north. The

third term, σ 2
α,blob, encapsulates positional error due to the signifi-

cance of the blob detection, which we define for reasons described

later in Sections 3.1.3 and 3.2.3 as

σα,blob ≈
1

1.4 A
�α . (21)

Column 8: Dec_p_err

Total position error in Dec. of peak pixel, which we define in a

similar manner to equation (18) as

σδ =
√

σ 2
δ,cal + σ 2

δ,frame + σ 2
δ,blob, (22)

6 Note that regardless of whether or not self-calibration phase corrections

are applied to the visibility (Fourier) data prior to final imaging (i.e. it is

possible to calculate the required phase corrections without applying them),

the systematic positional offset between the image frame and the phase

calibrator can be characterized by the SEM of the phase corrections (e.g.

Hales et al. 2009).

where

σδ,frame ≈
1

√
2

σSEM

180◦ �δ, (23)

σδ,blob ≈
1

1.4 A
�δ, (24)

and where the projected resolution along the Dec.-axis is given by

�δ =
�maj �min

√

(

�maj sin χ
)2 + (�min cos χ )2

. (25)

Columns 9 and 10: x_c, y_c

RA and Dec. of area (unweighted) centroid in pixel coordinates,

(xc, yc) =
∑npix

i=1 xi

npix
, (26)

where xi = (xi, yi) ∈ blob.

Columns 11 and 12: RA_c, Dec_c

RA and Dec. of unweighted centroid in degrees.

Column 13: cFlag

Centroid flag. If (xc, yc) is located within a flooded pixel, then

cFlag = 1; otherwise cFlag = 0.

Columns 14 and 15: x_wc, y_wc

RA and Dec. of S/N-weighted centroid in pixel coordinates,

(xwc, ywc) =
∑npix

i=1 xi AOBS(xi)
∑npix

i=1 AOBS(xi)
. (27)

Columns 16 and 17: RA_wc, Dec_wc

RA and Dec. of S/N-weighted centroid in degrees.

Column 18: wcFlag

Weighted centroid flag. If (xwc, ywc) is located within a flooded

pixel, then wcFlag = 1; otherwise wcFlag = 0. If wcFlag = 1,

then RA_wc and Dec_wc from columns 16 and 17 above are the

formal positions of the blob. If wcFlag = 0, the blob is likely to

be significantly non-Gaussian; the weighted-centroid position may

not be suitable for formal cataloguing purposes. Manual inspection,

or formal cataloguing using the raw peak pixel or area centroid

positions, may be required.

Columns 19–22: x_min, x_max, y_min, y_max

The minimum and maximum pixel coordinates in RA (x) and Dec.

(y) within blob.

Column 23: rms

rms noise, σ , at the position of peak pixel.

Column 24: BWScorr

Bandwidth smearing correction, 1/̟ (from equation 6).

Column 25: M

Number of independent resolution elements from equation (13). M

is used in equation (14) to correct for the positive peak bias exhibited

by resolved blobs. To prevent this bias correction from being applied

to noise-affected unresolved blobs (i.e. where the number of pixels

flooded is artificially boosted due to a connected noise feature),

BLOBCAT only applies the correction to those blobs with M ≥ 1.1;

the suitability of this value was determined empirically.

Column 26: SNR_OBS

Observed (raw) S/N, AOBS = SOBS
p /σ .

Column 27: SNR_FIT

Fitted S/N, AFIT = SFIT
p /σ .

Column 28: SNR

S/N, A, corrected for peak bias (equation 14).

Column 29: S_p_OBS

Observed (raw) peak SB, SOBS
p .
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Column 30: S_p_FIT

Fitted peak SB, SFIT
p , obtained using a 2D parabolic fit to a 3 ×

3 pixel array about the raw peak pixel (xp, yp). If SFIT
p < SOBS

p ,

then BLOBCAT sets SFIT
p = SOBS

p so as to use the more accurate

measurement (see Appendix A and Section 2.2).

Column 31: S_p

Peak SB, Sp, corrected for peak bias (equation 14).

Column 32: S_p_CB

Peak SB corrected for peak bias and clean bias, SCB
p . Clean bias

is a deconvolution effect that redistributes SB from real blobs to

noise peaks, systematically reducing the observed SB of blobs in-

dependent of their S/N (Condon et al. 1998). The effect is more pro-

nounced for observations with poor Fourier-plane coverage. Given

the degree of clean bias present in the SB image, �SCB (≥0 Jy

beam−1), BLOBCAT makes the following correction:

SCB
p = Sp + �SCB. (28)

Column 33: S_p_CBBWS

Peak SB corrected for peak bias, clean bias and bandwidth smearing,

SCB,BWS
p . Using the input value of ̟ (equation 6), BLOBCAT corrects

for bandwidth smearing with

SCB,BWS
p =

SCB
p

̟
. (29)

This is the final reported value of the blob’s peak SB, to be used for

post-processing.

Column 34: S_p_CBBWS_err

Error in corrected peak SB, which we define as

σ
S

CB,BWS
p

=
[

(

�SABSSCB,BWS
p

)2

+
(

�SPIXSCB,BWS
p

)2

+
( σ

̟

)2
]1/2

, (30)

where �SABS is the absolute calibration error of the SB image and

�SPIX is the pixellation uncertainty (see Appendices A and B).

The suitability of this error in linear polarization is discussed in

Section 3.2.

Column 35: S_int_OBS

Observed (raw) integrated SB, SOBS
int .

Column 36: S_int_OBSCB

Observed integrated SB corrected for clean bias, given by

SOBS,CB
int = SOBS

int +
npix �SCB

�b

. (31)

This value may be useful for non-Gaussian blobs (see Section 3.3).

Column 37: S_int

Integrated SB, Sint, calculated by the application of blob volume

correction (equation 17) to SOBS
int .

Column 38: S_int_CB

Integrated SB corrected for clean bias, SCB
int , calculated by the ap-

plication of blob volume correction (equation 17) to S
OBS,CB
int . This

is the final reported value of the blob’s integrated SB, to be used for

post-processing (though see comments in Section 3.3).

Column 39: S_int_CB_err

Error in corrected integrated SB, which we define in a similar man-

ner to S_p_CBBWS_err (see also Section 3.1) as

σSCB
int

=
√

(

�SABSSCB
int

)2 + σ 2. (32)

The suitability of this error in linear polarization is discussed in

Section 3.2.

