SCISPACE

formerly Typeset

@ Open access - Proceedings Article « DOI:10.1145/2063384.2063429

BlobCR: efficient checkpoint-restart for HPC applications on laaS clouds using
virtual disk image snapshots — Source link [4

Bogdan Nicolae, Franck Cappello

Institutions: French Institute for Research in Computer Science and Automation,
University of lllinois at Urbana—Champaign

Published on: 12 Nov 2011 - IEEE International Conference on High Performance Computing, Data, and Analytics

Topics: Cloud computing, Virtual machine, File system and Testbed

Related papers:

« Design, Modeling, and Evaluation of a Scalable Multi-level Checkpointing System
« Remus: high availability via asynchronous virtual machine replication

« Fault Tolerance Middleware for Cloud Computing

» BlobSeer: Next-generation data management for large scale infrastructures

« FTI: high performance fault tolerance interface for hybrid systems

Share this paper: @ ¥ M &

View more about this paper here: https://typeset.io/papers/blobcr-efficient-checkpoint-restart-for-hpc-applications-on-
4sbhu16sj0

https://typeset.io/
https://www.doi.org/10.1145/2063384.2063429
https://typeset.io/papers/blobcr-efficient-checkpoint-restart-for-hpc-applications-on-4sbhu16sj0
https://typeset.io/authors/bogdan-nicolae-3e4acqx91e
https://typeset.io/authors/franck-cappello-5c2wzf08q6
https://typeset.io/institutions/french-institute-for-research-in-computer-science-and-3k6jpcfg
https://typeset.io/institutions/university-of-illinois-at-urbana-champaign-1mpdu76r
https://typeset.io/conferences/ieee-international-conference-on-high-performance-computing-34lv9cl8
https://typeset.io/topics/cloud-computing-23j8n0mk
https://typeset.io/topics/virtual-machine-1wyvv06f
https://typeset.io/topics/file-system-3l1fwwnc
https://typeset.io/topics/testbed-v7ebpyad
https://typeset.io/papers/design-modeling-and-evaluation-of-a-scalable-multi-level-1scp2r399l
https://typeset.io/papers/remus-high-availability-via-asynchronous-virtual-machine-1alfua9yqt
https://typeset.io/papers/fault-tolerance-middleware-for-cloud-computing-3k35gc4ox6
https://typeset.io/papers/blobseer-next-generation-data-management-for-large-scale-166u7qvy2q
https://typeset.io/papers/fti-high-performance-fault-tolerance-interface-for-hybrid-1udyqcrx8f
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/blobcr-efficient-checkpoint-restart-for-hpc-applications-on-4sbhu16sj0
https://twitter.com/intent/tweet?text=BlobCR:%20efficient%20checkpoint-restart%20for%20HPC%20applications%20on%20IaaS%20clouds%20using%20virtual%20disk%20image%20snapshots&url=https://typeset.io/papers/blobcr-efficient-checkpoint-restart-for-hpc-applications-on-4sbhu16sj0
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/blobcr-efficient-checkpoint-restart-for-hpc-applications-on-4sbhu16sj0
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/blobcr-efficient-checkpoint-restart-for-hpc-applications-on-4sbhu16sj0
https://typeset.io/papers/blobcr-efficient-checkpoint-restart-for-hpc-applications-on-4sbhu16sj0

& HAL

open science

\

BlobCR: Efficient Checkpoint-Restart for HPC
Applications on IaaS Clouds using Virtual Disk Image
Snapshots
Bogdan Nicolae, Franck Cappello

» To cite this version:

Bogdan Nicolae, Franck Cappello. BlobCR: Efficient Checkpoint-Restart for HPC Applications on
[aaS Clouds using Virtual Disk Image Snapshots. SC’11: The 24th International Conference for
High Performance Computing, Networking, Storage and Analysis, Nov 2011, Seattle, United States.
pp.34:1-34:12, 10.1145/2063384.2063429 . inria-00601865

HAL Id: inria-00601865
https://hal.inria.fr /inria-00601865
Submitted on 16 Aug 2011

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche frangais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.inria.fr/inria-00601865
https://hal.archives-ouvertes.fr

BlobCR: Efficient Checkpoint-Restart for HPC Applications
on laaS Clouds using Virtual Disk Image Snhapshots

Bogdan Nicolae
INRIA Saclay, lle-de-France, France
bogdan.nicolae@inria.fr

ABSTRACT

Infrastructure-as-a-Service (IaaS) cloud computing is gain-
ing significant interest in industry and academia as an al-
ternative platform for running scientific applications. Given
the dynamic nature of IaaS clouds and the long runtime
and resource utilization of such applications, an efficient
checkpoint-restart mechanism becomes paramount in this
context. This paper proposes a solution to the aforemen-
tioned challenge that aims at minimizing the storage space
and performance overhead of checkpoint-restart. We in-
troduce an approach that leverages virtual machine (VM)
disk-image multi-snapshotting and multi-deployment inside
checkpoint-restart protocols running at guest level in order
to efficiently capture and potentially roll back the complete
state of the application, including file system modifications.
Experiments on the G5K testbed show substantial improve-
ment for MPI applications over existing approaches, both
for the case when customized checkpointing is available at
application level and the case when it needs to be handled
at process level.

Categories and Subject Descriptors
D.3.4 [Systems and Software]: Distributed systems

General Terms

Design, Performance, Experimentation

Keywords

scientific computing, cloud computing, science clouds, laaS,
fault tolerance, checkpoint-restart, disk snapshots, MPI ap-
plications, capture application state

1. INTRODUCTION

In recent years, Infrastructure as a Service (IaaS) cloud
computing [8] has emerged as a viable alternative to the ac-
quisition and management of physical resources. With laaS,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SC’11, November 12-18, 2011, Seattle, Washington, USA.

Copyright 2011 ACM 978-1-4503-0771-0/11/11 ...$10.00.

Franck Cappello
INRIA Saclay, lle-de-France, France

University of lllinois at Urbana Champaign, USA

fci@lri.fr

users can lease storage and computation time from large
datacenters. Leasing of computation time is accomplished
by allowing users to deploy virtual machines (VMs) on the
datacenter’s resources. Since the user has complete control
over the configuration of the VMs using on-demand deploy-
ments [6], IaaS leasing is equivalent to purchasing dedicated
hardware but without the long-term commitment and cost.

Because of these advantages, cloud computing is gain-
ing increasing attention for a wide range of scientific high
performance computing (HPC) applications: climate mod-
eling, bioinformatics, high-energy and nuclear physics, etc.
Traditionally these applications run on powerful dedicated
supercomputers, however recent evidence shows that there
is an increasing improvement in the scalability and perfor-
mance of cloud-based HPC systems [19]. Furthermore, un-
like supercomputers, IaaS clouds enable scientists to fully
customize the environment where the applications are run-
ning, as well as to easily share applications and input data
globally, thus encouraging collaboration. These advantages,
together with promising cost reductions, have instigated sev-
eral initiatives to build science clouds, such as NASA’s Neb-
ula [3] and DoE’s Magellan [26].

Since HPC applications require a lot of resources and
clouds are mostly build out of commodity hardware [6], the
number of components that can fail at any given moment
in time is very high. Thus, an assumption about complete
reliability is highly unrealistic: at such large scale, hardware
component failure is the norm rather than the exception [33].
In this context, support for fault-tolerance becomes a critical
issue.

