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Luc Bougé, Matthieu Dorier

ENS Cachan, Brittany

IRISA

Rennes, France

{luc.bouge,matthieu.dorier}@bretagne.ens-cachan.fr

Abstract—Hadoop is a software framework supporting the
Map/Reduce programming model. It relies on the Hadoop Dis-
tributed File System (HDFS) as its primary storage system. The
efficiency of HDFS is crucial for the performance of Map/Reduce
applications. We substitute the original HDFS layer of Hadoop
with a new, concurrency-optimized data storage layer based on
the BlobSeer data management service. Thereby, the efficiency of
Hadoop is significantly improved for data-intensive Map/Reduce
applications, which naturally exhibit a high degree of data access
concurrency. Moreover, BlobSeer’s features (built-in versioning,
its support for concurrent append operations) open the possibility
for Hadoop to further extend its functionalities. We report on
extensive experiments conducted on the Grid’5000 testbed. The
results illustrate the benefits of our approach over the original
HDFS-based implementation of Hadoop.

Keywords-Large-scale distributed computing; Data-intensive;
Map/Reduce-based applications; Distributed file system; High
Throughput; Heavy access concurrency; Hadoop; BlobSeer

I. INTRODUCTION

Map/Reduce [1] is a parallel programming paradigm suc-

cessfully used by large Internet service providers to perform

computations on massive amounts of data. After being strongly

promoted by Google, it has also been implemented by the open

source community through the Hadoop [2] project, maintained

by the Apache Foundation and supported by Yahoo! and

even by Google itself. This model is currently getting more

and more popular as a solution for rapid implementation of

distributed data-intensive applications.

At the core of the Map/Reduce frameworks stays a key

component: the storage layer. To enable massively parallel data

processing to a high degree over a large number of nodes, the

storage layer must meet a series of specific requirements (dis-

cussed in Section II), that are not part of design specifications

of traditional distributed file systems employed in the HPC

communities: these file systems typically aim at conforming

to well-established standards such as POSIX and MPI-IO.

To address these requirements, specialized file systems have

been designed, such as HDFS [3], the default storage layer

of Hadoop. HDFS has however some difficulties to sustain a

high throughput in the case of concurrent accesses to the same

file. Moreover, many desirable features are missing altogether,

such as the support for versioning and for concurrent updates

to the same file.

We substitute the original data storage layer of Hadoop with

a new, concurrency-optimized storage layer based on Blob-

Seer, a data management service we developed with the goal

of supporting efficient, fine-grain access to massive, distributed

data accessed under heavy concurrency. By using BlobSeer

instead of its default storage layer, Hadoop significantly im-

proves its sustained throughput in scenarios that exhibit highly

concurrent accesses to shared files. We report on extensive

experimentation both with synthetic microbenchmarks and real

Map/Reduce applications. The results illustrate the benefits of

our approach over the original HDFS-based implementation

of Hadoop. Moreover we support additional features such

as efficient concurrent appends, concurrent writes at random

offsets and versioning. These features could be leveraged to

extend or improve functionalities in future versions of Hadoop

or other Map/Reduce frameworks.

II. SPECIALIZED FILE SYSTEMS FOR DATA-INTENSIVE

MAP/REDUCE APPLICATIONS

A. Requirements for the storage layer

Map/Reduce applications typically crunch ever growing data

sets of billions of small records. Storing billions of KB-sized

records in separate tiny files is both unfeasible and hard to

handle, even if the storage layer would support it. For this

reason, data sets are usually packed together in huge files

whose size reaches the order of several hundreds of GB.

The key strength of the Map/Reduce model is its inherently

high parallelization of the computation, that enables processing

of PB of data in a couple of hours on large clusters consisting

of several thousand nodes. This has several consequences for

the storage backend. Firstly, since data is stored in huge files,

the computation will have to process small parts of these

huge files concurrently. Thus, the storage layer is expected to

provide efficient fine-grain access to the files. Secondly, the

storage layer must be able to sustain a high throughput in spite



of heavy access concurrency to the same file, as thousands of

clients simultaneously access data.

Dealing with of huge amounts of data is difficult in terms

of manageability. Simple mistakes that may lead to loss

of data can have disastrous consequences since gathering

such amounts of data requires considerable effort investment.

Versioning in this context becomes an important feature that

is expected from the storage layer. Not only it enables rolling

back undesired changes, but also branching a dataset into two

independent datasets that can evolve independently. Obviously,

versioning should have a minimal impact both on performance

and on storage space overhead.

Finally, another important requirement for the storage layer

is its ability to expose an interface that enables the application

to be data-location aware. This allows the scheduler to use this

information to place computation tasks close to the data. This

reduces network traffic, contributing to a better global data

throughput.

B. Dedicated file systems for Map/Reduce

These critical needs of data-intensive distributed appli-

cations have not been addressed by classical, POSIX-

compliant distributed file systems. Therefore, Google intro-

duced GoogleFS [4] as a storage backend that provides the

right abstraction for their Map/Reduce data processing frame-

work. Then, other specialized file systems emerged: companies

such as Yahoo! and Kosmix followed this trend by emulating

the GoogleFS architecture with the Hadoop Distributed File

System (HDFS, [3]) and CloudStore [5].