Column 40: R_EST

Size estimate of detected blob, REST, in units of the sky area covered

by an unresolved Gaussian blob with the same peak SB, taking into

account local bandwidth smearing. To derive this estimate we first

focus on an unresolved Gaussian blob with FWHM �, as defined

by the image resolution and peak SB Sp, as measured from the

detected blob. For this unresolved blob, the relationship between its

full width at a fraction Tf/A of its peak SB, which we denote ϕ, and

its FWHM is given by

ϕ = �

√

log2

A

Tf

. (33)

To calculate REST we take the ratio between the measured area of the

detected blob, Hblob, and the area of an ellipse with axes defined by

equation (33). When the broadening effect of bandwidth smearing

is included into this ratio, we get

REST = Hblob

(

π

4

�maj�min

̟
log2

A

Tf

)−1

. (34)

The parameter REST is not intended to be used for quantitative

analysis. In Section 4, we discuss how REST may be used to flag blobs

that exhibit potentially complex (non-Gaussian) morphologies for

follow-up.

Column 41: VisArea BLOBCAT can optionally calculate the frac-

tion of visible sky area, namely the fraction of non-blank pixels

assuming the use of an equal-area projection, over which a blob

detected at position (r, s) could have been detected within the SB

image. This is known as the blob’s visibility area. This area may

be used, for example, to calculate a completeness correction when

compiling source counts (e.g. Hales et al., in preparation). To calcu-

late the visibility area, BLOBCAT takes into account spatial variations

in both image sensitivity and bandwidth smearing. For non-blank

pixels (x, y), the fraction of suitable sky area for detecting a blob

with equal peak SB to that of a blob located at (r, s), where r ∈ x, s

∈ y, is obtained by counting the number of pixels that satisfy

Td σ (x, y)

̟ (x, y)
≤

Sp(r, s)

̟ (r, s)
. (35)

2.7 Optional outputs

To aid visual inspection and post-processing of blobs, BLOBCAT can

optionally produce two additional forms of output. The first is a

modified SB FITS image in which all flooded pixels have been

highlighted (reset to a large value; this value may be user-specified,

see Appendix B). The second is an image overlay in ds9 (Joye

& Mandel 2003) or Karma (Gooch 1996) formats, for use with

their respective ds9 or kvis FITS viewers. The overlays present

the identification number and boundaries in RA and Dec. for each

blob. To illustrate these two optional forms of output, an example

output FITS image superposed with a kvis overlay is presented in

Fig. 5. BLOBCAT may be easily modified to produce overlays in other

suitable formats, for example through the use of the pywcs wrapper

to WCSLIB.

3 P E R F O R M A N C E

We have carried out Monte Carlo simulations to investigate the

performance of BLOBCAT in total intensity and linear polarization, as

described in the following sections.
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Figure 5. Output FITS image and kvis overlay as produced by BLOBCAT,

illustrating how three blobs in the image are highlighted and identified

(sample data from Norris et al. 2006).

3.1 Total intensity

3.1.1 Simulation set-up

We tested BLOBCAT in total intensity by injecting Gaussian sources

with peak S/N values between 5σ and 100σ into images of Gaussian

noise, inspecting the accuracy of the recovered SB and positional

measurements. To compare BLOBCAT’s flood fill approach with that

of standard Gaussian fitting, we also carried out these simulations

using IMFIT, a widely used Gaussian source fitter from the MIRIAD

package (Sault et al. 1995). Gaussian fitting routines such as IMFIT

have been used by many surveys such as NVSS (Condon et al.

1998), Phoenix (Hopkins et al. 2003) and SUMMS (Mauch et al.

2003).

Two classes of source were tested, with the aim of demonstrating

the virtues and limitations of BLOBCAT’s modified flood fill approach.

The first were unresolved (point) sources, selected to demonstrate

that flood fill algorithms need not be limited to the parameter

space occupied by complex non-Gaussian sources. The second were

highly (and somewhat pathologically) resolved Gaussian sources

with FWHMs five times larger than the image resolution, probing

parameter space where parametrized Gaussian fitting methods are

optimal. We did not quantitatively address performance relating to

non-Gaussian sources because of the lack of an obvious standard-

ized test source; qualitative discussion of non-Gaussian blobs is

presented in Section 3.3.

We generated 125 independent samples per S/N bin using noise

images produced as follows. To realistically characterize the noise

environment present in images of total intensity, we obtained Stokes

V data from an individual pointing of the mosaicked 1.4-GHz aper-

ture synthesis observations of Norris et al. (2006). We imaged these

Stokes V data using 1 arcsec pixels and convolved to a final circular

resolution with (FWHM) � = 14 arcsec. We found this image to be

free of sources and artefacts. Using SEXTRACTOR (see Section 2.1.2),

we modified this Stokes V image for use as a master noise image

by enforcing zero mean and unit variance throughout subregions

of size 150 independent resolution elements. The noise image for

each sample was then produced by extracting a randomly positioned

thumbnail image from the master noise image, from a pool of over

150 000 choices.

For each sample we measured the injected source’s peak SB, in-

tegrated SB and position using both BLOBCAT and IMFIT. We executed

IMFIT using unconstrained Gaussian fit parameters, imitating a blind

survey. For input point sources, we also executed IMFIT using a con-

strained fit, fixing the source size to the image resolution. We then

compared the output values for these different methods with their

true input values. To prevent source misidentification, we checked

that each recovered source extended over its true input location.

We describe the results of these Monte Carlo simulations for SB

measurements in Section 3.1.2 and for positions in Section 3.1.3.

3.1.2 Results and discussion: surface brightness measurements

We performed our total intensity Monte Carlo simulations for a

range of flooding thresholds (Tf) and peak bias correction factors

(λ), setting the detection threshold (Td) as small as possible so as

to limit the induction of sampling bias in the lowest S/N bins. For

reasons outlined in Sections 2.4.1 and 2.4.2, we found that optimal

SB recovery was obtained using Tf = 2.6 and λ = 3.5.

In Fig. 6 we present the SB results of our simulations, where we

have executed BLOBCAT with the optimal Tf and λ values from above,

we have executed IMFIT with unconstrained Gaussian fit parameters,

and where we have used median statistics (Tukey 1977) to robustly

prevent noise outliers from biasing intrinsic source extractor prop-

erties. The results obtained from executing IMFIT with constrained

point source fits, using the same simulation data as for the uncon-

strained fits, are presented in Fig. 7. To put BLOBCAT’s performance

Figure 6. Performance of BLOBCAT (points) and IMFIT (shading) in total

intensity for input unresolved (top row) and resolved (FWHM = 5 × image

resolution; bottom row) Gaussian sources. Measurements of peak (left-hand

column) and integrated (right-hand column) SB over a range of input peak

S/N values are summarized by their median (points/curves) and first and third

quartiles (whiskers/shading). Dashed curves trace median measurements

resulting from exclusion of the peak bias correction for resolved sources

(equation 14). Fit parameters for IMFIT are unconstrained. For reference,

expected random errors are indicated by the median absolute deviation

(MAD ≈ 0.6745σ ; dotted curves). Note that the y-axis range differs between

rows.
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Figure 7. Reproduction of the top row of Fig. 6, but here displaying IMFIT

results for point source fits with angular dimensions fixed to the image

resolution.

in perspective, we first discuss the results from IMFIT, starting with

the unconstrained fits from Fig. 6.