A possible approach to deal with this issue is to use re-
dundancy [11]. This approach is feasible if the benefits of in-
creased resiliency outweigh the cost of consuming additional
resources. However, for tightly coupled scientific applica-
tions, redundancy implies a replication of all processes that
are part of the distributed application, as the failure of one
process results in a global failure of all processes and leads
to termination. Since clouds employ a pay-as-you-go model
where the costs are directly proportional to the resource us-
age, such an approach is not feasible in our context.

Checkpoint-restart [15] is another widely used solution to
provide fault tolerance for tightly coupled scientific applica-
tions. Processes achieve fault tolerance in this approach by
saving recovery information periodically during failure-free
execution. When a failure occurs, the previously saved re-
covery information can be used to restart the computation
from an intermediate state, therefore reducing the amount of
lost computation. This approach is highly appealing in the

context of clouds, as it does not consume more resources
than strictly necessary. However, if failures happen often
enough, the computation needs to repeatedly roll back to
intermediate states, which increases resource usage and com-
putation time. Therefore, it is crucial to design a scalable,
high performance checkpoint-restart mechanism on clouds
that is able to checkpoint the application frequently with
minimal overhead, both with respect to performance over-
head and storage space utilization.

This paper proposes BlobCR, a checkpoint-restart frame-
work specifically optimized for tightly-coupled scientific ap-
plications that were written using a message passing sys-
tem (in particular MPI [17]) and need to be ported to IaaS
clouds. Our solution introduces a dedicated checkpoint repos-
itory that is able to efficiently take incremental snapshots of
the whole disk attached to the virtual machine instances,
thus offering support to use any checkpointing protocol that
can save the state of processes into files, including application-
level mechanisms, where the process state is managed by the
application itself, and process-level mechanisms, where the
process state is managed transparently at the level of the
message passing library.

Our contributions can be summarized as follows:

e We present a series of design principles that facilitate
checkpoint-restart on IaaS clouds and show how they
can be applied in TaaS cloud architectures. Unlike con-
ventional approaches, our proposal introduces support
for an important feature: the ability to roll back I/0
operations performed by the application. (Sections 3.1
and 3.2)

e We show how to materialize these design principles
in practice by implementing checkpoint-restart frame-
work based on a series of building blocks that rely on
BlobSeer, a versioning storage service specifically de-
signed for high throughput under concurrency [22, 23].
(Section 3.3)

e We evaluate our approach in a series of experiments,
each conducted on hundreds of nodes provisioned on
the Grid’5000 testbed, using both synthetic bench-
marks and real-life applications. These experiments
demonstrate significant improvement in performance
and storage space utilization when compared to state-
of-art. (Section 4)

2. INFRASTRUCTURE AND APPLICATION

MODEL

Several properties of the infrastructure and the applica-
tions we target play a critical role in the design of an efficient
checkpoint-restart mechanism. In this section we model
both the infrastructure and the application, while insisting
on such properties.

2.1 Cloud infrastructure

TaaS platforms are typically built on top of clusters made
out of loosely-coupled commodity hardware [6]. Each ma-
chine is equipped with local disk storage in the order of sev-
eral hundred GB, while interconnect is provided by main-
stream networking technology, such as Ethernet. All ma-
chines have hardware virtualization support and run a hy-
pervisor that is able to take advantage of it in order to ef-
ficiently host the VM instances of the users. We assume

machines fail according to the fail-stop model, i.e. once a
machine has failed, all hosted virtual machine instances and
locally stored data are lost.

The local disk storage is typically used to hold the root
file system of the instances, however each file system only
persists during the life of its corresponding instance, as space
is reclaimed after termination in order to host new instances.
In order to provide persistent storage, a dedicated repository
is separately deployed either as either a centralized [4] or as a
distributed [7] storage service. This repository holds the VM
images and application data of the users persistently and
provides the means for users to manipulate them: upload,
download, delete, and so forth.

2.2 Application model

We target tightly-coupled scientific applications that use a
message-passing system to communicate. Hence, we assume
that the application consists of a fixed number of processes
that communicate through messages.

Such applications are typically designed to use a paral-
lel file system for persistency (e.g., GPFS [30], PVFS [13]),
which is used to read input data, dump output data and
possibly save additional logging information or other inter-
mediate data into files. In theory, the processes could also
synchronize through the file system by sharing files. How-
ever, in practice this approach is avoided for scalability rea-
sons, as it may lead to I/O bottlenecks. Most of the time,
each process manipulates its own set of files independently
of the other processes. Therefore, for the rest of this pa-
per we assume that the processes do not need to share files
except for the input data.

At a first glance, it may seem as if the cloud repository
could play the role of a parallel file system and provide per-
sistency for the application. However, repositories on clouds
mostly offer a different access models for user data (e.g. key-
value stores based on REST-ful access APIs [7], database
management systems [20], etc.). Using a different access
model requires significant changes to the application and is
not always feasible (e.g. it is difficult to simulate a log file
where data can be appended).

A much simpler solution is to rely on the local file sys-
tem of the VM instance directly in order to share input
files and save any output files and intermediate data. This
approach does not require any changes to the application.
Furthermore, it does not use any additional resources from
the cloud, as the local file system of the VM instance is im-
plicitly available to the user for storage. For the rest of this
paper, we assume that such an approach is used to store the
files of the application.

It is important to note that the local file system of the VM
instance is not persistent and therefore the changes can be
lost at any time, which implies the need to build an external
persistency mechanism that is able to survive failures and
can checkpoint the state of the local file systems for each
VM instance. Using such an approach has an important
advantage: the changes performed on the file system since
the last checkpoint can be easily rolled back. This is not
the case when using conventional storage solutions (i.e. the
cloud repository or a parallel file system): for example, lines
appended to a log file between the last checkpoint and the
occurrence of a failure are difficult to detect and delete on
restart.

2.3 Application state

Checkpoint-restart approaches achieve fault tolerance by
periodically saving the global state of the application persis-
tently to stable storage and restarting from an intermediate
state in case of failures.

In the most general case, the state of the computation is
defined at each moment in time by two main components:
(1) the state of each of the VM instances; and (2) the state of
the communication channels between them (opened sockets,
in-transit network packets, virtual topology, etc.).

Thus, the general case implies saving both the state of
all VM instances and the state of all active communication
channels among them. While several methods have been
established in the virtualization community to capture the
state of a running VM (CPU registers, RAM, state of de-
vices, etc.), the issue of capturing the global state of the
communication channels is difficult and still an open prob-
lem [21].

In order to avoid this issue, the general case is usually
simplified such that the application is reduced to the sum
of states of the VM instances. This is consistent with many
checkpoint-restart protocols [15], where in-transit network
traffic is discarded under the assumption that a fault-tolerant
communication protocol is used that is able to restore com-
munication channels and resend lost information.

Even so, saving the whole state of the VM instances can
explode to huge sizes and become unfeasible. For example,
saving 2 GB of RAM for 1,000 VMs consumes 2 TB of space,
which is unacceptable for a single one-point-in-time check-
point. Therefore, there is a need to further reduce the state
size for each VM instance.

In our context, it can be observed the state of each VM
instance is defined by two components: (1) the state of the
processes that perform the computation; and (2) the state
of the file system of the guest operating system where the
processes are running. Therefore, limiting the state to these
two components has a high potential to reduce the overall
state size. We focus our work in this direction.