Essentially, GoogleFS splits files into fixed-sized 64 MB

chunks that are distributed among chunkservers. Both meta-

data that describes the directory structure of the file system,

and metadata that describes the chunk layout are stored on

a centralized master server. Clients that need to access a file

first contact this server to obtain the location of the chunks that

correspond to the range of the file they are interested in. Then,

they directly interact with the corresponding chunkservers.

GoogleFS is optimized to sustain a high throughput for

concurrent reads/appends from/to a single file, by relaxing the

semantic consistency requirements. It also implements support

for cheap snapshotting and branching.

Hadoop Map/Reduce is a framework designed for easily

writing and efficiently processing Map/Reduce applications.

The framework consists of a single master jobtracker, and

multiple slave tasktrackers, one per node. The jobtracker is

responsible for scheduling the jobs’ component tasks on the

slaves, monitoring them and re-executing the failed tasks. The

tasktrackers execute the tasks as directed by the master. HDFS

is the default storage backend that ships with the Hadoop

framework. It was inspired by the architecture of GoogleFS.

Files are also split in 64 MB blocks that are distributed among

datanodes. A centralized namenode is responsible to maintain

both chunk layout and directory structure metadata. Read and

write requests are performed by direct interaction with the

corresponding datanodes and do not go through the namenode.

In Hadoop, reads essentially work the same way as with

GoogleFS. However, HDFS has a different semantics for con-

current write access: it allows only one writer at a time, and,

once written, data cannot be altered, neither by overwriting

nor by appending. Several optimization techniques are used to

significantly improve data throughput. First, HDFS employs

a client side buffering mechanism for small read/write ac-

cesses. It prefetches data on reading. On writing, it postpones

committing data after the buffer has reached at least a full

chunk size. Actually, such fine-grain accesses are dominant

in Map/Reduce applications, which usually manipulate small

records. Second, Hadoop’s job scheduler (the jobtracker)

places computations as close as possible to the data. For this

purpose, HDFS explicitly exposes the mapping of chunks over

datanodes to the Hadoop framework.

With cloud computing becoming more and more popu-

lar, providers such as Amazon started offering Map/Reduce

platforms as a service. Amazon’s initiative, Elastic MapRe-

duce [6], employs Hadoop on their Elastic Compute Cloud

infrastructure (EC2, [7]). The storage backend used by Hadoop

is Amazon’s Simple Storage Service (S3, [8]). The S3 frame-

work was designed with simplicity in mind, to handle objects

that may reach sizes in the order of GB: the user can write,

read, and delete objects simply identified by an unique key.

The access interface is based on well-established standards

such as SOAP. Careful consideration was invested into using

decentralized techniques and designing operations in such way

as to minimize the need for concurrency control. A fault

tolerant layer enables operations to continue with minimal

interruption. This allows S3 to be highly scalable. On the

downside however, simplicity comes at a cost: S3 provides

limited support for concurrent accesses to a single object.

Other efforts aim at adapting general-purpose distributed file

systems from the HPC community to the needs of the Map/Re-

duce applications. For instance, PVFS (Parallel Virtual File

System) and GPFS (General Parallel File System, from IBM)

have been adapted to serve as a storage layer for Hadoop.

GPFS [9] is part of the shared-disk file systems class, that use

a pool of block-level storage, shared and distributed across all

the nodes in the cluster. The shared storage can be directly

accessed by clients, with no interaction with an intermediate

server. Integrating GPFS with the Hadoop framework, involves

overcoming some limitations: GPFS supports a maximal block

size of 16 MB, whereas Hadoop often makes use of data in

64 MB chunks; Hadoop’s jobtracker must be aware of the

block location, while GPFS (like all parallel file systems)

exposes a POSIX interface. PVFS [10] belongs to a second

class of parallel file systems, object-based file systems which

separate the nodes that store the data from the ones that

store the metadata (file information, and file block location).

When a client wants to access a file, it must first contact

the metadata server and then directly access the data on the

data servers indicated by the metadata server. In [11], it is

described the way PVFS was integrated with Hadoop, by

adding a layer on top of PVFS. This layer enhanced PVFS

with some features that HDFS already provides to the Hadoop



framework: performing read-ahead buffering, exposing the

data layout and emulating replication.

The above work has been a source of inspiration for our

approach. Thanks to the specific features of BlobSeer, we

could address several limitations of HDFS highlighted in it.

III. BLOBSEER AS A CONCURRENCY-OPTIMIZED FILE

SYSTEM FOR HADOOP

In this section we introduce BlobSeer, a system for manag-

ing massive data in a large-scale distributed context [12]. Its

efficient version-oriented design enables lock-free access to

data, and thereby favors scalability under heavy concurrency.

Thanks to its decentralized data and metadata management,

it provides high data throughput [13]. The goal of this paper

is to show how BlobSeer can be extended into an filesystem

for Hadoop, and thus used as an efficient storage backend for

Map/Reduce applications.

A. Design overview of BlobSeer

The goal of BlobSeer is to provide support for data-intensive

distributed applications. No hypothesis whatsoever is made

about the structure of the data at stake: they are viewed as

huge, flat sequences of bytes, often called BLOBs (Binary

Large OBjects). We especially target applications that process

BLOBs in a fine-grain manner. This is the typical case

of Map/Reduce applications, indeed: workers usually access

pieces of up to 64 MB from huge input files, whose size may

reach hundreds of GB.