The strength of IMFIT is its ability to perform least-squares fit-

ting in order to separate smooth underlying 2D elliptical Gaussians

from superposed noise fluctuations. A key requirement of this pro-

cess is that there are sufficient degrees of freedom (DOFs) to fit

the position, peak SB, major and minor axes and position angle

parameters. Given that the number of DOFs is related to the num-

ber of independent resolution elements within the fitting region, it

is to be expected that IMFIT will struggle to constrain multiple fit

parameters for point-like input sources. This is reflected in the IMFIT

results from Fig. 6, where the systematic bias in integrated SB mea-

surements for point sources (top-right panel; �15 per cent at 5σ )

demonstrates IMFIT’s inability to simultaneously constrain peak SB

and angular dimension parameters. For these point sources, which

by definition have the dimensions of a single resolution element

and therefore contain essentially one piece of information, namely

their brightness, least-squares fitting is easily coerced into includ-

ing adjacent noise peaks into the fit. However, for resolved sources,

which by definition extend over multiple independent resolution

elements, least-squares fitting becomes less likely to misinterpret

noise features as true signal and so becomes more accurate.

The systematic positive bias exhibited by IMFIT in its measure-

ments of integrated SB for point sources leads to two systematic

effects. First, given that the integrated to peak SB ratio is typically

used to select which measure best characterizes the flux density of

a source (e.g. Huynh et al. 2005), the flux densities of faint sources

will be systematically overestimated. Secondly, this ratio is often

used to estimate deconvolved angular source sizes (e.g. Huynh et al.

2005), which too will become positively biased for faint sources.

We comment on this ratio further in Section 4.1.

We now turn to IMFIT’s performance from Fig. 7. When there is

prior knowledge that a source is unresolved, IMFIT can be constrained

to fit a point source, fixing its fitted dimensions to those of the image

resolution. Comparing the results from Fig. 6 with those of Fig. 7,

we find that the point source assumption reduces IMFIT’s integrated

SB bias, but does not completely eliminate it. Left behind is a

marginal positive bias at low input S/N, caused by IMFIT’s residual-

minimization strategy to pull fitted sources towards noise peaks that

are directly adjacent to true source peaks. We comment further on

measured positions in Section 3.1.3.

Returning to the BLOBCAT results from Fig. 6, we find that the

recovered peak and integrated SB measurements for point sources

are systematically unbiased. This performance enhancement over

IMFIT is due to the reduced influence that nearby noise features can

exert over BLOBCAT’s integrated SB measurements. Only directly

connected noise features can affect flood fill, when the algorithm

spills into adjacent noise peaks and is eventually limited by Tf ,

whereas strong noise peaks separated by a noise trough from the

true source may be least-squares minimized by IMFIT as statistical

fluctuations superposed on a resolved source.

For the resolved source investigated, IMFIT clearly outperforms

BLOBCAT in avoiding integrated SB systematics. However, BLOBCAT’s

systematic underestimate is no worse than ∼5 per cent, even for

sources with peak S/N = 5. As indicated in Fig. 6, this underestimate

would be more severe if the peak bias correction from equation (14)

were neglected; failure to debias the peak SB causes equation (17) to

underestimate the integrated SB. We attribute BLOBCAT’s difficulty in

collecting the full integrated SB for resolved sources to an analogous

‘negative’ version of our peak SB correction. As sources become

more resolved, it becomes more likely that negative noise features

may limit the spatial extent available for the flood fill algorithm to

explore. This behaviour is not completely offset by positive noise

features contributing to the spatial extent of sources, and so a bias

is produced. Given how mild the resulting bias is, even for the

pathologically resolved source tested, we do not attempt to correct

for it within BLOBCAT.

To estimate the uncertainty in BLOBCAT’s measurements of peak

and integrated SB, we use equations (30) and (32). These errors

are indicated by dotted lines in Fig. 6; we neglect the absolute

calibration error (�SABS), and set the pixellation error (�SPIX) to

0.5 per cent (cf. Appendix A). We do not reduce the factor of σ

in equation (32) by, for example, the square root of the number

of independent resolution elements within the spatial extent of the

source, as might be appropriate for methods that produce system-

atically unbiased integrated SB measurements. Instead, we define

equation (32) in a similar manner to equation (30), so as to artifi-

cially account for BLOBCAT’s systematic underestimate of integrated

SB for resolved sources. In this way, the error estimates produced

by BLOBCAT realistically encapsulate its true performance. Note that,

in practice, resolved sources will almost always be less resolved

than for our simulated resolved source here. This implies that our

catalogue error estimates are unlikely to underestimate true SB

measurement errors.

3.1.3 Results and discussion: position measurements

BLOBCAT catalogues three positions for each detected blob: the

raw peak pixel, an area centroid using equation (26) and an S/N-

weighted centroid using equation (27). In Fig. 8 we compare the

accuracy of these measurements, as well as position measurements

from IMFIT, in recovering the true input positions for our simulated

unresolved and resolved sources.

Fig. 8 indicates that of BLOBCAT’s three position measurements,

the weighted centroid is optimal for both unresolved and resolved

Gaussian sources. The superior performance of the peak pixel posi-

tion for unresolved sources is an artefact of injecting sources centred

on a pixel; in general, the performance of this position measure will

be poorer. For resolved sources, the raw peak position is easily cor-

rupted by the peak bias effect described earlier in Section 2.4.1. For

both unresolved and resolved Gaussian sources, the area centroid

exhibits limited accuracy due to its lack of pixel weighting.

For faint unresolved sources, BLOBCAT’s positions are more ac-

curate than those of IMFIT’s unconstrained Gaussian fits; IMFIT is

limited in its accuracy due to its optimization attempts to accom-

modate adjacent noise features through least-squares minimization.
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Figure 8. Accuracy of positions measured by IMFIT (shading; left column)

and BLOBCAT (points for the peak pixel, centroid and S/N-weighted cen-

troid; right-hand column) in total intensity for input unresolved (top row)

and resolved (bottom row) Gaussian sources; median statistics are displayed

(similar formalism to Fig. 6). The dashed curve (top-left panel) traces median

measurements for constrained IMFIT point source fits with angular dimen-

sions fixed to the image resolution. For reference, the dotted and dot–dashed

curves (identical in each panel) indicate expected median positional offsets

using equations (36) and (37), respectively. The left y-axis for each panel

denotes position offset from the true input source position in units of the

circular resolution FWHM (� = 14 arcsec); the right y-axis denotes this

offset in units of pixel width (1 arcsec). Note that the y-axis range differs

between rows. For clarity, the bottom-right panel shows only centroid and

S/N-weighted centroid measurements; the inset provides peak pixel mea-

surements in a zoomed-out view of this panel.