3. OUR APPROACH

3.1 Design overview
Our proposal relies on the following key principles:

3.1.1 Build a dedicated checkpoint repository using
the local disks of compute nodes

In many cloud deployments [6, 4, 5], the disks locally at-
tached to the compute nodes are not exploited to their full
potential. These disks have capacities of hundreds of GB yet
the VM instances deployed on the compute nodes utilize just
a fraction of it. Therefore, we propose to aggregate parts of
the storage space from the compute nodes in a shared com-
mon pool that is managed in a distributed fashion. This
pool is used to persistently store both the base VM images
uploaded by the user and the checkpoints. For scalability
reasons, they are stored in a striped fashion, i.e. split into
small, equal-sized chunks that evenly distributed among the
local disks of the checkpoint repository. Each chunk is repli-
cated on multiple local disks in order to survive failures.

Using this scheme, read and write access performance un-
der concurrency is greatly enhanced, as the global I/O work-
load is evenly distributed among the local disks. Further-
more, this scheme has a potential for high scalability, as a

growing number of compute nodes automatically leads to
a larger checkpoint repository, which is not the case if the
checkpoints are saved directly on the cloud repository. Fi-
nally, it eases the pressure on the cloud repository, which
can therefore provide improved performance and quality of
service guarantees for the cloud applications that are specif-
ically designed to make use of it.

3.1.2 Use VM disk snapshots to checkpoint the ap-
plication state

In order to checkpoint both the local file system and ap-
plication processes, we propose a two-stage procedure that
is performed individually for each VM instance.

In the first stage, the application state is saved to the
VM disk. This is done either explicitly, by relying on a cus-
tom checkpoint-restart mechanism at application level, or
transparently, using an external process-level checkpointing
protocol that is typically integrated in the message passing
library, without requiring changes to be made to the applica-
tion code. In the second stage, the VM instance is suspended
and a snapshot of the virtual disk is saved persistently into
the checkpoint repository, after which the VM instance is
resumed.

The two-stage checkpoint procedure gives our proposal
three key advantages. First, we avoid saving the state of the
whole VM, which greatly reduces the state size: all memory
used by the operating system, the information about the
state of devices, etc. is discarded. Second, it provides an
implicit roll-back mechanism for file system changes, as it is
enough to simply restore the file system state from the disk-
image snapshot. This avoids additional overhead present
in many checkpointing techniques that log the interactions
with the file system. Finally, it gives the user high flexibility
to choose either an explicit or transparent technique.

It is important to note that the two stages occur in dif-
ferent environments: the first stage is performed inside the
guest operating system of the VM instance, while the second
stage is performed outside of the VM instance. As a conse-
quence, there is a need to provide a synchronization mech-
anism that enables each VM instance to request a snapshot
of its disk to the outside. This synchronization mechanism
must be integrated into the checkpoint protocol. If check-
pointing is explicitly handled at application level, then the
application must be modified accordingly. Otherwise, the
synchronization can be handled transparently at the level
of the checkpoint protocol implemented inside the message
passing system.

3.1.3 Optimize VM disk snapshotting by means of
shadowing and cloning

Saving the full VM disk for each VM instance is not fea-
sible in the context of checkpoint-restart. Since only small
parts of the virtual disk are modified, this would mean mas-
sive unnecessary duplication of data, leading not only to
an explosion of storage space utilization but also to an un-
acceptably high snapshotting time and network bandwidth
utilization.

Several custom image file formats were proposed in order
to avoid unnecessary duplication of data. Qcow2 [16] for
example, one of the most popular choices implements incre-
mental snapshotting by storing incremental differences as a
separate file, while leaving the original file corresponding to
the base disk image untouched and using it as a read-only

backing file. Using this approach, it is possible to create
qcow?2 images that are based on other qcow?2 images in or-
der to create a chain of “patches” that represent incremental
differences. However, in order to do so the hypervisor needs
to be restarted using a different underlying image. There-
fore, such an approach cannot be applied in our context,
as we need to take successive disk snapshots while the VM
instance is still running, without restarting the hypervisor.

We propose a transparent solution to this problem that
leverages two features used by versioning systems: shadow-
ing and cloning [22].

Shadowing means to offer the illusion of creating a new
standalone snapshot of the object for each update to it, but
to physically store only the differences and manipulate meta-
data in such way that the illusion is upheld. This effectively
means that from the user’s point of view, if a small part of a
large file needs to be updated, shadowing enables the user to
see the effect of the update as a second file that is identical
to the original except for the updated part.

Cloning means to duplicate an object in such way that it
looks like a stand-alone copy that can evolve in a different
direction from the original but physically shares all initial
content with the original.

With this approach, snapshotting can be easily performed
in the following fashion. The first time a snapshot is built,
for each VM instance a new checkpoint image is cloned from
the initial backing image. Subsequent local modifications are
written as incremental differences to the checkpoint image
and shadowed as a new snapshot. In this way all snap-
shots of all VM instances share unmodified content among
one another and still appear to the outside as independent,
fully fledged disk-images. This has an important advan-
tage: differences are not stored as separate files and thus
checkpoints are much easier to migrate. Furthermore, any
additional overhead resulting from the need to assemble the
checkpoints from multiple files during restart is avoided.

3.1.4 Optimize restart using lazy transfer and adap-
tive prefetching

Since our approach avoids saving the whole state of the
VM instances, a restart implies that the instances are re-
deployed and rebooted using the disk snapshots of the last
checkpoint, after which the state of the processes is restored
from the files.

However, deploying a large number of instances concur-
rently can incur a significant overhead. Current techniques
broadcast the disk images to the nodes before booting the
VM instances [34], a process that can take tens of minutes to
hours, not counting the time to boot the operating system
itself. As VM instances typically access only a small frac-
tion of the VM image throughout their run-time, fetching
only the necessary parts on-demand can reduce this over-
head considerably [24]. Therefore, we propose the use of a
“lazy” transfer scheme that fetches only the hot content of
the disk image (i.e. the checkpoint files and any other files
directly accessed at runtime by the guest operating system
and the application).

Furthermore, since the disk snapshots store only incre-
mental differences, large parts of the images are shared and
potentially need to be accessed concurrently by the hyper-
visor during the boot process. In order to limit the negative
impact of this issue, we exploit small delays between the
times when the VM instances access the same chunk from

the checkpoint repository (due to jitter in execution time)
in order to prefetch the chunk for the slower instances based
on the experience of the faster ones [25].

3.2 Architecture

The simplified architecture of an IaaS cloud that inte-
grates our approach is depicted in Figure 1. The typical
elements found in the cloud are illustrated with a light back-
ground, while the elements that are part of our proposal are
highlighted by a darker background. Except for the guest
environment (VM) that is under the control of the user, all
other highlighted building blocks must be adopted by the
cloud provider.

A checkpoint repository that survives failures and sup-
ports cloning and shadowing is deployed on the compute
nodes. The checkpoint repository aggregates part of the
storage space provided by the local disks of the compute
nodes and is responsible to persistently store both the base
and the checkpoint disk images.

The cloud client has direct access to the checkpoint repos-
itory and is allowed to upload and download the disk im-
ages. Typically the user downloads and uploads base disk
images only, however, thanks to shadowing and cloning, our
approach enables the user to see and download checkpoint
images as standalone entities as well. This feature that can
become useful in a scenario where the checkpoints need to be
inspected and even manually modified. Moreover, the cloud
client interacts with the cloud middleware (the frontend of
the user to the cloud) through a control API that enables
multi-deployments of a large number of VM instances start-
ing from the same base disk image.