1) Versioning access interface to BLOBs: A client of

BlobSeer manipulates BLOBs by using a simple interface

that allows to: create a new empty BLOB; append data to an

existing BLOB; read/write a subsequence of bytes specified by

an offset and a size from/to an existing BLOB. Each BLOB

is identified by a unique id in the system.

Versioning is explicitly managed by the client. Each time

a write or append is performed on a BLOB, a new snapshot

reflecting the changes is generated instead of overwriting any

existing data. This new snapshot is labeled with an incremental

version number, so that all past versions of the BLOB can

potentially be accessed, at least as long as they have not been

garbaged for the sake of storage space.

The version numbers are assigned and managed by the

system. In order to read a part of the BLOB, the client must

specify both the unique id of the BLOB and the snapshot

version it desires to read from. A special call allows the client

to find out the latest version of a particular BLOB, but the

client is allowed to read any past version of the BLOB.

Although each write or append generates a new version,

only the differential patch is actually stored, so that storage

space is saved at far as possible. The new snapshot shares

all unmodified data and most of the associated metadata with

the previous versions, as we will see further in this section.

Such an implementation further facilitates the implementation

of advanced features such as rollback and branching, since data

and metadata corresponding to past versions remain available

in the system and can easily be accessed.

The goal of BlobSeer is to sustain high throughput under

heavy access concurrency in reading, writing and appending.

This is achieved thanks to the combination of various tech-

niques, including: data striping, distributed metadata, version-

based design, lock-free data access.

2) Data striping: BlobSeer relies on striping: each BLOB

is made up of blocks of a fixed size. To optimize BlobSeer

for Map/Reduce applications, we set this size to the size of

the data piece a Map/Reduce worker is supposed to process

(i.e., 64 MB in the experiments below with Hadoop, equal

to the chunk size in HDFS). These blocks are distributed

among the storage nodes. We use a load balancing strategy

that aims at evenly distributing the blocks among these nodes.

As described in Section V-E, this has a major positive impact

in sustaining a high throughput when many concurrent readers

access different parts of the same file.

3) Distributed metadata: A BLOB is accessed by specify-

ing a version number and a range of bytes delimited by an

offset and a size. BlobSeer manages additional metadata to

map a given range and a version to the physical nodes where

the corresponding blocks are located. We organize metadata

as a distributed segment tree [14]: one such tree is associated

to each version of a given blob id. A segment tree is a binary

tree in which each node is associated to a range of the blob,

delimited by offset and size. We say that the node covers the

range (offset, size). The root covers the whole BLOB. For each

node that is not a leaf, the left child covers the first half of the

range, and the right child covers the second half. Each leaf

covers a single block of the BLOB. Such a tree is associated

to each snapshot version of the BLOB. Figure 1 illustrates the

evolution of the tree after an initial append of four blocks,

an overwrite of the second and third block, and finally an

append of one block. To favor efficient concurrent access to

metadata, tree nodes are distributed: they are stored on the

metadata providers using a DHT (Distributed Hash Table).

Each tree node is identified in the DHT by its version and by

the range specified through the offset and the size it covers. To

avoid the overhead (in time and space!) of rebuilding the tree

for subsequent updates, entire subtrees are shared among the

trees associated to the snapshot versions. The new nodes that

are part of the tree, starting from the leaves and working up

towards the root, are created only if they do cover the range

of the update.

Note that metadata decentralization has a significant impact

on the global throughput, as demonstrated in [13]: it avoids

the bottleneck created by concurrent accesses in the case of

a centralized metadata server in most distributed file systems,

including HDFS. A detailed description of the algorithms we

use to manage metadata can be found in [12]: due to space

constraints, we will not develop them further in this paper.

4) Version-based concurrency control: BlobSeer relies on

a versioning-based concurrency control algorithm that maxi-

mizes the number of operations performed in parallel in the

system. This is done by avoiding synchronization as much

as possible, both at the data and metadata levels. The key

idea is amazingly simple: no existing data or metadata is ever



(a) The metadata after appending
the first four blocks to an empty
BLOB

(b) The metadata after overwriting the first
two block of the BLOB

(c) The metadata after an append of one block to the
BLOB

Fig. 1. Metadata representation

modified! First, any writer or appender writes its new data

blocks, by storing the differential patch. Then, in a second

phase, the version number is allocated and the new metadata

referring to these blocks are generated.

The first phase consists in actually writing the new data on

the data providers in a distributed fashion. Since only the dif-

ference is stored, each writer can send their data independent

of other writers to the corresponding data providers. As no

synchronization is necessary, this step can be performed in

a fully parallel fashion. In the second phase, the writer asks

to be assigned a version number by the version manager and

then generates the corresponding metadata. This new metadata

describes the blocks of the difference and is “weaved” together

with the metadata of lower versions, in such way as to offer

the illusion of a fully independent snapshot.

The assignment of versions is the only step in the writing

process where concurrent requests are serialized by the version

manager. After this step, each concurrent writer can build the

corresponding metadata independently thanks to the design

of our distributed metadata scheme. Note that because new

metadata is weaved together with metadata of lower snapshot

versions, it is possible that a writer successfully finished

building the new metadata, but the corresponding snapshot

itself is inconsistent, as metadata of lower snapshot versions

is still being built by concurrent writers. Therefore, the order in

which new snapshots are revealed to the readers must respect

the order in which the version numbers have been assigned.