For the pathologically resolved source simulated, IMFIT’s position

measurements are more accurate than BLOBCAT’s.

To estimate the uncertainty in BLOBCAT’s weighted centroid po-

sitions, we first look to an uncertainty estimate for IMFIT. For plot-

ting purposes, the median positional offset exhibited by IMFIT can

be estimated as the median of the quadrature sum of two zero-

mean signals representing RA and Dec. measurements with error

σ α (equation 18) and σ δ (equation 22), respectively. By using a

factor of
√

8 ln 2 ≈ 2 instead of 1.4 in equations (21) and (24) as

suggested for Gaussian fitting by Condon (1997), neglecting cali-

bration and frame errors, using � = �α = �δ for a circular beam,

and noting that the median offset about an input position in 2D is

given by the median of a Rayleigh (1880) distribution, we evaluate

the expected median positional offset for IMFIT as

pos.offsetC97
median =

√
ln 4

�

2A
. (36)

This estimate is indicated by the dotted curve in each panel of Fig. 8.

Equation (36) suitably encapsulates the positional uncertainties

exhibited by both IMFIT and BLOBCAT for unresolved sources. How-

ever, for our heavily resolved source, it systematically underesti-

mates the positional uncertainties exhibited by both the Gaussian fit

and flood-fill approaches. To avoid complexity, we do not attempt to

explicitly parametrize the increased positional uncertainty displayed

for resolved sources. Instead, we have chosen to simply modify the

positional uncertainty equations presented by Condon (1997) to use

a factor of 1.4 (instead of ∼2), as presented in equations (21) and

(24). These modified equations lead to a more appropriate estimate

for the median positional offset,

pos.offsetBLOBCAT
median =

√
ln 4

�

1.4 A
, (37)

as indicated by the dot–dashed curve in each panel of Fig. 8. The

factor of 1.4 was selected empirically to ensure that for Gaussian

sources with sizes ranging from unresolved to the heavily resolved

source tested, positional uncertainties may be systematically esti-

mated to within ∼5 per cent of a beam FWHM. We note that the

factor of 1.4 is also suitable for use with IMFIT (see the left-hand

panels in Fig. 8).

3.2 Linear polarization

3.2.1 Simulation set-up

We tested BLOBCAT in linear polarization, LRM, in a similar man-

ner to that described in Section 3.1.1 for total intensity. We tested

the same two classes of source, sampling input peak S/N values

between 6σ RM and 100σ RM (cf. equation 5; also Section 2.4.2).

For comparison, we also tested the performance of IMFIT using both

constrained and unconstrained Gaussian fit parameters.

We generated each of the 125 sample images per S/N bin as

follows. We assumed an illustrative observational band centred on

1396 MHz with width 200 MHz, split into 25 × 8 MHz channels.

For each frequency channel we obtained two independent noise

thumbnails from the master noise image (cf. Section 3.1.1), which

we used to represent Stokes Q and U noise. A point (or resolved)

source with an RM of −100 rad m−2, unresolved in Faraday space,

was then suitably injected into each of the Stokes Q and U images

across the band. We define the peak S/N of these injected sources as

the ratio between their true input peak polarized SB and σ RM. Using

RM synthesis (Brentjens & de Bruyn 2005) and RMCLEAN (Heald

et al. 2009), images of LRM were then produced in accordance

with equation (1). For each sample, we then recovered the peak

and integrated SB using both BLOBCAT and IMFIT. We describe the

results of these Monte Carlo simulations for SB measurements in

Section 3.2.2 and for positions in Section 3.2.3.

3.2.2 Results and discussion: surface brightness measurements

We performed our linear polarization Monte Carlo simulations us-

ing a range of Td, Tf and λ parameter values, finding that the optimal

total intensity value of λ = 3.5 was suitable for use in polarization as

well. This behaviour of λ can be understood by comparing profiles

through sources embedded within images of total intensity and LRM,

as presented by Hales et al. (2012). They show that above Tf = 4,

Gaussian sources embedded within these two environments are very

similar in morphology, modulo statistical fluctuations. For this rea-

son, the relevant cross-sectional area for the peak bias correction,

Hλ in equation (13), may be obtained for images of LRM using the

same value of λ as was recommended for total intensity. Using this

value, we found that integrated SB recovery was optimized when

flooding down to Tf = 4.0, as discussed earlier in Section 2.4.2.

In Fig. 9 we present the results of our simulations, where we have

executed IMFIT using unconstrained Gaussian fit parameters with a

4σ RM cut-off fitting threshold (the same as Tf). The results obtained

from the same simulations by executing IMFIT with constrained point

source fits are presented in Fig. 10.

The strong systematic biases exhibited by IMFIT in Fig. 9 suggest

that its unconstrained fits are unsuited to the statistical environment

of LRM. We attribute this to a breakdown in the assumption that
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Figure 9. SB measurement performance of BLOBCAT in linear polarization,

LRM; the display layout is duplicated from Fig. 6. Fit parameters for IMFIT

are unconstrained. No corrections for polarization bias have been applied.

Figure 10. Reproduction of the top row of Fig. 9, but here displaying IMFIT

results for point source fits with angular dimensions fixed to the image

resolution.

sources are superposed with Gaussian noise fluctuations, as required

to perform robust least-squares minimization. When IMFIT’s angular

size parameters are fixed to the image resolution, the systematic

biases in measured SB for input point sources are diminished, as

shown in Fig. 10. Through further experimentation, we found that

systematic IMFIT biases were unavoidable for all but the most manual,

uniquely constrained fits. Reduction or removal of the 4σ RM cut-off

threshold, used to prevent faint pixels from entering the Gaussian

fitting process, was found to worsen systematic trends. We found

similar biases to those described above when using IMFIT in images

of standard linear polarization, L.

In contrast, the results from Fig. 9 indicate that BLOBCAT’s mea-

surements of peak and integrated SB are, in effect, systematically

unbiased. We justify this claim as follows, beginning with peak SB

performance.

The small systematic positive bias exhibited by the recovered

peak SB is due to the positive semidefinite nature of LRM ≥ 0; this

effect, which is extrinsic to BLOBCAT, is known as polarization bias.

Because of the intimate relationship that exists between polarization

bias and the specifics of observational set-up, as elucidated shortly,

BLOBCAT makes no attempt to correct for this bias. To illustrate the

variety and complexity of schemes that may be applicable to dif-

ferent data, we note that corrections designed for L (see Leahy &

Fernini 1989) are not suitable for LRM because they are governed by

different statistical distributions (Hales et al. 2012). Furthermore,

no fixed (unparametrized) correction scheme7 is suitable for LRM

because the statistical properties of LRM are dependent on the un-

derlying observational characteristics of the data such as frequency

coverage and channel width (Hales et al. 2012). Instead, more com-

putationally expensive schemes to correct for polarization bias, and

potentially Eddington bias (which affects the measured SB of un-

resolved sources; Eddington 1913), may be required (Hales et al.,

in preparation). To alleviate polarization bias in BLOBCAT’s mea-

surements of peak SB, users must independently apply their own

suitably selected correction scheme.