Each compute node runs a hypervisor that is responsible
to launch and execute the VM instances. The VM instances
run in a modified guest environment that implements an
extended checkpoint-restart protocol, which is able to com-
municate with the hosting compute nodes and ask each of
them to freeze the state of the VM, take a checkpoint of
the virtual disk and then continue VM execution. This is
done through the checkpointing proxy, a special service that
runs on the compute nodes and accepts checkpoint requests.
Both for security and scalability reasons, the checkpointing
proxy is not globally accessible: it accepts checkpoint re-
quests only from the VM instances that are hosted on the
same compute node.

All reads and writes issued by the hypervisor are trapped
by the mirroring module, responsible to fetch the hot con-
tents of the base disk image remotely from the repository
and cache it locally. Local modifications to the base disk
image triggered by writes are stored on the local disk as
incremental differences. Whenever a checkpoint request is
issued for the first time, the checkpointing proxy asks the
mirroring module to create a checkpoint image that is de-
rived from the base image (CLONE). This initial checkpoint
image shares all contents with the base image. Then, the lo-
cal modifications are committed to the checkpoint image as
an incremental snapshot (COMMIT). Any subsequent check-
point request will commit the local modifications recorded
since the last checkpoint request as a new incremental snap-
shot into the same checkpoint image.

A mapping between each successful checkpoint request
and the resulting incremental snapshot together with its
corresponding checkpoint image is maintained by the cloud
middleware. In case of a failure or when the whole applica-

Compute node

Compute node

Control WM
'

Cloud middleware

4

3

Control API

Cli

ent

4
Put/get
\

fmage

Checkpoint repository

Figure 1: Our approach (dark background) integrated in an IaaS cloud.

tion needs to be terminated and resumed at a later point, all
VM instances are re-deployed using a recent snapshot from
their corresponding checkpoint image as the underlying vir-
tual disk. It is the responsibility of the checkpoint-restart
protocol implementation to pick a set of snapshots for the
VM instances such that the application can roll back to a
globally consistent state.

3.3 Implementation

In Section 3.2 we illustrated how to apply our approach
in the cloud by orchestrating several building blocks: a dis-
tributed checkpoint repository, a mirroring module, a check-
pointing proxy and a modified checkpoint-restart protocol
running inside the VM instances that decides when to re-
quest disk-image snapshots. In this section we show how
to efficiently implement these building blocks in such a way
that they achieve the design principles introduced in Sec-
tion 3.1 on the one hand and are easy to integrate in the
cloud on the other hand.

We have implemented the distributed checkpoint reposi-
tory on top of BlobSeer [22, 23]. This choice was motivated
by several factors. First, BlobSeer enables scalable aggre-
gation of storage space from the participating nodes with
minimal overhead in order to store BLOBs (Binary Large
OBjects). Data striping and replication is performed trans-
parently on BLOBs, which enables direct mapping between
BLOBs and disk-images, therefore eliminating the need to
explicitly manage chunks. Second, BlobSeer offers out-of-
the-box support for shadowing, which significantly simpli-
fies the implementation of the COMMIT primitive. Third,
the service was optimized to sustain a high throughput even
under heavy access concurrency, which is especially useful
in our context, as it enables efficient parallel access to the
chunks when disk image snapshots need to be read or writ-
ten.

The mirroring module was implemented on top of FUSE
(File System in UserspacE) [2], and relies on our previous
work presented in [24]. It exposes each checkpoint image as
a directory and the associated snapshots as files in that di-
rectory, accessible from the outside using the regular POSIX
access interface. Internally, the module keeps track of the
content that is available locally, as well as the local modifica-
tions. It translates each read and write request originating
from the hypervisor, respectively, into local/remote reads
(depending on whether the content is available locally or
not) and into local writes.

This approach presents several advantages. First, it en-
ables exposing the VM image to the hypervisors as a regular
raw file that is accessible through the standard POSIX ac-
cess interface. Second, it hides away both the copy-on-write
management of local modifications to the disk-image as well
as the on-demand mirroring. This is achieved by exposing
a raw image file to the hypervisor, which ensures maximum
compatibility with most hypervisors. Third, it transparently
handles disk-image snapshotting, which avoids the need to
stop the hypervisor and switch to a different image when-
ever a snapshot is needed. In order to make this possible,
the CLONE and COMMIT primitives are implemented as ioctls
and can be accessed from outside the hypervisor.

The checkpointing proxry was implemented as a service
that listens on a specified port for incoming TCP/IP con-
nections originating from VM instances that resides on the
same compute node where the proxy is deployed. Whenever
a connection is initiated and a checkpoint is requested, the
proxy authenticates the VM instance and, if successful, pro-
ceeds to: (1) suspend the VM instance; (2) clone the base
image if necessary using the appropriate ioctl; (3) commit
the local changes as a new snapshot inside the checkpoint
image (again using the appropriate ioctl); and finally (4) re-
sume the VM instance. Regardless whether the checkpoint
was successful or not, the proxy resumes the VM instance
and notifies it of the result.

If application-level checkpointing is desired, the check-
pointing proxy can be directly contacted from within the
application code. For maximum compatibility, the commu-
nication protocol used by the proxy is a simple REST-ful
access interface. In order to implement process-level check-
pointing in a transparent fashion, we provide a modified
MPT [17] library implementation based on mpich2 that must
be installed in the guest operating system. The mechanism
implemented in mpich2 is a coordinated checkpointing pro-
tocol that is executed in three steps. First, the communica-
tion channels are drained such that no in-transit messages
are lost. This is performed by sending a special marker
message to each MPI process, instructing it not to send any
message from that point on until the checkpoint has com-
pleted. Next, blcr [14] is used on each VM instance to dump
the checkpoint of the MPI processes into files. Finally, once
all MPI processes have been successfully checkpointed, the
MPI library resumes application execution.

We extended the coordinated checkpointing protocol with
two additional steps: immediately after the process state

was dumped by blcr as a file, the sync system call is invoked
in order to flush all uncommitted changes to the virtual disk.
This is necessary in order to avoid any potential file sys-
tem corruption due to caching. After this step completed, a
checkpoint request is sent to the checkpoint proxy. As soon
as confirmation is received, control is returned to the original
mpich2 implementation that proceeds to resume application
execution.

4. EVALUATION

This section evaluates the benefits of our proposal both in
synthetic settings and for real-life applications.

4.1 Experimental setup

The experiments were performed on Grid’5000 [10], an ex-
perimental testbed for distributed computing that federates
nine sites in France. We used 120 nodes of the graphene
cluster from the Nancy site, each of which is equipped with
a quadcore Intel Xeon X3440 x86_64 CPU with hardware
support for virtualization, local disk storage of 278 GB (ac-
cess speed ~55 MB/s using SATA II ahci driver) and 16 GB
of RAM. The nodes are interconnected with Gigabit Ether-
net (measured 117.5 MB/s for TCP sockets with MTU =
1500 B with a latency of ~0.1 ms).

The hypervisor running on all compute nodes is KVM
0.14.0, while the operating system is a recent Debian Sid
Linux distribution. For all experiments, a 2 GB raw disk
image file based on the same Debian Sid distribution was
used as the guest operating system. Inside this guest OS,
we installed a modified mpich2 library (based on the 1.3.x
development branch) that integrates our approach.

4.2 Methodology

We use three settings for our evaluation:

4.2.1 Application-level checkpointing using disk snap-

shots.