This does not restrict metadata write concurrency in any way:

the system simply delays revealing the snapshot to the readers

until the metadata of all lower versions has been successfully

written. Thus, this second phase can also be performed mostly

in a concurrent fashion.

Since each writer or appender generates new data/metadata

and never modifies existing data/metadata, readers are com-

pletely decoupled from them, as they always access immutable

snapshots. A reader can thus access data and metadata in a

fully parallel fashion with respect to writers and appenders

(and obviously with respect to other readers).

We can thus claim that our approach supports read/read,

read/write and write/write concurrency by design. This clearly

overpasses the capabilities of HDFS, which does not support

concurrent writes in the same file at all. The experimental

results presented in Section V validate our claim.

5) Strong consistency semantics: The consistency seman-

tics adopted by BlobSeer is linearizability [15], which provides

the illusion that each operation applied by concurrent pro-

cesses appears to take effect instantaneously at some moment

between its invocation and completion. Thus, both reads and

writes are atomic operations. However, in our case the moment

when the write operation completes is not the moment when

the write primitive returns to the client that invoked it, but

rather the moment when the snapshot is revealed to the readers.

This can potentially lead to a situation when a snapshot

version cannot be read immediately after the write completed,

even by the same process. This is a design choice: the reader

is forced to access an explicitly specified snapshot version.

We offer a mechanism that allows the client to find out when

new snapshot versions are available in the system. Readers

are guaranteed to see a new write when the following two

conditions are satisfied: (1) all metadata for that write was

successfully committed and (2) for all writes that were as-

signed a lower version number, all metadata was successfully

committed.

Since a writer is assigned a version number only after it has

successfully written the data, condition (1) actually means: the

writer has successfully written both data and metadata. Even

though the write primitive may have successfully returned,

the write operation as a whole may complete at a later time.

Thus, condition (2) translates into: both data and metadata

of lower version snapshots have been successfully written,

so all previous snapshots are consistent and can be read

safely. This naturally means the new snapshot can be itself

revealed to the readers. Both conditions are necessary to

enforce linearizability.



B. BlobSeer: detailed architecture

BlobSeer consists of a series of distributed communicating

processes. Figure 2 illustrates the processes and their interac-

tions between them.

Clients create, read, write and append data from/to BLOBs.

Clients can access the BLOBs with full concurrency, even

if they all access the same BLOB.

Data providers physically store the blocks generated by ap-

pends and writes. New data providers may dynamically

join and leave the system. In the context of Hadoop

Map/Reduce, the nodes hosting data providers typically

also act as computing elements as well. This enables them

to benefit from the scheduling strategy of Hadoop, which

aims at placing the computation as close as possible to

the data.

The provider manager keeps information about the avail-

able storage space and schedules the placement of newly

generated blocks. For each such block to be stored, it

selects the data providers according to a load balancing

strategy that aims at evenly distributing the blocks across

data providers.

Metadata providers physically store the metadata that allows

identifying the blocks that make up a snapshot version.

We use a distributed metadata management scheme to

enhance concurrent access to metadata. The nodes hosting

metadata providers may act as computing elements as

well.

The version manager is in charge of assigning snapshot

version numbers in such a way that serialization and

atomicity of writes and appends is guaranteed. It is

typically hosted on a dedicated node.

C. Zooming on reads

To read data, the client first needs to find out the BLOB

corresponding to the requested file. This information is typi-

cally available locally (as it has typically been requested from

the namespace manager when the file was opened). Then the

client must specify the version number it desires to read from,

as well as the offset and size of the range to be read. The

client may also call a special primitive first, to find out the

latest version available in the system at the time this primitive

was invoked. In practice, since Hadoop’s file system API does

not support versioning yet, this call is always issued in the

current implementation.

Next, the read operation in BSFS follows BlobSeer’s se-

quence of steps for reading a range within a BLOB. The

corresponding distributed algorithm, describing the interac-

tions between the client, the version manager, the distributed

data and metadata providers are presented and discussed in

detail in [12]. The main global steps can be summarized

as follows. The client queries the version manager about

the requested version of the BLOB. The version manager

forwards the query to the metadata providers, which send to

the client the metadata that corresponds to the blocks that

make up the requested range. When the location of all these

blocks was determined, the client fetches the blocks from the

data providers. These requests are sent asynchronously and

processed in parallel by the data providers. Note that the first

and the last block in the sequence of blocks for the requested

range may not need to be fetched completely, as the requested

range may be unaligned to full blocks. In this case, the client

fetches only the required parts of the extremal blocks.

D. Zooming on writes

To write data, the client first splits the data to be written into

a list of blocks that correspond to the requested range. Then,

it contacts the provider manager, requesting a list of providers

capable of storing the blocks: one provider for each block.

Blocks are then written in parallel to the providers allocated by

the provider manager. If, for some reason, writing of a block

fails, then the whole write fails. Otherwise the client proceeds

by contacting the version manager to announce its intent to

update the BLOB. As highlighted in Section III-A, concurrent

writers of different blocks of the same file can perform this first

step with full parallelism. Subsequently, the version manager

assigns to each write request a new snapshot version number.

This number is used by the client to generate new metadata,

weave it together with existing metadata, and store it on the

distributed metadata providers, in order to create the illusion

of a new standalone snapshot.