BLOBCAT appears to accurately recover measurements of inte-

grated SB for unresolved sources, apart from a positive bias ex-

hibited at low input S/N. This latter behaviour is due to polarization

bias, which affects sources whose pixel magnitudes are predomi-

nantly at low S/N. However, this bias is not of significant conse-

quence because, on average for these sources, their ratios of inte-

grated to peak SB will not deviate significantly from 1. In these

cases, their peak values will best represent their flux densities (cf.

Section 3.1.2; also Section 4.1), which need only be corrected for

polarization bias in order to deliver systematically unbiased mea-

surements.

Turning to BLOBCAT’s measurements of integrated SB for highly

resolved sources, their unbiased nature appears to be due to the for-

tuitous cancellation of two systematic effects. The first of these is

the negative bias for resolved sources, as seen earlier for total inten-

sity (the lower right-hand panel of Fig. 6). The second is the positive

polarization bias discussed above. We conjecture that the cancella-

tion of these two effects is robust, regardless of the observational

set-up dictating the specific statistical description displayed by the

input LRM (or L) image. Our justification for this assertion is that the

dominant statistical differences between images of LRM for different

observational set-ups, or between images of LRM and L, occur below

a threshold of 4σ RM (Hales et al. 2012). Given that BLOBCAT ignores

data below this cut-off threshold (for our recommended Tf = 4.0),

we are confident that any systematic blob-extraction differences

between these images will be below the noise level.

Regarding SB measurement uncertainties, we mirror the earlier

discussion of total intensity uncertainties from Section 3.1.2. We

note that equations (30) and (32) suitably reflect BLOBCAT’s mea-

surement errors in linear polarization, as exhibited by the dotted

lines in Fig. 9. We therefore leave these equations unchanged for

use in linear polarization analysis.

3.2.3 Results and discussion: position measurements

In Fig. 11, we compare the accuracy of position measurements using

both BLOBCAT and IMFIT in recovering the true input positions for our

simulated unresolved and resolved sources. As with SB measure-

ments (Section 3.2.2), we find that unconstrained Gaussian fitting

7 We note that George, Stil & Keller (2011) recently proposed a fixed cor-

rection scheme for LRM. As their scheme implicitly assumes a specific

observational set-up, its applicable parameter space is limited.
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Figure 11. Positional accuracy of BLOBCAT and IMFIT in linear polarization,

LRM; the display layout is duplicated from Fig. 8.

is not appropriate for determining source positions in linear polar-

ization. Following from the discussion for positional measurements

in total intensity (Section 3.1.3), we note that BLOBCAT’s weighted

centroid positions are also suitable for use in linear polarization, as

are the uncertainty estimates using equations (21) and (24).

3.3 Complex blobs

In this section, we qualitatively discuss BLOBCAT’s performance when

analysing blobs that exhibit complex (resolved, non-Gaussian) mor-

phology. We do not seek to quantitatively address this performance

due to the lack of clear standardized test sources. Possible exam-

ples of complex blobs include supernova remnant shells, extended

lobes of radio galaxies, radio relics and extended Galactic emis-

sion; we discuss how these blobs may be automatically identified

and flagged for follow-up using BLOBCAT in Section 4. Other ex-

amples include blended blobs that consist of multiple overlapped

individual Gaussians; we discuss these in Section 4.2.

For each detected blob, BLOBCAT assumes 2D elliptical Gaussian

morphology (Section 2.3) so as to infer a debiased peak SB and a

corrected integrated SB (Section 2.4). If a detected blob is not of true

Gaussian morphology, then its debiased peak SB is unlikely to be

significantly affected. This is because the use of λ = 3.5 in calculat-

ing the relevant cross-sectional area susceptible to peak bias (using

equation 14) is still likely to be a suitable choice for non-Gaussian

blobs. It is more difficult to generalize the systematic manner in

which measurements of corrected integrated SB may differ from

their true values. The simplest observation is that low-S/N blobs

are more vulnerable than high-S/N blobs to systematic error in their

measurements of corrected integrated SB (cf. equation 17). How-

ever, the fraction of blob volume remaining unflooded below Tf will

be small for a low-S/N blob that is highly resolved, suggesting that

in general, uncorrected integrated SB measurements will be more

accurate than corrected integrated SB measurements in estimating

flux densities for a majority of complex blobs. We have verified the

general statements above by testing BLOBCAT’s performance in han-

dling sources with a range of complex morphologies. We find that

BLOBCAT’s performance for slightly extended non-Gaussian blobs

that consist of blended Gaussian components, where the approxi-

Figure 12. When confronted with a non-Gaussian blob (two arbitrary re-

solved samples illustrated; solid curves), BLOBCAT assumes an idealized

Gaussian morphology (dashed curves at equal peak S/N, A) so as to in-

fer the fractional volume remaining unflooded below the cut-off threshold

(Tf ). If this assumption is particularly poor, as suggested by the example in

the lower panel, then the resulting measurement of volume-corrected inte-

grated SB (using equation 17) may become systematically biased away from

the blob’s true flux density. For such blobs, the uncorrected measurement of

integrated SB is likely to act as a less-biased estimator of true flux density.

mation of 2D elliptical Gaussian morphology is poor, is in general

poorer than the simulation results presented earlier for pathologi-

cally resolved Gaussian blobs. However, alternatives for handling

such blobs more suitably in post-processing are available, as dis-

cussed in Section 4.2. For highly extended non-Gaussian blobs,

BLOBCAT’s measurements of uncorrected integrated SB are in gen-

eral quite accurate because the fraction of unflooded blob volume

is always very small.

In Fig. 12, we present two sample non-Gaussian blobs in an

attempt to illustrate their potential for integrated SB error. Users

should judge for themselves whether corrected (Sint) or uncorrected

(SOBS
int ) measurements of integrated SB best describe the flux den-

sities of their complex blobs; to assist with this decision, BLOBCAT

reports both values in its output catalogue. If the two values dif-

fer by more than a few per cent, then the corrected values may be

unsuitable, and manual inspection is recommended.

Similarly, users should determine which BLOBCAT position mea-

surement is most appropriate for each of their complex blobs; the

S/N-weighted centroid may be inappropriate for some blobs. For ex-

ample, the weighted centroid position for an arc-shaped radio relic

(i.e. a crescent moon shape) may be situated beyond the bound-

aries of its flooded pixels; the raw peak pixel or area (unweighted)

centroid position may be more appropriate. To aid users, BLOBCAT

catalogues all three position measurements. In addition, flags are

produced (see Section 2.6) so as to indicate whether the centroid

positions are situated within or exterior to the flooded pixel confines

of each blob.