In this setting, the application itself is responsible to store
and restore the state of each process through files that are
periodically saved in the file system of VM instances. A
global checkpoint consists in taking a snapshot of all the
virtual disks that hold the file systems of the VM instances.
In order to restart from such a global checkpoint, the VM
instances need to be re-deployed in such way that each in-
stance is using one of the disk snapshots that are part of the
global checkpoint.

To take a disk snapshot, two alternative approaches are
used:

BlobCR.

This is our approach: BlobSeer is used as the distributed
repository, along with the FUSE-based implementation of
the mirroring module, as described in Section 3.3. We de-
ploy a version manager and a provider manager, each on
a dedicated node, along with 20 metadata providers, again
each on a dedicated node. The rest of 120 nodes are used
as compute nodes. A data provider, a mirroring module
and a checkpointing proxy is then launched on each com-
pute node. The initial raw disk image that holds the guest
OS is stored into the BlobSeer deployment in a striped fash-
ion. The stripe size was fixed at 256 KB, as we found this to
maximize the trade-off resulting from the need to choose a
small stripe size in order to reduce access contention vs. the

need to keep the stripe size large enough in order to avoid
excessive fragmentation overhead.

Throughout the rest of this section, we refer to this ap-
proach as BlobCR-app.

Qcow?2 disk snapshots over PVFS.

We compare our approach to the case when the virtual
disk are based on qcow2 [16] disk snapshots and are per-
sistently stored in a parallel file system. For the purpose
of this work, we have chosen PVFS [13] as the parallel file
system. This choice was mainly motivated by the fact that
PVFS was specifically designed for high performance access
patterns that do not exhibit conflicting concurrent writes to
the same file - a scenario that applies in our context, since
the VM instances do not modify the same image. PVFS
is deployed on all nodes, out of which 120 are reserved as
compute nodes. The initial raw disk image that holds the
guest OS is stored in PVFS using a stripe size of 256KB, the
same size as in our approach and is accessible on all compute
nodes through a local mount point. Using the raw image as
a backing file, a qcow2 disk snapshot is created on the local
disk of the compute node for each VM instance, using the
gemu—img tool. The qcow?2 image is responsible to store the
local modifications of the VM instance to the virtual disk
that holds the guest file system. In order to take a disk
snapshot at a particular moment in time, the checkpointing
proxy simply copies the locally stored qcow2 image to PVFS
as a new file.

We refer to this approach as gcow2-disk-app.

4.2.2 Process-level checkpointing using disk snap-
shots.

In this setting, checkpointing is orchestrated transparently
by our MPI library implementation, as described in Sec-
tion 3.3, i.e. the states of the processes are dumped to files
using blcr.

The same two approaches as described above are used to
take the disk snapshots. We refer to these two approaches
as BlobCR-blcr and qcow2-disk-blcr respectively.

4.2.3 VM checkpointing using full snapshots.

This setting is similar to the previous setting except that
the state of the processes is not dumped into files. Rather,
for each instance a snapshot of the whole VM is taken. This
snapshot includes not only the virtual disk, but all other
devices of the VM as well: CPU registers, memory, etc.
Such an approach in different in that the instance needs not
be rebooted when a restart is required, but can be directly
resumed from the complete VM snapshot.

In order to take full VM snapshots and store them persis-
tently, we use gcow?2 images that are saved to PVFS. This
setup is very similar to the case when qcow?2 disk snapshots
are used: we deploy PVFS under the same conditions and
create a local gcow2 image for each VM instance, using the
initial raw image (shared through PVFS) as a backing file.
However, in this case the whole state of the VM is dumped
to the qcow2 image using the savevm QEMU monitor com-
mand.

We refer to this approach as gcow2-full.

4.3 Synthetic benchmarks

The first series of experiments evaluates the scalability of
our proposal in controlled synthetic settings.

To this end, we implemented a simple benchmarking ap-
plication that consists of a configurable number of processes,
each of which runs in a dedicated VM instance. Each pro-
cess independently allocates a fixed amount of memory as a
data buffer and fills it with random data. In order to take
a global checkpoint at application level, the processes syn-
chronize to start at the same time and then independently
dump the data buffer into a file, after which they ask the
checkpointing proxy to snapshot the disk. On restart, each
process reads the contents of the previously saved file into
the data buffer.

We study both checkpoint and restart, together with the
storage space utilization for all five approaches: BlobCR-
app, BlobCR-blcr, gcow2-app, qcow2-bler and qcow2-full. The
data buffer was fixed at two sizes: 50 MB and 200 MB.

4.3.1 Increasing number of processes

This experiment consists in concurrently deploying an in-
creasing number of VM instances, each on a dedicated com-
pute node. Once the instances have fully booted, the bench-
marking application is launched and a global checkpoint
is issued using one of the five approaches. We record the
completion time to save the global checkpoint to persistent
storage (i.e. the time elapsed between the moment when
the checkpoint request was issued and the moment when all
snapshots were successfully taken and persistently saved).

After this operation successfully completed, we simulate a
restart by killing all instances and re-deploying them using
the previously saved snapshots as the underlying images. To
make sure that no caching effects interfere with the exper-
iment, each instance is re-deployed on a different compute
node that the one where it originally ran. Except for the
qgcow2-full approach, the instances reboot the guest oper-
ating system and then restore the state of the application
from the previously saved files. Again, we record the com-
pletion time for the whole process, i.e. the time elapsed
between the moment when the re-deployment begins and
the moment when the state of all processes was successfully
restored.

The completion time to checkpoint an increasing number
of processes for a data buffer of 50 MB is represented in Fig-
ure 2(a). As can be observed, gcow2-full performs the worst
out of the five approaches. This happens for two reasons:
(1) saving the state of the VM instance is time-consuming;
(2) the size of the resulting full snapshot is much larger than
a disk-snapshot and therefore needs more time to transfer.
The performance of all other four approaches is much better.
A steady increase in completion time is noticeable when in-
creasing the number of processes, which is caused by the in-
creased write pressure under concurrency. BlobCR-app and
gcow2-disk-app have very close performance levels, unlike
the case of process-level checkpointing, where BlobCR-blcr
ourperforms qcow?2-disk-blcr under concurrency by almost
40%.

When increasing the data buffer from 50 MB to 200 MB
(Figure 2(b)), our approach shows much better scalability:
for 120 processes, BlobCR-app is 60% faster than gcow2-
disk-app, while BlobCR-blcr reaches a two-fold speedup com-
pared to gcow2-disk-blcr. These results are a consequence of
the fact that BlobSeer tolerates higher write pressure under
concurrency than PVFS, which becomes more visible with
increasing size of the disk-snapshot. In the case of gcow2-
full, the effect of higher write pressure is augmented even

350 ‘
BlobCR-app

— qcow2-disk-app s 7

g 300 - BlobCR-blcr 1

= qcow2-disk-bler i

S 250 f qecow2-full &7z]

©

S - e

5 200 ol R 1

8 el B
e

g 150 . ‘

£ b

S 100} E; 1

(0] r}@;«

5 sof . <
-

0 &S

Data size per process

Figure 4: Snapshot size for a data buffer of 50 MB
and 200 MB

further, which enables our approach to outperform it by a
factor of more than six.