Note that the term “existing metadata” covers two cases.

First, it refers to metadata corresponding to previous, com-

pleted writes. But it also refers to metadata generated by still

active concurrent writers that were assigned a lower version

number (i.e., they have written the data, but they have not

finished writing the metadata)! In particular, such concurrent

writers might be in the process of generating and writing

metadata, on which the client shall depend when weaving its

own metadata. To deal with this situation, the version manager

hints the client on such dependencies. In some sense, the client

is able to predict the values corresponding to the metadata

that is being written by the concurrent writers that are still

in progress. It can thus proceed concurrently with the other

writers, rather than waiting for them to finish writing their

metadata. The reader can refer to [12] for further details on

how we handle metadata for concurrent writers.

Once metadata was successfully written to the metadata

providers, the client notifies the version manager of success,

and returns to the user. Observe that the version manager

needs to keep track of all writers concurrently active, and

delay completing a new snapshot version until all writers that

were assigned a lower version number reported success. The

detailed algorithm for writing is provided in [12].

The append operation is identical to the write operation,

except for a single difference: the offset of the range to be

appended is unknown at the time the append is issued. It is

eventually fixed by the version manager at the time the version

number is assigned. It is set to the size of the snapshot cor-

responding to the preceding version number. Again, observe

that the writing of this snapshot may still be in progress.



Fig. 2. BlobSeer’s architecture. The BSFS layer enables Hadoop to use BlobSeer as a storage backend through a file system interface.

IV. INTEGRATING BLOBSEER WITH HADOOP

The Hadoop Map/Reduce framework accesses its default

storage backend (HDFS) through a clean, specific Java API.

This API exposes the basic operations of a file system: read,

write, append, etc. To make Hadoop benefit from BlobSeer’s

properties, we implemented this API on top of BlobSeer. We

call this higher layer the BlobSeer File System (BSFS): it

enables BlobSeer to act as a storage backend file system for

Hadoop. To enable a fair comparison of BSFS with HDFS,

we addressed several performance-oriented issues highlighted

in [11]. They are briefly discussed below.

A. File system namespace

The Hadoop framework expects a classical hierarchical

directory structure, whereas BlobSeer provides a flat structure

for BLOBs. For this purpose, we had to design and imple-

ment a specialized namespace manager, which is responsible

for maintaining a file system namespace, and for mapping

files to BLOBs. For the sake of simplicity, this entity is

centralized. Careful consideration was given to minimize the

interaction with this namespace manager, in order to fully

benefit from the decentralized metadata management scheme

of BlobSeer. Our implementation of Hadoop’s file system API

only interacts with it for operations like file opening and

file/directory creation/deletion/renaming. Access to the actual

data is performed by a direct interaction with BlobSeer through

read/write/append operations on the associated BLOB, which

fully benefit from BlobSeer’s efficient support for concurrency.

B. Data prefetching

Hadoop manipulates data sequentially in small chunks of a

few KB (usually, 4 KB) at a time. To optimize throughput,

HDFS implements a caching mechanism that prefetches data

for reads, and delays committing data for writes. Thereby,

physical reads and writes are performed with data sizes large

enough to compensate for network traffic overhead. We imple-

mented a similar caching mechanism in BSFS. It prefetches

a whole block when the requested data is not already cached,

and delays committing writes until a whole block has been

filled in the cache.

C. Affinity scheduling: exposing data distribution

In a typical Hadoop deployment, the same physical nodes

act both as storage elements and as computation workers.

Therefore, the Hadoop scheduler strives at placing the compu-

tation as close as possible to the data: this has a major impact

on the global data throughput, given the huge volume of data

being processed. To enable this scheduling policy, Hadoop’s

file system API exposes a call that allows Hadoop to learn how

the requested data is split into blocks, and where those blocks

are stored. We address this point by extending BlobSeer with a

new primitive. Given a specified BLOB id, version, offset and

size, it returns the list of blocks that make up the requested

range, and the addresses of the physical nodes that store those

blocks. Then, we simply map Hadoop’s corresponding file

system call to this primitive provided by BlobSeer.

V. EXPERIMENTAL EVALUATION

A. Platform description

To evaluate the benefits of using BlobSeer as the stor-

age backend for Map/Reduce applications we used Yahoo!’s

release of Hadoop v.0.20.0 (which is essentially the main

release of Hadoop with some minor patches designed to enable

Hadoop to run on the Yahoo! production clusters). We chose

this release because it is freely available and enables us to

experiment with a framework that is both stable and used in

production on Yahoo!’s clusters.

We performed our experiments on the Grid’5000 [16]

testbed, a reconfigurable, controllable and monitorable ex-

perimental Grid platform gathering 9 sites geographically

distributed in France. We used the clusters located in Sophia-

Antipolis, Orsay and Lille. Each experiment was carried out

within a single such cluster. The nodes are outfitted with

x86 64 CPUs and 4 GB of RAM for the Rennes and Sophia



clusters (2 GB for the cluster located in Orsay). Intracluster

bandwidth is 1 Gbit/s (measured: 117.5 MB/s for TCP sockets

with MTU = 1500 B), intracluster latency is 0.1 ms. A

significant effort was invested in preparing the experimental

setup, by defining an automated deployment process for the

Hadoop framework both when using BlobSeer and HDFS as

the storage backend. We had to overcome nontrivial node

management and configuration issues to reach this point.