4 POST-PROCESSI NG

BLOBCAT is designed to produce an output catalogue that details

basic properties of blobs in an image. Depending on the nature of

the data and the requirements of the user, additional processing may

be required to make full use of the catalogue.
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In this section, we highlight two such examples of post-

processing. We first consider a selection procedure for determining

which SB measurement (peak or integrated) best describes the flux

density of a blob. We then consider a procedure for identifying and

analysing blobs that exhibit non-Gaussian morphologies.

4.1 Blob flux densities

The choice of whether to represent a blob’s flux density by its

measured peak or integrated SB is equivalent to asking whether

the blob is unresolved or not. If it is unresolved then the peak SB

should be used (explained as follows; note also Appendix A), while

for resolved blobs it is the integrated SB that should be used.

The user is responsible for selecting which of the measurements

of peak or integrated SB best represent the true flux density for each

detected blob. We do not automate this process for the same reason

that Gaussian fitting tasks such as IMFIT do not, namely that noise

features adjacent to faint, unresolved sources may render integrated

SB measurements less likely to represent true flux densities than

peak SB measurements.

If a user is only interested in a small number of blobs, then as

with IMFIT, more attention can be paid to each individual fit so as to

minimize potential fitting errors, for example through fitting con-

straints in IMFIT or perhaps suitable pixel masking prior to running

BLOBCAT. For such carefully fitted blobs, their integrated SB mea-

surements may be used to represent their true flux densities, even if

they are faint or unresolved. However, for large sample sizes (e.g.

for a survey), it is impractical to consider implementation of such

manual, or perhaps even machine-learning enabled, fitting proce-

dures. Indeed, attempting to manually fit each source in a survey

may inadvertently bias the resulting flux density measurements due

to subjectivity on behalf of the user.

Instead, a more appropriate strategy may be initiated by taking

the ratio between integrated to peak SB measurements for each blob,

so as to characterize the global variance in this ratio as a function

of measured S/N. By considering the parameter space populated by

noise-affected blobs with Sint < Sp, an envelope can be designed

as a function of S/N to select which of the blobs with Sint > Sp

are likely to be similarly affected by noise. Only those blobs with

ratios in excess of the envelope criterion may be deemed resolved,

and in turn have their flux densities represented by their integrated

SB measurements. All other blobs should have their flux densities

represented by their peak SB measurements. This strategy has been

employed for IMFIT-based surveys of total intensity, e.g. Huynh et al.

(2005); application to total intensity and linear polarization surveys

with BLOBCAT will be presented by Hales et al. (in preparation).

If a blob is resolved, then an estimate of its deconvolved size

may be obtained directly from its integrated to peak SB ratio (via

division of equation 8 by equation 4), namely

Sint

Sp

=
ψr ψs

�maj �min

, (38)

where the deconvolved angular size can be estimated using the geo-

metric mean as ψdeconv ≈
√

ψr ψs − �maj �min. Again, illustrations

of this procedure are available in total intensity using IMFIT (Huynh

et al. 2005), and will be presented for total intensity and linear

polarization with BLOBCAT by Hales et al. (in preparation).

4.2 Blob decomposition

BLOBCAT assumes that isolated blobs are of Gaussian morphology in

order to catalogue their properties. This assumption will work well

for images that are sparsely populated (i.e. not confusion limited)

with Gaussian sources. However, if complex blobs are present (cf.

Section 3.3) this assumption may not always be suitable, requiring

additional processing of the complex objects so as to suitably char-

acterize their properties. Before commenting on this processing, we

briefly outline a simple procedure by which complex blobs may be

first identified.

In equation (34) we defined the parameter REST, which estimates

the size of a detected blob in units of the sky area covered by an

unresolved Gaussian blob with the same peak SB. If REST is large,

it indicates that a blob is unlikely to be unresolved.

To illustrate how this parameter may be used to identify poten-

tially complex blobs for follow-up, we preview the general process-

ing steps performed by Hales et al. (in preparation) to catalogue

sources in radio-wavelength images of total intensity and linear

polarization; details of these images are not pertinent to the discus-

sion here, apart from noting that they consist mostly of compact

sources (i.e. there are no widespread extended image features).

Hales et al. (in preparation) find that a value of REST > 1.4 is

well suited for automatically flagging complex blobs. Gaussian

fits are attempted for each of these flagged complex blobs with

IMFIT to determine which ones are likely to consist of single or

multiple overlapped (blended) Gaussians. This procedure is semi-

automated to require only two initial manual inputs to IMFIT: the

number of potentially overlapped Gaussians, and their cursory po-

sitions. We note here that standard digital imaging techniques such

as the Laplacian of Gaussian operation (e.g. Sonka et al. 2008)

which is implemented within the AEGEAN algorithm (Hancock et al.

2012), blob decomposition algorithms such as CLUMPFIND (Williams

et al. 1994), or the widely used Watershed transform (Roerdink &

Meijster 2000), may be well suited to performing this step automati-

cally. Hales et al. (in preparation) preserve the original BLOBCAT mea-

surements for those blobs that are best fitted by a single Gaussian.

For each blob identified as being blended, they replace its original

BLOBCAT catalogue entry with multiple IMFIT entries for each individ-

ual Gaussian component identified. Remaining from this procedure

are a small number of extended, non-Gaussian blobs that cannot be

adequately refit using IMFIT (as identified due to their large fitting

residuals; we note here that image artefacts may also be included

in this list, though too many artefacts could indicate undervaluation

of rms noise estimates). For each of these remaining blobs, Hales

et al. (in preparation) preserve the original BLOBCAT measurements

and perform a final manual inspection to determine which of the

integrated SB measurements should be used to represent the blob’s

flux density (uncorrected or corrected; Section 3.3).

We envisage that the above procedure may be quickly and easily

replicated for future surveys. By performing Gaussian fitting for

only those blobs that BLOBCAT indicates may be complex, it should

be possible to robustly and automatically catalogue all but the most

non-Gaussian of sources in an image.

5 SU M M A RY A N D C O N C L U S I O N S

We have described BLOBCAT, an algorithm designed to identify and

catalogue blobs in a 2D FITS image of Stokes I intensity or linear

polarization (L or LRM). Utilizing a Gaussian morphology assump-

tion and two key bias corrections, BLOBCAT equips its core flood fill

algorithm with the tools necessary to perform robust SB measure-

ment.

Written in PYTHON, BLOBCAT is easy to use and easy to modify. It

is well suited to the analysis of large blind surveys, requiring little

manual intervention for images sparsely populated with unresolved
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and resolved Gaussian sources, and having the ability to account for

spatial variations in both image sensitivity and bandwidth smearing.