A similar trend can be observed for the completion time
to restart the processes (Figure 3). Again, gcow2-full has
the worst performance of all four approaches, despite avoid-
ing the need to reboot the VM instance. This poor perfor-
mance can be traced back to the fact that the full snapshot
is much larger than a corresponding disk-snapshot and thus
takes longer to read from PVFS, which ultimately cancels
the benefit of avoiding a reboot. Application-level restart
and process-level restart have very close performance levels,
both for 50 MB (Figure 3(a)) and 200 MB (Figure 3(b)).
Thanks to a faster reboot time, BlobCR is by more than
25% faster than qow2-disk for a data buffer of 50 MB. When
increasing the data buffer from 50 MB to 200 MB, both the
faster reboot time and the better sustained read throughput
under concurrency enable our approach to remain highly
scalable for increasing the number of processes, which ulti-
mately leads to a speedup of 2x compared to gow2-disk.

Figure 4 depicts the size of the snapshot per VM instance
when the process running inside it allocates a data buffer of
50 MB and 200 MB respectively. As expected, the minimal
size is obtained when using application-level checkpointing.
In addition to the file into which the process saved its state,
the disk-snapshot holds also some minor updates to the file
system that were performed by the guest operating system
(i.e. configuration files generated at boot time, daemons
writing to log files, etc.). These minor updates add up to
13 MB for BlobCR-app and 7 MB for gcow2-disk-app. Our
approach has a slightly higher overhead, because differences
are maintained at block level granularity and therefore can-
not be smaller than 256 KB, whereas qcow2 can maintain
arbitrarily small differences. Nevertheless, considering the
case of 200 MB, the price to pay in terms of storage space re-
mains constant and is less than 5% over qcow2, yet it brings
a more than double performance speedup that shows a clear
tendency to grow even larger for an increasing number of
processes.

In the case of process-level checkpointing using blcr, the
disk-snapshots see only a negligible increase in size (less
than 2 MB) when compared to application-level checkpoint-
ing. This is the case for both BlobCR-blcr and gcow2-disk-

90

140 T T T T
BlobCR-app —— o
qcow2-disk-app - - e
120 BlobCR-blcr - - 1
qcow2-disk-blcr
100 | qcow2-full - |
o ‘,r'/
& 80F . g
p. [
E
'_

60 r 1

0 20 40 60 80 100 120 140
Number of instances

(b) Data buffer of 200 MB

Figure 2: Completion time to checkpoint an increasing number of processes

‘ BIobCFi—app Er—
80 | qcow2-disk-app --- o]
BlobCR-blcr e
70 b qcow2-disk-blcr -]
gcow2-full -~ -
60 [o J
T 50t]
0
= 40 -~ 4
30 [1
20 [1
10 F — |
0 L L L L L L
0 20 40 60 80 100 120 140
Number of instances
(a) Data buffer of 50 MB
100 : : :
BlobCR-app ——
gcow2-disk-app ----%---
BlobCR-blcr -
80 | gcow2-disk-blcr @ 1
qcow2-full ---a---
— 60| L]
w -
o T
E T
a0t P 1
I ‘ S L |
20 s R |
0 L L L L L L

0 20 40 60 80 100 120 140
Number of hosts

(a) Data buffer of 50 MB

140 | “BIobCR-app ——]
qcow2-disk-app ----%----
BlobCR-blcr - .
120 | gcow2-disk-blcr e |
qcow2-full ---s--- o
100 | |
80 | - |

Time (s)

60 p--" :

40 60 80 100 120 140
Number of hosts

(b) Data buffer of 200 MB

Figure 3: Completion time to restart an increasing number of processes

bler and it leads to an important conclusion: when the
state of the process comprises most of its allocated mem-
ory, then application-level checkpointing brings little benefit
compared to process-level checkpointing.

Finally, the size of full VM snapshots is much larger than
the size of disk-snapshots. Results show an overhead of
118MB, both for a data buffer of 50MB and 200MB re-
spectively. This overhead accounts for the memory used
by all other processes launched by the guest operating sys-
tem, state of devices, operating system caches, etc. In our
experiment, checkpointing was performed immediately after
the benchmarking application was successfully initialized.
Therefore, in a real life scenario where the application runs
for long periods of time, even higher overheads are to be
expected.

4.3.2 Successive checkpoints

Our next experiment evaluates the performance and stor-
age space utilization for all five approaches when taking suc-
cessive checkpoints of the same deployment. To this end, we

deploy the benchmarking application and execute the follow-
ing two steps for four times: (1) fill the data buffer with ran-
dom data and then (2) request a global checkpoint. To limit
the number of factors that can influence the results, in par-
ticular the impact of I/O pressure under concurrency (which
was shown in the previous section to give our approach a
large advantage), we experiment with a single VM instance,
into which a single benchmarking process is launched. The
size of the data buffer is fixed at 200 MB.

Results are shown in Figure 5. As can be observed, our
approach has perfect scalability with respect to completion
time (Figure 5(a)), thanks to the fact that only incremental
differences are stored between snapshots. This applies for
both BlobCR-app and BlobCR-blcr. In the case of gcow2-
disk-app and qcow2-disk-blcr, a linear growth is clearly visi-
ble. This is due to the fact that the local qcow2 image grows
larger as the application is running and thus takes longer to
transfer to PVFS. It can be traced back to the lack of trans-
parent snapshotting support, as explained in Section 3.1.3,

90

BlobCR-app ——

80 - qcow2-disk-app --- o
BlobCR-blcr I
70 b qcow2-disk-blcr e]
gcow2-full e
60 I]
2 s0t |
£
= 40r
30 [] ,&,.]

Number of checkpoints

(a) Completion time

2200 3
BlobCR-app —— 5
2000 gcow2-disk-app - el
& BlobCR-blcr yd
S 1800 | qcow2-disk-blcr A
= cow2-full_--
£ 1600 deonEt 1
8 1400 t e]
S 1200 f e
8 1000 - - 1
) T
S 800 r y 1
®
S 800 | e 1
n e
400 | - 1
200 ! ‘
1 2 3 4

Number of checkpoints

(b) Total storage space utilization

Figure 5: Four successive checkpoints of the same VM instance for a data buffer of 200 MB

and is responsible for the linear growth of completion time
in the case of gcow2-full too.

The total storage space utilization for all five approaches
is depicted in Figure 5(b). As expected, our approach grows
linearly. The same applies to gcow2-full. This is due to the
fact that a read-only incremental VM snapshot is created
directly inside the original gcow2 image, which continues to
act the the underlying image when the VM instance is re-
sumed. Since an unlimited number of read-only snapshots
can be saved inside the same qcow2 image, it is sufficient to
persistently store only the latest version of the qcow2 image
to PVFS. However, qcow2 does not support the same func-
tionality for disk snapshots, which means that consecutive
disk snapshots need to be stored as separate files and accu-
mulate duplicate data, ultimately leading to an exponential
growth in storage space.

4.4 Real life application case study: CM1

Our next series of experiments illustrates the behavior of
our proposal in real life. For this purpose we have cho-
sen CM1, a three-dimensional, non-hydrostatic, non-linear,
time-dependent numerical model suitable for idealized stud-
ies of atmospheric phenomena. This application is used to
study small-scale processes that occur in the atmosphere of
the Earth, such as hurricanes.

CM1 is representative of a large class of scientific appli-
cations that model a phenomenon in time which can be de-
scribed by a spatial domain that holds the value of fixed pa-
rameters in each point (temperature, pressure, etc.). Start-
ing from such an initial spatial domain, the application cal-
culates the evolution of the values of the parameters in each
point according to a set of governing equations that involves
the previous values of the parameters in that point and even-
tually its neighborhood. The problem is solved iteratively
in a distributed fashion by splitting the spatial domain into
subdomains, each of which is managed by a dedicated MPI
process. At each iteration, the MPI processes calculate the
values for all points of their subdomain, and then exchange
the values at the border of their subdomains with each other.