B. Overview of the experiments

In a first phase, we have implemented a set of mi-

crobenchmarks that write/read and append data to files through

Hadoop’s file system API and have measured the achieved

throughput as more and more concurrent clients access the

file system. This synthetic setup has enabled us to control

the access pattern to the file system and focus on different

scenarios that exhibit particular access patterns. We can thus

directly compare the respective behavior of BSFS and HDFS

in these particular synthetic scenarios.

In a second phase, our goal was to get a feeling of the

impact of BlobSeer at the application level. We have run two

standard Map/Reduce applications from the Hadoop release,

both with BSFS and with HDFS. We have evaluated the impact

of using BSFS instead of HDFS on the total job execution time

as the number of available Map/Reduce workers progressively

increases. Note that Hadoop Map/Reduce applications run out-

of-the-box in an environment where Hadoop uses BlobSeer

as a storage backend, just like in the original, unmodified

environment of Hadoop. This was made possible thanks to

the Java file system interface we provided with BSFS, on top

of BlobSeer.

C. Microbenchmarks

We have first defined several scenarios aiming at eval-

uating the throughput achieved by BSFS and HDFS when

the distributed file system is accessed by a single client or

by multiple, concurrent clients, according to several specific

access patterns. In this paper we have focused the following

patterns, often exhibited by Map/Reduce applications:

• a single process writing a huge distributed file;

• concurrent readers reading different parts of the same

huge file;

• concurrent writers appending data to the same huge file.

The aim of these experiments is of course to evaluate

which benefits can be expected when using a concurrency-

optimized storage service such as BlobSeer for highly-parallel

Map-Reduce applications generating such access patterns. The

relevance of these patterns is discussed in the following

subsections, for each scenario. Additional scenarios with other

different access patterns are currently under investigation.

In each scenario, we first measure the throughput achieved

when a single client performs a set of operations on the file

system. Then, we gradually increase the number of clients

performing the same operation concurrently and measure the

average throughput per client. For any fixed number N of

concurrent clients, the experiment consists in two phases: we

deploy of HDFS (respectively BSFS) on a given setup, then

we run the test scenario.

In the deployment phase, HDFS (respectively BSFS) is

deployed on 270 machines from the same cluster of Grid’5000.

For HDFS, we deploy one namenode on a dedicated machine;

the remaining nodes are used for the datanodes (one datanode

per machine). On the same number of nodes, we deploy BSFS

as follows: one version manager, one provider manager, one

node for the namespace manager, 20 metadata providers; the

remaining nodes are used as data providers. Each entity is

deployed on a a separate, dedicated machine.

For the measurement phase, a subset of N machines is

chosen from the set of machines where datanodes/providers

are running. The clients are then launched simultaneously on

this subset of machines, individual throughput is collected and

is then averaged. These steps are repeated 5 times for better

accuracy (which is enough, as the corresponding standard

deviation proved to be low).

D. Scenario 1: single writer, single file

We first measure the performance of HDFS/BSFS when a

single client writes a file whose size gradually increases. This

test consists in sequentially writing a unique file of N×64 MB,

in blocks of 64 MB (N goes from 1 to 246). The size of

HDFS’s chunks is 64 MB, and so is the block size configured

with BlobSeer in this case. The goal of this experiment is to

compare the block allocation strategies that HDFS and BSFS

use in distributing the data across datanodes (respectively

data providers). The policy used by HDFS consists in writing

locally whenever a write is initiated on a datanode. To enable

a fair comparison, we chose to always deploy clients on nodes

where no datanode has previously been deployed. This way,

we make sure that HDFS will distribute the data among the

datanodes, instead of locally storing the whole file. BlobSeer’s

default strategy consists in allocating the corresponding blocks

on remote providers in a round-robin fashion.

We measure the write throughput for both HDFS and BSFS:

the results can be seen on Figure 3(a). BSFS achieves a

significantly higher throughput than HDFS, which is a result

of the balanced, round-robin block distribution strategy used

by BlobSeer. A high throughput is sustained by BSFS even

when the file size increases (up to 16 GB). To evaluate of

the load balancing in both HDFS and BSFS, we chose to

compute the Manhattan distance to an ideally balanced system

where all data providers/datanodes store the same number of

blocks/chunks. To calculate this distance, we represent the

data layout in each case by a vector whose size is equal

to the number of data providers/datanodes; the elements of

the vector represent the number of blocks/chunks stored by

each provider/datanode. We compute 3 such vectors: one for

HDFS, one for BSFS and one for a perfectly balanced system

(where all elements have the same value: the total number of

blocks/chunks divided by the total number of storage nodes.

We then compute the distance between the “ideal” vector and

the HDFS (respectively BSFS). As shown on Figure 3(b), as

the file size (and thus, the number of blocks) increases, both
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Fig. 4. Performance of HDFS and BSFS when concurrent clients read from
a single file

BSFS and HDFS become unbalanced. However, BSFS remains

much closer to a perfectly balanced system, and it manages

to distribute the blocks almost evenly to the providers, even

in the case of a large file. As far as we can tell, this can

be explained by the fact that the block allocation policy in

HDFS mainly takes into account data locality and does not

aim at perfectly balancing the data distribution. A global load-

balancing of the system is done for Map/Reduce applications

when the tasks are assigned to nodes. During this experiment,

we could notice that in HDFS there are datanodes that do not

store any block, which explains the increasing curve shown in

figure 3(b). As we will see in the next experiments, a balanced

data distribution has a significant impact on the overall data

access performance.