To indicate BLOBCAT’s ability to swiftly analyse data, we note that

Hales et al. (in preparation) produce a catalogue of ∼1000 blobs

from an image with ∼10 000 × 10 000 pixel, including the use

of equal-sized rms and bandwidth smearing images, in less than

60 s on a standard desktop computer. While source extractors built

around Gaussian fitting routines are competitive with BLOBCAT in this

raw computing time, though such comparison is implementation

dependent, subsequent overheads associated with manual source

inspection may be greatly minimized when using the latter. This is

because unresolved and resolved Gaussian blobs are automatically

and accurately processed by BLOBCAT, requiring only non-Gaussian

blobs to be manually addressed.

Accurate estimates of background rms noise are required to en-

sure robust and accurate operation of BLOBCAT. We described a sim-

ple, objective and automated procedure by which these estimates

may be obtained, which makes use of local background mesh cal-

culations. We note that this procedure may be used to estimate

background rms noise for use with any source extractor, not just

BLOBCAT.

We have demonstrated the performance of BLOBCAT through

Monte Carlo simulations of unresolved and resolved Gaussian

sources. We benchmarked this performance against that of stan-

dard Gaussian fitting, finding comparable results in total intensity

and vastly superior results in linear polarization. Our simulations

indicate that Gaussian fitting is inappropriate for use in linear po-

larization for all but the most manually constrained of fits. BLOBCAT

contains at present the only algorithm capable of robustly catalogu-

ing accurate flux densities for resolved or extended sources in linear

polarization, without incurring significant systematic biases.

In closing, we note that BLOBCAT may be suitable for cautious

application to image data at non-radio wavelengths, such as optical,

provided that the flooding S/N cut-off is set to a value high enough to

avoid measurement systematics induced by low-S/N statistics. Op-

tical pixel shot noise (the Poisson regime) is non-Gaussian at low

S/N and limits to Gaussianity at higher S/N, much like the statistics

of linear polarization that can be accommodated by BLOBCAT. Mod-

ification of BLOBCAT’s algorithms may be required to account for

wavelength- and instrument-specific descriptions of point spread

functions and pixellation errors.

The BLOBCAT program, supplemented with test data to illustrate

its use, is available electronically through the World Wide Web at

http://blobcat.sourceforge.net/.
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A P P E N D I X A : P I X E L L AT I O N E R RO R

In radio synthesis imaging, the number of pixels per resolution

element (synthesized beam) can be adjusted after the original ob-

servations have been made. This is because raw data are obtained

in the Fourier plane, enabling post facto oversampling of data in the

image plane. By comparison, optical observations are often under-

sampled in the image plane, requiring ingenious methods to utilize

their full resolution (e.g. the Drizzle algorithm by Fruchter & Hook

2002).

In this appendix, we present implications for SB measurements

when sampling a radio image with insufficient pixels. We use the

term ‘pixellation error’ to refer specifically to the systematic un-

dervaluation of peak SB measurements due to imaging and fitting

effects. We focus on the pixellation error exhibited by two methods

of peak SB measurement for unresolved sources. We first derive a

relationship for the pixellation error exhibited by measurements of

observed (raw) peak SB. We then compare this peak pixel error to

that exhibited by the fitted peak of a 2D parabola, where the fit is

obtained using a 3 × 3 pixel array about the raw peak pixel (e.g. as

implemented in the MIRIAD task MAXFIT). We conclude by comment-

ing on the manner in which image pixellation affects measurements

of integrated SB.

In conventional radio synthesis imaging, the sky is assumed to

be represented by delta functions; each image pixel is thus a spot

sample, as opposed to other sky representations such as piecewise-

constant pixels, which require integrals over regions to be computed.

To represent the visibility data, sources in images deconvolved using

the iterative CLEAN algorithm will be of the form (Briggs & Cornwell

1992; Briggs 1995)

SOBS(x, y) = [BF ∗ SRC ∗ BEAM] (x, y), (A1)

where SOBS(x, y) is the observed source SB distribution at pixel

coordinate (x, y), the asterisks indicate convolution, BF is a basis

function that depends on whether the source is centred directly on

a pixel or not, SRC represents the clean component model of the

source and BEAM is the restoring beam. We assume that BEAM is

Gaussian.

We define εOBS = SOBS
p /STRUE

p as the fraction of true peak SB

observed within the peak pixel of an unresolved source. We assume

Nα and Nδ pixel per projected resolution element such that a pixel

dimension is �α /Nα × �δ/Nδ; here, �α and �δ are the major and

minor FWHMs that characterize the image resolution (see intro-

ductory remark in Section 2.3), as projected along the RA and Dec.

axes of an image (see equations 20 and 25).

When the true peak for an unresolved 2D elliptical Gaussian is

centred directly on a pixel, which we denote the ‘on-pixel’ case,

both the BF and SRC terms in equation (A1) are given by delta

functions. The source SB distribution is therefore described by an

unattenuated 2D elliptical Gaussian with εOBS
on-pixel = 1, regardless of

the values of Nα and Nδ .

When the true peak is centred halfway between pixel centres,

which we denote the ‘off-pixel’ case, SRC is again a delta function

(representing a point source) and BEAM is a Gaussian, but now BF

must consist of a sinc function in order to represent the visibility

data for a shifted delta function. We find that εOBS
off-centre is therefore

given by

εOBS
off-centre =

1

STRUE
p

∫ ∞

−∞

∫ ∞

−∞

sin (πl)

πl

sin (πm)

πm

× STRUE
p exp

⎧

⎨

⎩

− 4 ln [2]

⎡

⎣

(

x1/2 − l
)2

N2
α

+
(

y1/2 − m
)2

N2
δ

⎤

⎦

⎫

⎬

⎭

dl dm, (A2)

evaluated at x1/2 = y1/2 = 0.5.

In Fig. A1, we display εOBS for the on- and off-pixel cases from

above; to conform with visual expectations, in the upper panel we

plot 1D source profiles and their corresponding 1D pixel values

by using a simplified 1D version of equation (A2) (for which only

one integral is required). When the underlying true peak for an un-

resolved source is centred (in 2D) part-way between the on- and

off-pixel cases, εOBS is given by a value between these two solu-

tions, as illustrated by the shading in the lower panel of Fig. A1.

We note that the effect of the sinc function in our off-pixel analysis

is essentially negligible, only affecting the plotted curves closer to

∼1 pixel per FWHM. Nevertheless, we have included the calcula-

tion for completeness.