CM1 is able to take application-level checkpoints by syn-
chronizing the MPI processes to dump the contents of the

subdomains into files. Each MPI process independently
writes its own checkpoint file. Furthermore, at each fixed
number of iterations, all MPI processes write intermediate
summary information about the subdomains, again into in-
dependent files. For the purpose of this work, we have chosen
a 3D hurricane that is a version of the Bryan and Rotunno
simulations [12]. We study the weak scalability of our ap-
proach by solving the same problem using a different preci-
sion, in such way that the size of the subdomain solved by
each process remains constant at 50x50.

The experiment consists in deploying an increasing num-
ber of quad-core VM instances, each of which hosts 4 MPI
processes, one per core. We take a global checkpoint after 10
minutes of execution time and record the completion time
and storage space utilization.

This experiment is performed both for application-level
checkpointing as implemented by CM1 (BlobCR-app and
gecow?2-disk-app) as well as process-level checkpointing us-
ing bler (BlobCR-bler and qcow2-disk-bler). We found the
size of the full snapshot to grow to unacceptably large sizes,
which puts gcow2-full at a disproportionately large disad-
vantage and thus was omitted.

The per disk-snapshot size is depicted in Table 1. Our
approach has a slightly higher overhead, as explained in Sec-
tion 4.3.1. Unlike the case of synthetic benchmarks, in this
case process-level checkpointing has a much higher overhead
than application-level checkpointing. This effect happens
because blcr indiscriminately dumps all memory allocated
by the process, whereas application-level checkpointing is
more informed and selects only the useful information to be
saved.

The small overhead in storage space of our approach makes
up for better performance and scalability with respect to
completion time, as shown in Figure 6. All four approaches
exhibit an increasing tendency for a growing number of pro-
cesses. This tendency is slightly higher than for our bench-
marking application, because the processes take longer to
synchronize (i.e. wait for communication channels to be
flushed, etc.). The difference between BlobCR and qcow?2-
disk grows higher as more processes are added (both for app
and blcr), which demonstrates better scalability for our ap-

45 : : : :
BlobCR-app ——
40 + qcow2-disk-app ----x---- ot
BlobCR-blcr -
35 - gcow2-disk-blcr g S |
30]

Time (s)

0 50 100 150 200 250 300 350 400
Number of processes

Figure 6: CM1 checkpoint performance for an in-
creasing number of processes

Table 1: CM1 per disk snapshot size

Approach Size
BlobCR-app 52 MB
qcow2-disk-app | 45 MB
BlobCR-bler 127 MB

qcow2-disk-bler | 120 MB

proach. At 400 processes, BlobCR-app outperforms gcow?2-
disk-app by more than 10%, while BlobCR-blcr outperforms
gcow2-disk-bler by more than a factor of 2.

S. RELATED WORK

The idea of using a dedicated checkpoint repository in or-
der to optimize for the access patterns that are present in
the context of checkpoint-restart has been exploited before.
In [9], the authors propose PLFS, a virtual parallel log struc-
tured file system specifically designed for checkpoint storage.
In essence it remaps an application’s preferred data layout
into one which is optimized for the underlying parallel file
system. Unlike our approach, PLFS is a layer of indirec-
tion and thus is is heavily dependent on the performance
characteristics of the parallel file system.

Attempts to virtualize the environment were undertaken
by DejaVu [29], a transparent user-level framework for MPI
applications that virtualizes the OS interface, making it
transparent to both applications and communication mid-
dleware. It is based on a potentially expensive, on-line log-
ging protocol which relaxes the requirements of a distributed
snapshot and implements a reliable communication protocol.

Closer to our approach are checkpoint-restart proposals
based on full VM snapshots [32, 31]. Unlike our approach,
they focus on complete transparency using the Xen hyper-
visor and do not support incremental snapshotting. To our
best knowledge, we are the first to propose a checkpoint-
restart framework for HPC applications based on incremen-
tal disk snapshots, which has the potential to drastically
reduce the storage space utilization at the cost of minimal
intervention inside the guest environment.

Many hypervisors provide native copy-on-write support
using custom VM image file formats, such as gcow2 [16]
and Mirage [27]. This enables base images to be used as
read-only templates for multiple VM disk snapshots that

store per-instance modifications. However, unlike our ap-
proach, support for transparent incremental snapshotting
(i.e. without switching to another image) is currently not
available. Furthermore, lots of files representing incremental
differences need to be generated and shared through a paral-
lel file system, which raises manageability and performance
issues at large scales.

Several other approaches have been proposed in order to
snapshot virtual disks. Lithium [18] is one such approach. It
supports fork-consistent, instant volume creation with lazy
space allocation, instant creation of writable snapshots, and
tunable replication. While this can prove a valuable building
block that offers a viable alternative to cloning and shadow-
ing, it is based on log-structuring [28], which can potentially
incur a high read overhead the more incremental snapshots
are taken.

Amazon EBS [1] provides block level storage volumes that
can be attached to Amazon EC2 [6] instances. Such volumes
outlive the VM instances that mount and use them, which
makes them a potential target to store the process state
and all other intermediate files. Snapshotting is supported,
however it is implemented over Amazon S3 [7], a key-value
store not specifically optimized for this purpose.

6. CONCLUSIONS

High-performance and scalability of checkpoint-restart are
two crucial challenges that need to be addressed on IaaS
clouds in order to bring fault tolerance for HPC applications
that are deployed on such platforms. This paper has pro-
posed BlobCR, a checkpoint restart framework specifically
written to address these challenges. Unlike conventional ap-
proaches, our proposal introduces support for an important
feature: the ability to roll back I/O operations performed
by the application.

We demonstrated the benefits of our approach through ex-
periments on hundreds of nodes using synthetic benchmarks
as well as real-life applications. BlobCR brings a checkpoint-
ing time speedup of up to 8x compared to full VM snap-
shotting based on gcow2 over PVFS, as well as a speedup of
more than 2x when compared to disk-snapshotting based on
qcow2 over PVFS. A similar trend is observable for restart
times: a speedup of up to 6x is observed vs. full VM snap-
shotting, and a speedup of up to 2x is observed vs. disk-
snapshotting. On top of these benefits, an additional advan-
tage of our approach is the potential to save large amounts
of storage space thanks to our transparent incremental snap-
shotting support.

Based on our experiments, we conclude that checkpoint-
ing the whole state of VM instances using full VM snap-
shots is expensive, both in terms of storage space and per-
formance. Checkpoints using disk-only snapshots are much
smaller and faster, even if a reboot of the guest operating
system is needed on restart.

We plan to extend our approach in future work with ad-
ditional features that can potentially bring further benefits
at large scale. In particular, we plan to explore how trans-
parent garbage collection would reclaim the space used by
disk-snapshots that are obsoleted by newer checkpoints.

Acknowledgments

This work was supported in part by the Agence Nationale de
la Recherche (ANR) under Contract ANR-10-01-SEGI and

the Joint Laboratory for Petascale Computing, an INRIA-
UIUC initiative. The experiments presented in this paper
were carried out using the Grid’5000/ALADDIN-G5K ex-
perimental testbed, an initiative of the French Ministry of
Research through the ACI GRID incentive action, INRIA,
CNRS and RENATER and other contributing partners (see
http://www.grid5000.fr/).

7.
1]

[11]

[13]

[14]

[15]

[16]

REFERENCES

Amazon Elastic Block Storage (EBS).
http://aws.amazon.com/ebs/.