E. Scenario 2: concurrent reads, shared file

In this scenario, for each given number N of clients varying

from 1 to 250, we executed the experiment in two steps. First,

we performed a boot-up phase, where a single client writes a

file of N×64 MB, right after the deployment of HDFS/BSFS.

Second, N clients read parts from the file concurrently; each

client reads a different 64 MB chunk sequentially, using finer-

grain blocks of 4 KB. This pattern where multiple readers

request data in chunks of 4 KB is very common in the

“map” phase of a Hadoop Map/Reduce application, where the

mappers read the input file in order to parse the (key, value)

pairs.

For this scenario, we ran two experiments in which we

varied the data layout for HDFS. The first experiment cor-

responds to the case where the file read by all clients is

entirely stored by a single datanode This corresponds to the

case where the file has previously been entirely written by a

client colocated with a datanode (as explained in the previous

scenario). Thus, all clients subsequently read the data stored

by one node, which will lead to a very poor performance of

HDFS. We do not represent these results here. In order to

achieve a more fair comparison where the file is distributed

on multiple nodes both in HDFS and in BSFS, we chose

to execute a second experiment. Here, the boot-up phase is

performed on a dedicated node (no datanode is deployed on

that node). By doing so, HDFS will spread the file in a more

balanced way on multiple remote datanodes and the reads

will be performed remotely for both BSFS and HDFS. This

scenario also offers an accurate simulation of the first phase

of a Map/Reduce application, when the mappers are assigned

to nodes. The HDFS job scheduler tries to assign each map

task to the node that stores the chunk the task will process;

these tasks are called local maps. The scheduler also tries

to achieve a global load-balancing of the system, therefore

not all the assignments will be local. The tasks running on a

different node than the one storing its input data, are called

remote maps: they will read the data remotely.

The results obtained in the second experiment are presented

on Figure 4. BSFS performs significantly better than HDFS,
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and moreover, it is able to deliver the same throughput

even when the number of clients increases. This is a direct

consequence of how balanced is the block distribution for that

file. The superior load balancing strategy used by BlobSeer

when writing the file has a positive impact on the performance

of concurrent reads, whereas the HDFS suffers from the poor

distribution of the file chunks.

F. Scenario 3: Concurrent appends, shared file

We now focus on another scenario, where concurrent clients

append data to the same file. This scenario is also useful in

the context of Map/Reduce applications, as it is for a wide

range of data-intensive applications in general. For instance,

the possibility of running concurrent appends can improve the

performance of a simple operation such as copying a large

distributed file. This can be done in parallel by multiple clients

which read different parts of the file, then concurrently append

the data to the destination file. Moreover, if concurrent append

operations are enabled, Map/Reduce workers can write the

output of the reduce phase to the same file, instead of creating

many output files, as it is currently done in Hadoop.

Despite its obvious usefulness, this feature is not available

with Hadoop’s file system: Hadoop has not been optimized

for such a scenario. As BlobSeer provides support for effi-

cient, concurrent appends by design, we have implemented

the append operation in BSFS and evaluated the aggregated

throughput as the number of clients varies from 1 to 250. We

could not perform the same experiment for HDFS, since it

does not implement the append operation.

Figure 5 illustrates the aggregated throughput obtained when

multiple clients concurrently append data to the same BSFS

file. These good results can be obtained thanks to BlobSeer,

which is optimized for concurrent appends.

Note that these results also give an idea about the per-

formance of concurrent writes to the same file. In BlobSeer,

the append operation is implemented as a special case of the

write operation where the write offset is implicitly equal to

the current file size: the underlying algorithms are actually

identical. The same experiment performed with writes instead

of appends, leads to very similar results.

G. Higher-level experiments with Map/Reduce applications

In order to evaluate how well BSFS and HDFS perform in

the role of storage layers for real Map/Reduce applications, we

selected two standard Map/Reduce applications that are part

of Yahoo!’s Hadoop release.

The first application, RandomTextWriter, is representative of

a distributed job consisting in a large number of tasks each of

which needs to write a large amount of output data (with no

interaction among the tasks). The application launches a fixed

number of mappers, each of which generates a huge sequence

of random sentences formed from a list of predefined words.

The reduce phase is missing altogether: the output of each

of the mappers is stored as a separate file in the file system.

The access pattern generated by this application corresponds

to concurrent, massively parallel writes, each of them writing

to a different file.

To compare the performance of BSFS vs. HDFS in such a

scenario, we co-deploy a Hadoop tasktracker with a datanode

in the case of HDFS (with a data provider in the case of BSFS)

on the same physical machine, for a total of 50 machines.

The other entities for Hadoop, HDFS (namenode, jobtracker)

and for BSFS (version manager, provider manager, namespace

manager) are deployed on separate dedicated nodes. For

BlobSeer, 10 metadata providers are deployed on dedicated

machines as well.

We fix the total output size of the job to amount to 6.4 GB

worth of generated text and vary the size generated by each

mapper from 128 MB (corresponding to 50 parallel mappers)

to 6.4 GB (corresponding to a single mapper), and measure

the job completion time in each case.