In principle, the pixellation error exhibited by measurements of

observed peak SB (εOBS) may be minimized by imaging with a

large number of pixels per resolution element. However, in prac-

tice, limited computing resources will often prevent the production

or subsequent analysis of such heavily sampled images. Rather than

increasing the image sampling Nα and Nδ , the accuracy of peak SB

measurements may be increased by performing a fit to the peak

value using a 2D parabola; we denote these fitted peak measure-

ments SFIT
p . To demonstrate this increased accuracy, in Fig. A1

we illustrate the pixellation error exhibited by 2D parabolic fitting,

which we define as εFIT = SFIT
p /STRUE

p . We note that our εFIT
on-pixel and

εFIT
off-pixel curves in Fig. A1 were obtained analytically; for brevity, we

will not reproduce the straightforward derivation of SFIT
p here. This

derivation involves evaluating raw pixel intensities from either spot

samples from a 2D Gaussian for the on-pixel case, or evaluating

equation (A2) at different pixel positions for the off-pixel case, then
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Figure A1. Peak SB underestimation due to pixellation; we term this pixel-

lation error. Shown in the upper panel are two unresolved 1D Gaussians

with true peak brightness STRUE
p , sampled with 5 (left) and 4 (right) pixel

per FWHM. Their true peaks are centred directly on (left) or halfway be-

tween (right) pixels. The observed central peak pixel(s) underestimates the

true peak brightness of an unresolved 2D elliptical Gaussian by εOBS, as

illustrated in the lower panel for the best case (true peak centred on a

2D pixel; solid curve), worst case (true peak placed at the intersection of

4 pixel; dashed curve) and intermediate-case (right-slant shaded) pixellation

of a circular resolution element (i.e. assuming Nα = Nδ). Similarly, the un-

derestimate exhibited by the fitted peak of a 2D parabola, εFIT, is illustrated

in the lower panel for the best case (dot–dashed curve), worst case (dotted

curve) and intermediate-case (left-slant shaded) pixellation scenarios.

performing least squares to solve for an overdetermined system of

linear equations (six unknown fit parameters and nine constraining

pixels).

Both SOBS
p and SFIT

p exhibit pixellation error; the latter measure

of peak SB is more accurate. To limit pixellation error to within

1 per cent using SOBS
p , at least 12 pixel per FWHM are required;

for SFIT
p , this number falls to around 5. We suggest that observers

estimate the degree to which their peak SB measurements may be in

error due to pixellation and incorporate this into their error budgets.

In BLOBCAT, which catalogues fitted peak SB values (SFIT
p ), this is

implemented using a pixellation error parameter which we define as

�SPIX = (1 − εFIT
off-centre); this parameter is applied in equation (30).

We note that the inclusion of this parameter will tend to (slightly)

overestimate peak SB errors for resolved sources; we see this as

more appropriate than underestimating peak SB errors for point

sources because this error is unlikely to be relevant for resolved

sources (where the integrated SB represents the flux density; see

Section 4.1).

Finally, we note that integrated SB measurements are less affected

by pixellation error than peak pixels. This is because integrated SB

is conserved when summing over multiple pixels. This conservation

is limited only by noise fluctuations and the ratio between the peak

S/N of a source and the flood fill cut-off. To illustrate this limitation,

consider a faint unresolved source situated in a heavily pixellated

image (i.e. where Nα and Nδ are small). The profile of this source

will be poorly mapped by the pixels, rendering BLOBCAT’s integrated

SB measurement (via equation 16) vulnerable to negative bias.

However, in general this vulnerability will not be an issue because

it is the peak SB that is the important value for unresolved sources

(see Section 4.1).

APPENDI X B: BLOBCAT I NPUTS

For completeness, a full list of program input arguments to BLOBCAT

is presented below. Note that not all arguments may be required

for analysis (see Sections 2.5 and 2.6; see also the default values

provided in the code). For example, if errors are not required (or

are not suitably defined for a particular observational scenario), the

input arguments relating to errors below may be ignored. (Con-

versely, new input arguments may be easily defined by the user and

incorporated into BLOBCAT.)

Argument 1: SB_image.fits

FITS image of SB in Stokes I intensity (or Stokes Q, U or V

intensities under limited conditions) or linear polarization (L or

LRM); see Section 2.1.1.

Argument 2: rmsval

Uniform (spatially invariant) background rms noise level within SB

image. This is required if Argument 3 is not provided.

Argument 3: rmsmap

FITS image of background rms noise; see Section 2.1.2.

Argument 4: bwsval

Uniform (spatially invariant) level of bandwidth smearing present

in the SB image. This is required if Argument 5 is not provided. To

ignore bandwidth smearing, this value should be set to 1.

Argument 5: bwsmap

FITS image of background rms noise; see Section 2.1.3.

Arguments 6–8: bmaj, bmin, bpa

Image resolution (beam) parameters; these are only required if im-

age header items are incorrect or incomplete (at present, beam

parameters are not standard FITS headers).

Arguments 9 and 10: dSNR, fSNR

S/N thresholds for blob detection (Td) and flooding cut-off (Tf); see

Section 2.2.

Argument 11: pmep

Maximum estimated peak SB attenuation due to pixellation error

(see Appendix A); defined here as the maximum anticipated value

of (1 − εFIT
off-centre). When set to a value greater than 0, this parameter

will ensure that sources with raw observed peak SB less than the

nominated detection threshold (SOBS
p < Td), yet fitted peak SB

greater than this threshold (SFIT
p ≥ Td), will be accepted into the

catalogue. If ignored, pmep will default to 1, causing BLOBCAT to

check all blobs with SOBS
p ≥ Tf for catalogue acceptance (though

this will increase BLOBCAT’s run-time, particularly if Td and Tf differ

greatly in magnitude).

Arguments 12 and 13: cpeRA, cpeDec

Phase calibrator positional error in RA (σ α,cal) and Dec. (σ δ,cal); see

Section 2.6.

Argument 14: SEM

Standard error of the mean of the variation in the phase correc-

tions resulting from phase self-calibration (σ SEM), which is used to

calculate σ frame; see Section 2.6.

Argument 15: pasbe

Percentage absolute SB error resulting from calibration (�SABS);

see Section 2.6.

Argument 16: pppe

Percentage peak SB pixellation error (�SPIX); see Section 2.6 and

Appendix A.

Argument 17: cb
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Average clean bias correction (�SCB ≥ 0); see Section 2.6.

Argument 18: lamfac

λ factor for peak SB bias correction; see Section 2.4.1.

Argument 19: visArea

Option to calculate visibility areas (can increase program run-time

by more than an order of magnitude); see Section 2.6.

Arguments 20–22: minpix, maxpix, pixdim

Minimum and maximum accepted blob sizes in pixels and minimum

number of pixels in RA/Dec. dimensions for accepted blobs (useful

for filtering out easily identified image artefacts).

Argument 23: edgemin

Edge buffer in pixels; if flood fill attempts to enter this buffer zone,

the blob is rejected (and reported to the user).

Arguments 24 and 25: write, hfill

Options to write flooded blobs to an output FITS file and to set the

blob highlight value; see Section 2.7.

Arguments 26 and 27: kvis, ds9

Options to write an output kvis or ds9 overlay file; see Section 2.7.

Arguments 28 and 29: plot, plotRng

Option to produce a diagnostic screen plot displaying flooded blobs

in the SB image, and an additional option to specify this plot’s

dynamic range.
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