File System in UserspacE (FUSE).
http://fuse.sourceforge.net.

Nasa nebula. http://nebula.nasa.gov.

Nimbus. http://www.nimbusproject.org/.

Opennebula. http://www.opennebula.org/.

Amazon Elastic Compute Cloud (EC2).
http://aws.amazon.com/ec2/.

Amazon Simple Storage Service (S3).
http://aws.amazon.com/s3/.

M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz,
A. Konwinski, G. Lee, D. Patterson, A. Rabkin,

I. Stoica, and M. Zaharia. A view of cloud computing.
Commun. ACM, 53:50-58, April 2010.

J. Bent, G. Gibson, G. Grider, B. McClelland,

P. Nowoczynski, J. Nunez, M. Polte, and M. Wingate.
PLFS: A checkpoint filesystem for parallel
applications. In SC ’09: Proceedings of the 22nd
Conference on High Performance Computing
Networking, Storage and Analysis, pages 1-12,
Portland, USA, 2009.

R. Bolze, F. Cappello, E. Caron, M. Daydé,

F. Desprez, E. Jeannot, Y. Jégou, S. Lanteri,

J. Leduc, N. Melab, G. Mornet, R. Namyst, P. Primet,
B. Quetier, O. Richard, E.-G. Talbi, and I. Touche.
Grid’5000: A large scale and highly reconfigurable
experimental grid testbed. Int. J. High Perform.
Comput. Appl., 20:481-494, November 2006.

R. Brightwell, K. Ferreira, and R. Riesen. Transparent
redundant computing with mpi. In EuroMPI’10:
Proceedings of the 17th European MPI user’s group
meeting conference on recent advances in the message
passing interface, pages 208-218, Stuttgart, Germany,
2010.

G. H. Bryan and R. Rotunno. The maximum intensity
of tropical cyclones in axisymmetric numerical model
simulations. Journal of the American Meteorological
Society, 137:1770-1789, 2009.

P. H. Carns, W. B. Ligon, R. B. Ross, and R. Thakur.
PVEFS: A parallel file system for Linux clusters. In
Proceedings of the 4th Annual Linux Showcase and
Conference, pages 317-327, Atlanta, USA, 2000.

J. Duell, P. Hargrove, and E. Roman. The Design and
Implementation of Berkeley Lab’s Linux
Checkpoint/Restart. Technical Report LBNL-54941,
Future Technologies Group, 2002.

E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B.
Johnson. A survey of rollback-recovery protocols in
message-passing systems. ACM Comput. Surv.,
34:375-408, September 2002.

M. Gagné. Cooking with Linux—still searching for the
ultimate Linux distro? Linuz J., 2007(161):9, 2007.

(17]

(26]

27]

(28]

29]

W. Gropp, E. Lusk, and A. Skjellum. Using MPI (2nd
ed.): portable parallel programming with the
message-passing interface. MIT Press, Cambridge,
MA, USA, 1999.

J. G. Hansen and E. Jul. Scalable virtual machine
storage using local disks. SIGOPS Oper. Syst. Rev.,
44:71-79, December 2010.

Q. He, S. Zhou, B. Kobler, D. Duffy, and T. McGlynn.
Case study for running hpc applications in public
clouds. In HPDC ’10: Proceedings of the 19th
International Symposium on High Performance
Parallel and Distributed Computing, pages 395—401,
Chicago, USA, 2010.

A. Lakshman and P. Malik. Cassandra: a
decentralized structured storage system. SIGOPS
Oper. Syst. Rev., 44:35-40, April 2010.

X. Liu, J. Huai, Q. Li, and T. Wo. Network state
consistency of virtual machine in live migration. In
SAC ’10: Proceedings of the 2010 ACM Symposium on
Applied Computing, pages 727-728, Sierre,
Switzerland, 2010.

B. Nicolae. BlobSeer: Towards Efficient Data Storage
Management for Large-Scale, Distributed Systems.
PhD thesis, University of Rennes 1, November 2010.
B. Nicolae, G. Antoniu, L. Bougé, D. Moise, and

A. Carpen-Amarie. BlobSeer: Next-generation data
management for large scale infrastructures. J. Parallel
Distrib. Comput., 71:169-184, February 2011.

B. Nicolae, J. Bresnahan, K. Keahey, and G. Antoniu.
Going Back and Forth: Efficient Multi-Deployment
and Multi-Snapshotting on Clouds. In HPDC ’11: The
20th International ACM Symposium on
High-Performance Parallel and Distributed
Computing, pages 147-158, San Jose, USA, 2011.

B. Nicolae, F. Cappello, and G. Antoniu. Going Back
and Forth: Efficient Multi-Deployment and
Multi-Snapshotting on Clouds. In Euro-Par ’11:
Proceedings of the 17th International Furo-Par
Conference on Parallel Processing, Bordeaux, France,
2011.

L. Ramakrishnan, P. T. Zbiegel, S. Campbell,

R. Bradshaw, R. S. Canon, S. Coghlan, 1. Sakrejda,
N. Desai, T. Declerck, and A. Liu. Magellan:
experiences from a science cloud. In Proceedings of the
2nd international workshop on Scientific cloud
computing, pages 49-58, San Jose, USA, 2011.

D. Reimer, A. Thomas, G. Ammons, T. Mummert,

B. Alpern, and V. Bala. Opening black boxes: Using
semantic information to combat virtual machine image
sprawl. In VEE ’08: Proceedings of the 4th ACM
SIGPLAN/SIGOPS International Conference on
Virtual Fxecution Environments, pages 111-120,
Seattle, USA, 2008.

M. Rosenblum and J. K. Ousterhout. The design and
implementation of a log-structured file system. ACM
Trans. Comput. Syst., 10(1):26-52, 1992.

J. F. Ruscio, M. A. Heffner, and S. Varadarajan.
Dejavu: transparent user-level checkpointing,
migration and recovery for distributed systems. In SC
’06: Proceedings of the 19th Conference on High
Performance Computing Networking, Storage and
Analysis, Tampa, USA, 2006.

[30]

[31]

F. Schmuck and R. Haskin. GPFS: A shared-disk file
system for large computing clusters. In FAST ’02:
Proceedings of the 1st USENIX Conference on File
and Storage Technologies, Monterey, USA, 2002.

G. Vallée, T. Naughton, H. Ong, and S. Scott.

Checkpoint /restart of virtual machines based on Xen.

In HAPCW ’06: Proceedings of the High Awvailability
and Performance Workshop, Santa Fe, USA, 2006.

0. Villa, S. Krishnamoorthy, J. Nieplocha, and D. M.

Brown, Jr. Scalable transparent checkpoint-restart of
global address space applications on virtual machines
over Infiniband. In CF ’09: Proceedings of the 6th

ACM Conference on Computing Frontiers, pages
197-206, Ischia, Italy, 2009.

K. V. Vishwanath and N. Nagappan. Characterizing
cloud computing hardware reliability. In SoCC ’10:
Proceedings of the 1st ACM symposium on Cloud
computing, pages 193—204, Indianapolis, USA, 2010.
R. Wartel, T. Cass, B. Moreira, E. Roche,

M. Guijarro, S. Goasguen, and U. Schwickerath.
Image distribution mechanisms in large scale cloud
providers. In CloudCom ’10: Proceedings 2nd IEEE
International Conference on Cloud Computing
Technology and Science, Indianapolis, USA, 2010.