Results obtained are displayed on Figure 6(a). Observe

the relative gain of BSFS over HDFS ranges from 7 % for

50 parallel mappers to 11 % for a single mapper. The case

of a single mapper clearly favors BSFS and is consistent

with our findings for the synthetic benchmark in which we

explained the respective behavior of BSFS and HDFS when

a single process writes a huge file. The relative difference is

smaller than in the case of the synthetic benchmark because

here the total job execution time includes some computation

time (generation of random text). This computation time is the

same for both HDFS and BSFS and takes a significant part of

the total execution time.

The second application we consider is distributed grep. It

is representative of a distributed job where huge input data

needs to be processed in order to obtain some statistics. The

application scans a huge text input file for occurrences of a

particular expression and counts the number of lines where the

expression occurs. Mappers simply output the value of these

counters, then the reducers sum up the all the outputs of the

mappers to obtain the final result. The access pattern generated

by this application corresponds to concurrent reads from the

same shared file.
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Fig. 6. Benefits of using BSFS instead of HDFS as a storage layer in Hadoop: impact on the performance of Map/Reduce applications

In this scenario we co-deploy a tasktracker with a HDFS

datanode (with a BlobSeer data provider, respectively), on a

total of 150 nodes. We deploy all centralized entities (version

manager, provider manager, namespace manager, namenode,

etc) on dedicated nodes. Also, 20 Metadata providers are

deployed on dedicated nodes for BlobSeer.

We first write a huge input file to HDFS and BSFS re-

spectively. In the case of HDFS, the file is written from a

node that is not colocated with a datanode, in order to avoid

the scenario where HDFS writes all data blocks locally. This

gives HDFS the chance to perform some load-balancing of

data blocks. Then we run the distributed grep Map/Reduce

application and measure the job completion time. We vary the

size of the input file from 6.4 GB to 12.8 GB in increments

of 1.6 GB. Since a Hadoop data block is 64 MB large and

since usually Hadoop assigns a single mapper to process such

a data block, this roughly corresponds to varying the number

of concurrent mappers from 100 to 200.

Results obtained are represented in Figure 6(b). As can

be observed BSFS outperforms HDFS by 35 % for 6.4 GB

and the gap steadily increases to 38 % for 12.8 GB. This

behavior is consistent with the results obtained for the syn-

thetic benchmark where concurrent processes read from the

same file. Again, the relative difference is smaller than in the

synthetic benchmark because the job completion time accounts

for both the computation time and the I/O transfer time. Note

however the high impact of I/O in such applications that scan

through the data for specific patterns: the benefits of supporting

efficient concurrent reads from the same file at the level of the

underlying distributed file system are definitely significant.

VI. CONCLUSION

The efficiency of the Hadoop framework is a direct function

of that of its data storage layer. This work demonstrates

that it is possible to enhance it by replacing the default

Hadoop Distributed File System (HDFS) layer by another

layer, built along different design principles. We introduce

our BlobSeer system, which is specifically optimized toward

efficient, fine-grain access to massive, distributed data accessed

under heavy concurrency. Thank to this new BlobSeer-based

File System (BSFS) layer, the sustained throughput of Hadoop

is significantly improved in scenarios that exhibit highly

concurrent accesses to shared files. Moreover, BSFS supports

additional features such as efficient concurrent appends, con-

current writes at random offsets and versioning. These features

could be leveraged to extend or improve functionalities in

future versions of Hadoop or other Map/Reduce frameworks.

We list below several interesting perspectives.

A. Leveraging versioning

Although in most real Map/Reduce applications, data is

mostly appended rather than overwritten, Hadoop’s file system

API does not implement append. Since BlobSeer supports ar-

bitrarily concurrent writes as well as appends, this opens a high

potential for very promising improvements of Map/Reduce

framework implementations, including Hadoop. Versioning

can be leveraged to optimize more complex Map/Reduce

workflows, in which the output of one Map/Reduce is the

input of another. In many such scenarios, datasets are only

locally altered from one Map/Reduce pass to another: writing

parts of the dataset while still being able to access the original

dataset (thanks to versioning) could save a lot of temporary

storage space.

B. Fault tolerance

An important aspect we did not discuss in this paper is fault

tolerance. For this, we currently rely on classical mechanisms.

At data level, we employ a simple replication mechanism that

allows the user to specify a replication level for each BLOB. A

write operation actually writes its respective blocks to a num-

ber of providers equal to that replication level. The metadata is

stored in a DHT (formed by the metadata providers), which is



resilient to faults by construction. The centralized managers

represent single points of failure as is the case with the

namenode of HDFS. Overall, fault-tolerance schemes currently

used in BlobSeer are however rather minimal. We are currently

exploring ways to replace them with distributed, fault-tolerant

mechanisms, while still preserving a high-throughput for data

access.

C. Security

We did not address security issues in this paper, as most

of the time Hadoop deployments are exploited within private,

trusted clusters owned by big companies, such as Google and

Yahoo!: for now, we place ourselves in the same context,

therefore the security assumptions are basically the same as

for Hadoop’s built-in file system. In the case where Hadoop

would run as a Map/Reduce cloud service, possibly relying on

externalized, virtualized resources from other cloud computing

service providers (such as Amazon), the security constraints

would be different. It then becomes crucial to guarantee data

privacy and data access control for multiple users, according to

a contract. We plan to explore these issues in the near future.
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